Surface Reconstruction

Size: px
Start display at page:

Download "Surface Reconstruction"

Transcription

1 Eurographics Symposium on Geometry Processing (2006) Surface Reconstruction

2 Some methods for surface reconstruction Classification 1. Based on Delaunay triangulation(or Voronoi diagram) Alpha shapes Crust and Power crust Spectral surface reconstruction Tight cocone 2. Implicit surface reconstruction ( f(x)=r ) Hoppe Radial basis function surface reconstruction Level set PDE 3. Parametric surface reconstrucion B-spline and NURBS

3 Hoppe s method 1.Tangent Plane Estimation is defined to be The center and unit normal are computed so that the plane is the least squares best fitting plane to ni is the eigenvector of minimal eigenvalue 2.Consistent Tangent Plane Orientation Using minimal spanning tree (MST) of the graph with weight for edge Eij 3.Signed Distance Function 4.Contour Tracing marching cubes f(x)=0

4 Marching Cubes

5 Radial basis function surface reconstruction This approach is to model the surface implicitly with a function f (x,y, z). If a surface M consists of all the points (x,y, z) that satisfy the equation f (x,y, z) = 0 This method involves three steps: 1.Constructing a signed-distance function. 2.Fitting an RBF to the resulting distance function. 3.Iso-surfacing the fitted RBF.

6 Radial Basis Functions interpolation ss(xx) = pp(xx) + λ i ϕ x x i p(x) is a low degree polynomial are real coefficients is the Euclidean norm in RR 3 ϕ(x), the basis function, is a real function Thin plate spline function φφ(rr) = rr oooo φφ(rr) = rr 3 Guassian φφ(rr) = eeeeee( cr 2 ) Biharmonic and triharmonic splines min ss Noisy Data : ii=1 ss measures the smoothness NN N i=1 (ρρ ss + 1 NN (ss(xx ii ) ff ii) ) AA 8NNππππII PP PP TT 0 λλ cc = ff 0 φφ(rr) = rr 2 log(r), r = x x i

7 Level set Given an arbitrary set S = {points, curves, surfaces in N dimensions}, the basic problem at hand is the determination of an N dimensional surface which minimises the error defined by where d(x) is the distance function d(x,s), which is the closest distance to the data-set S from a point x. Assuming to be the zero level set of a function ', i.e., we aim to solve the following equation to determine ', and hence

8 Level set Determine an appropriate Euler time-step size, dt from the values of the vector field contributions, curvature contributions (d(x)) and mesh size, to ensure stability.

9 2D Voronoi diagram and Delaunay triangulation 3D Delaunay triangulation

10 Alpha shapes Edelsbrunner's Algorithm

11 Crust algorithm

12 The power crust Definition: The poles of a sample are the farthest vertex of its Voronoi cell in the interior of F and the farthest vertex of its Voronoi cell on the exterior of F. Each pole v is the center of a Voronoi ball, which we shall call its polar ball. The polar balls corresponding to poles inside of F are inner polar balls; outer polar balls are defined analogously. The union of the inner polar balls forms a good approximation of the object bounded by F (we make this quite formal in [3]), and similarly the union of outer polar balls forms a good approximation of the complement of the object.

13 Spectral Surface Reconstruction (eigencrust) 1. Labeling the poles a. The Pole Graph construction b. Spectral Partitioning (Correcting Questionable Poles) 2. Labeling the Remaining Tetrahedra 3. Constructing Manifolds

14 Tight cocone 1. Marking 2. peeling

15 Eurographics Symposium on Geometry Processing (2006) Poisson Surface Reconstruction Michael Kazhdan1, Matthew Bolitho1 and Hugues Hoppe2 1Johns Hopkins University, Baltimore MD, USA 2Microsoft Research, Redmond WA, USA

16 Abstract We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. our Poisson approach allows a hierarchy of locally supported basis functions, and therefore the solution reduces to a well conditioned sparse linear system. We describe a spatially adaptive multiscale algorithm whose time and space complexities are proportional to the size of the reconstructed model. we demonstrate reconstruction of surfaces with greater detail than previously achievable.

17 Given an oriented point set, we approach the problem of surface reconstruction using an implicit function framework. Specifically, we compute a 3D indicator function χ (defined as 1 at points inside the model,and 0 at points outside), and then obtain the reconstructed surface by extracting an appropriate isosurface.

18 Our key insight is that there is an integral relationship between oriented points sampled from the surface of a model and the indicator function of the model. Specifically, the gradient of the indicator function is a vector field that is zero almost everywhere (since the indicator function is constant almost everywhere), except at points near the surface, where it is equal to the inward surface normal. Thus, the oriented point samples can be viewed as samples of the gradient of the model s indicator function (Figure 1). The problem of computing the indicator function thus reduces to inverting the gradient operator, i.e. finding the scalar function χ whose gradient best approximates a vector field V defined by the samples, i.e. Min χ V. If we apply the divergence operator, this variational problem transforms into a standard Poisson problem: compute the scalar function χ whose Laplacian (divergence of gradient) equals the divergence of the vector field V,Δχ χ = V.

19 Main content Defining the gradient field Approximating the gradient field Solving the Poisson problem

20 Defining the gradient field Because the indicator function is a piecewise constant function, explicit computation of its gradient field would result in a vector field with Unbounded values at the surface boundary. To avoid this, we convolve the indicator function with a smoothing filter and consider the gradient field of the smoothed function. The following lemma formalizes the relationship between the gradient of the smoothed indicator function and the surface normal field. Lemma: Given a solid M with boundary M, let χ(m) denote the indicator function of M, N M (p) be the inward surface normal at p M, F (q) be a smoothing filter, and F p (q) = F (q p) its translation to the point p. The gradient of the smoothed indicator function is equal to the vector field obtained by smoothing the surface normal field:

21

22 Approximating the gradient field using the point set S to partition M into distinct patches Ps M, we can approximate the integral over a patchps by the value at point sample s.p, scaled by the area of the patch:

23 Solving the Poisson problem Having formed a vector field V, we want to solve for the function χsuch that χ =V. However, V is generally not integrable (i.e. it is not curlfree), so an exact solution does not generally exist. To find the best least-squares approximate solution, we apply the divergence operator to form the Poisson equation Δχ = V.

24 Problem Discretization we use the positions of the sample points to define an octree O and associate a function Fo to each node o O of the tree, choosing the tree and the functions so that the following conditions are satisfied: 1. The vector field V can be precisely and efficiently represented as the linear sum of the Fo. 2. The matrix representation of the Poisson equation, expressed in terms of the Fo can be solved efficiently. 3. A representation of the indicator function as the sum of the Fo can be precisely and efficiently evaluated near the surface of the model.

25 Defining the function space Given a set of point samples S and a maximum tree depth D, we define the octree O to be the minimal octree with the property that every point sample falls into a leaf node at depth D. we define a space of functions obtained as the span of translates and scales of a fixed, unit-integral, base function F : R 3 R. For every node o O, we set Fo to be the unit-integral node function centered about the node o and stretched by the size of o:

26 n = 3. Therefore, the function F is supported on the domain [-1.5,1.5] 3 and, for the basis function of any octree node,there are at most = 124 other nodes at the same depth whose functions overlap with it.

27 Vector Field Definition where NgbrD(s) are the eight depth-d nodes closest to s.p and are the trilinear interpolation weights. Since the samples are uniform, we can assume that the area of a patch Ps is constant and V is a good approximation, up to a multiplicative constant, of the gradient of the smoothed indicator function. We will show that the choice of multiplicative constant does not affect the reconstruction.

28 Poisson Solution Having defined the vector field V, we would like to solve for the function χ such that the gradient of χis closest to V, i.e. a solution to the Poisson equation Δχ= V. One challenge of solving for χ is that though χ and the coordinate functions of V are in the space, it is not necessarily the case that the functions Δχand V are. To address this issue, we need to solve for the function χsuch that the projection of Δχonto the space is closest to the projection of V.

29 Let, so that we are solving for the vector Then, let us define the O O matrix L such that Lx returns the dot product of the Laplacian with each of the Fo. Specifically, for all o,o O, the (o,o )-th entry of L is set to: Isosurface Extraction We choose the isovalue so that the extracted surface closely approximates the positions of the input samples

30 Non-uniform Samples Estimating local sampling density Computing the vector field Selecting an isovalue

31 examples

32

33 Reference [1] Hoope H. Surface reconstruction from unorganized points, In Proceeding of SIGGRAPH'92[C], chicago:acm press, 1992: [2] Amenta N, Bern M, Kamvyssclis M. A new voronoi-based surface reconstruction algorithm. In Proceeding of SIGGRAPH'98[c],Orlando, ACM press, 1998: [3] Edelsbrunner H, Mucke E P. Three-dimensions alpha shapes[j], ACM Transactions on Graphics,1994,13(1): [4] LORENSEN W., CLINE H.: Marching cubes: A high resolution 3d surface reconstruction algorithm. SIGGRAPH (1987), [5] KOLLURI R., SHEWCHUK J., O BRIEN J.: Spectral surface reconstruction from noisy point clouds. In SGP (2004), [6] AMENTA N., CHOI S., KOLLURI R.: The Power Crust. In Proceedings of the Sixth Symposium on Solid Modeling (2001), Association for Computing Machinery, pp [7] CARR J., BEATSON R., CHERRIE H., MITCHEL T.,FRIGHT W., MCCALLUM B., EVANS T.: Reconstruction and representation of 3D objects with radial basis functions. SIGGRAPH (2001), [8] ZHAO H.-K., OSHER S., FEDKIW R.: Fast Surface Reconstruction Using the Level Set Method. In First IEEE Workshop on Variational and Level Set Methods (2001), pp [9] DEY T. K., GOSWAMI S.: Tight Cocone: A Water-tight Surface Reconstructor. Journal of Computing and Information Science in Engineering 3, 4 (Dec. 2003), [10] Michael Kazhdan1, Matthew Bolitho and Hugues Hoppe, Poisson Surface reconstruction, Eurographics Symposium on Geometry Processing (2006).

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 10: Surface reconstruction Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Curve, surface reconstruction Finding compact connected orientable 2-manifold surface

More information

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo 3 - Reconstruction Acknowledgements: Olga Sorkine-Hornung Geometry Acquisition Pipeline Scanning: results in range images Registration: bring all range images to one coordinate system Stitching/ reconstruction:

More information

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges Reconstruction of 3D Meshes from Point Clouds Ming Zhang Patrick Min cs598b, Geometric Modeling for Computer Graphics Feb. 17, 2000 Outline - problem statement - motivation - applications - challenges

More information

Multi-View Matching & Mesh Generation. Qixing Huang Feb. 13 th 2017

Multi-View Matching & Mesh Generation. Qixing Huang Feb. 13 th 2017 Multi-View Matching & Mesh Generation Qixing Huang Feb. 13 th 2017 Geometry Reconstruction Pipeline RANSAC --- facts Sampling Feature point detection [Gelfand et al. 05, Huang et al. 06] Correspondences

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces.

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. joint work with (S. Osher, R. Fedkiw and M. Kang) Desired properties for surface reconstruction:

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

A Constrained Delaunay Triangle Mesh Method for Three-Dimensional Unstructured Boundary Point Cloud

A Constrained Delaunay Triangle Mesh Method for Three-Dimensional Unstructured Boundary Point Cloud International Journal of Computer Systems (ISSN: 2394-1065), Volume 03 Issue 02, February, 2016 Available at http://www.ijcsonline.com/ A Constrained Delaunay Triangle Mesh Method for Three-Dimensional

More information

Spectral Surface Reconstruction from Noisy Point Clouds

Spectral Surface Reconstruction from Noisy Point Clouds Spectral Surface Reconstruction from Noisy Point Clouds 1. Briefly summarize the paper s contributions. Does it address a new problem? Does it present a new approach? Does it show new types of results?

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing Spring 2011 physical model acquired point cloud reconstructed model 2 Digital Michelangelo Project Range Scanning Systems Passive: Stereo Matching Find and match features in

More information

Fast 3D surface reconstruction from point clouds using graph-based fronts propagation

Fast 3D surface reconstruction from point clouds using graph-based fronts propagation Fast 3D surface reconstruction from point clouds using graph-based fronts propagation Abdallah El Chakik, Xavier Desquesnes, Abderrahim Elmoataz UCBN, GREYC - UMR CNRS 6972, 6.Bvd Marechal Juin, 14050

More information

A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions

A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions Shape Modeling International 2003 Seoul, Korea A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions Yutaa Ohtae Alexander Belyaev Hans-Peter Seidel Objective

More information

Correctness. The Powercrust Algorithm for Surface Reconstruction. Correctness. Correctness. Delaunay Triangulation. Tools - Voronoi Diagram

Correctness. The Powercrust Algorithm for Surface Reconstruction. Correctness. Correctness. Delaunay Triangulation. Tools - Voronoi Diagram Correctness The Powercrust Algorithm for Surface Reconstruction Nina Amenta Sunghee Choi Ravi Kolluri University of Texas at Austin Boundary of a solid Close to original surface Homeomorphic to original

More information

Outline of the presentation

Outline of the presentation Surface Reconstruction Petra Surynková Charles University in Prague Faculty of Mathematics and Physics petra.surynkova@mff.cuni.cz Outline of the presentation My work up to now Surfaces of Building Practice

More information

Surface reconstruction based on a dynamical system

Surface reconstruction based on a dynamical system EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel (Guest Editors) Volume 21 (2002), Number 3 Surface reconstruction based on a dynamical system N.N. Abstract We present an efficient algorithm that computes

More information

Surface Reconstruction from Points

Surface Reconstruction from Points Surface Reconstruction from Points William Y. Chang Department of Computer Science and Engineering University of California, San Diego Abstract This report surveys recent techniques for reconstructing

More information

3D MORPHISM & IMPLICIT SURFACES

3D MORPHISM & IMPLICIT SURFACES 3D MORPHISM & IMPLICIT SURFACES ROMAIN BALP AND CHARLEY PAULUS Abstract. The purpose of this paper is to present a framework based on implicit surfaces that allows to visualize dynamic shapes, and see

More information

Geometric Representations. Stelian Coros

Geometric Representations. Stelian Coros Geometric Representations Stelian Coros Geometric Representations Languages for describing shape Boundary representations Polygonal meshes Subdivision surfaces Implicit surfaces Volumetric models Parametric

More information

ON THE WAY TO WATER-TIGHT MESH

ON THE WAY TO WATER-TIGHT MESH ON THE WAY TO WATER-TIGHT MESH Rui Liu, Darius Burschka, Gerd Hirzinger Institute of Robotics and Mechatronics, German Aerospace Center (DLR) Oberpfaffenhofen, 82234 Wessling, Germany. Rui.Liu@dlr.de KEY

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

Surface Reconstruction with MLS

Surface Reconstruction with MLS Surface Reconstruction with MLS Tobias Martin CS7960, Spring 2006, Feb 23 Literature An Adaptive MLS Surface for Reconstruction with Guarantees, T. K. Dey and J. Sun A Sampling Theorem for MLS Surfaces,

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Provably Good Moving Least Squares

Provably Good Moving Least Squares Provably Good Moving Least Squares Ravikrishna Kolluri Computer Science Division University of California at Berkeley 1 Problem Definition Given a set of samples on a closed surface build a representation

More information

CSC Computer Graphics

CSC Computer Graphics // CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.lk Department of Computer Science University of Sri Jayewardanepura Polygon Filling Scan-Line Polygon Fill Algorithm Span Flood-Fill Algorithm Inside-outside

More information

Surface Reconstruction from Unorganized Points

Surface Reconstruction from Unorganized Points Survey of Methods in Computer Graphics: Surface Reconstruction from Unorganized Points H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle SIGGRAPH 1992. Article and Additional Material at: http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

More information

Survey of Surface Reconstruction Algorithms

Survey of Surface Reconstruction Algorithms Journal of Signal and Information Processing, 2014, 5, 63-79 Published Online August 2014 in SciRes. http://www.scirp.org/journal/jsip http://dx.doi.org/10.4236/jsip.2014.53009 Survey of Surface Reconstruction

More information

Isosurface Rendering. CSC 7443: Scientific Information Visualization

Isosurface Rendering. CSC 7443: Scientific Information Visualization Isosurface Rendering What is Isosurfacing? An isosurface is the 3D surface representing the locations of a constant scalar value within a volume A surface with the same scalar field value Isosurfaces form

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

Chemnitz Scientific Computing Preprints

Chemnitz Scientific Computing Preprints Roman Unger Obstacle Description with Radial Basis Functions for Contact Problems in Elasticity CSC/09-01 Chemnitz Scientific Computing Preprints Impressum: Chemnitz Scientific Computing Preprints ISSN

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al.

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. Solid Modeling Michael Kazhdan (601.457/657) HB 10.15 10.17, 10.22 FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. 1987 Announcement OpenGL review session: When: Today @ 9:00 PM Where: Malone

More information

3D Object Representation. Michael Kazhdan ( /657)

3D Object Representation. Michael Kazhdan ( /657) 3D Object Representation Michael Kazhdan (601.457/657) 3D Objects How can this object be represented in a computer? 3D Objects This one? H&B Figure 10.46 3D Objects This one? H&B Figure 9.9 3D Objects

More information

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations Motivation Freeform Shape Representations for Efficient Geometry Processing Eurographics 23 Granada, Spain Geometry Processing (points, wireframes, patches, volumes) Efficient algorithms always have to

More information

Shape fitting and non convex data analysis

Shape fitting and non convex data analysis Shape fitting and non convex data analysis Petra Surynková, Zbyněk Šír Faculty of Mathematics and Physics, Charles University in Prague Sokolovská 83, 186 7 Praha 8, Czech Republic email: petra.surynkova@mff.cuni.cz,

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

Skeleton Extraction of 3D Objects with Radial Basis Function

Skeleton Extraction of 3D Objects with Radial Basis Function Skeleton Extraction of 3D Objects with Radial Basis Function Fu-Che Wu, Wan-Chun Ma, Ming Ouhyoung Communication and Multimedia Lab Dept. of Computer Science and Information Engineering National Taiwan

More information

Estimating Geometry and Topology from Voronoi Diagrams

Estimating Geometry and Topology from Voronoi Diagrams Estimating Geometry and Topology from Voronoi Diagrams Tamal K. Dey The Ohio State University Tamal Dey OSU Chicago 07 p.1/44 Voronoi diagrams Tamal Dey OSU Chicago 07 p.2/44 Voronoi diagrams Tamal Dey

More information

Indirect Volume Rendering

Indirect Volume Rendering Indirect Volume Rendering Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Contour tracing Marching cubes Marching tetrahedra Optimization octree-based range query Weiskopf/Machiraju/Möller

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013 ISSN:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013 ISSN: Optimization of Mesh Reconstruction using Delaunay and Ball Pivoting Algorithm Bharti Sood 1, Kamaldeep Kaur 2 1, 2 Department of Electronics & Communication Engineering, BBSBEC, Fatehgarh Sahib, India

More information

Implicit 3-D modelling of geological surfaces with the Generalized Radial Basis Functions (GRBF) algorithm

Implicit 3-D modelling of geological surfaces with the Generalized Radial Basis Functions (GRBF) algorithm GEOLOGICAL SURVEY OF CANADA OPEN FILE 7814 Implicit 3-D modelling of geological surfaces with the Generalized Radial Basis Functions (GRBF) algorithm M.J. Hillier, E.A. de Kemp, and E.M. Schetselaar 2017

More information

Computing 3D Geometry Directly From Range Images

Computing 3D Geometry Directly From Range Images Computing 3D Geometry Directly From Range Images Sarah F. Frisken and Ronald N. Perry Mitsubishi Electric Research Laboratories Geometry from Range Data A Classic Approach Subject Range images Range surfaces

More information

Real-Time Shape Editing using Radial Basis Functions

Real-Time Shape Editing using Radial Basis Functions Real-Time Shape Editing using Radial Basis Functions, Leif Kobbelt RWTH Aachen Boundary Constraint Modeling Prescribe irregular constraints Vertex positions Constrained energy minimization Optimal fairness

More information

Robust Poisson Surface Reconstruction

Robust Poisson Surface Reconstruction Robust Poisson Surface Reconstruction V. Estellers, M. Scott, K. Tew, and S. Soatto Univeristy of California, Los Angeles Brigham Young University June 2, 2015 1/19 Goals: Surface reconstruction from noisy

More information

Skeleton Based Solid Representation with Topology Preservation

Skeleton Based Solid Representation with Topology Preservation Skeleton Based Solid Representation with Topology Preservation Ariel Shamir The Interdisciplinary Center Shaham Amir Tel-Aviv University Corresponding author: Dr. Ariel Shamir Efi Arazi School of Computer

More information

Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images

Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images DOI 10.1186/s40064-016-2425-9 RESEARCH Open Access Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images Abhik Maiti * and

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Transformation Functions for Image Registration

Transformation Functions for Image Registration Transformation Functions for Image Registration A. Goshtasby Wright State University 6/16/2011 CVPR 2011 Tutorial 6, Introduction 1 Problem Definition Given n corresponding points in two images: find a

More information

Scientific Visualization Example exam questions with commented answers

Scientific Visualization Example exam questions with commented answers Scientific Visualization Example exam questions with commented answers The theoretical part of this course is evaluated by means of a multiple- choice exam. The questions cover the material mentioned during

More information

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 12 - Spatial And Skeletal Deformations Space Deformations Space Deformation Displacement function defined on the ambient space Evaluate the function on the points of the shape embedded in the space Twist

More information

Topological Equivalence between a 3D Object and the Reconstruction of its Digital Image

Topological Equivalence between a 3D Object and the Reconstruction of its Digital Image to appear in IEEE PAMI Topological Equivalence between a 3D Object and the Reconstruction of its Digital Image Peer Stelldinger, Longin Jan Latecki and Marcelo Siqueira Abstract Digitization is not as

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

A THINNING ALGORITHM FOR TOPOLOGICALLY CORRECT 3D SURFACE RECONSTRUCTION

A THINNING ALGORITHM FOR TOPOLOGICALLY CORRECT 3D SURFACE RECONSTRUCTION A THINNING ALGORITHM FOR TOPOLOGICALLY CORRECT 3D SURFACE RECONSTRUCTION Leonid Tcherniavski Department of Informatics University of Hamburg tcherniavski@informatik.uni-hamburg.de ABSTRACT The existing

More information

Sculpture Scanning. 3D Photography. Applications. Graphics Research. Why Scan Sculptures? Why Scan Sculptures? The Pietà Project

Sculpture Scanning. 3D Photography. Applications. Graphics Research. Why Scan Sculptures? Why Scan Sculptures? The Pietà Project 3D Photography Obtaining 3D shape (and sometimes color) of real-world objects Applications Determine whether manufactured parts are within tolerances Plan surgery on computer model, visualize in real time

More information

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise Fundamentals Data Outline Visualization Discretization Sampling Quantization Representation Continuous Discrete Noise 2 Data Data : Function dependent on one or more variables. Example Audio (1D) - depends

More information

Interpolating and Approximating Implicit Surfaces from Polygon Soup

Interpolating and Approximating Implicit Surfaces from Polygon Soup Interpolating and Approimating Implicit Surfaces from Polygon Soup Chen Shen, James F. O Brien, Jonathan R. Shewchuk University of California, Berkeley Geometric Algorithms Seminar CS 468 Fall 2005 Overview

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

Contouring and Isosurfaces. Ronald Peikert SciVis Contouring 2-1

Contouring and Isosurfaces. Ronald Peikert SciVis Contouring 2-1 Contouring and Isosurfaces Ronald Peikert SciVis 2007 - Contouring 2-1 What are contours? Set of points where the scalar field s has a given value c: Examples in 2D: height contours on maps isobars on

More information

Multi-level Partition of Unity Implicits

Multi-level Partition of Unity Implicits Multi-level Partition of Unity Implicits Diego Salume October 23 rd, 2013 Author: Ohtake, et.al. Overview Goal: Use multi-level partition of unity (MPU) implicit surface to construct surface models. 3

More information

Shape from LIDAR Data. Univ. of Florida

Shape from LIDAR Data. Univ. of Florida Shape from LIDAR Data Yusuf Sahillioğlu Alper Üngör Univ. of Florida 1. Introduction LIght Detection And Ranging systems, LIDAR, are capable of acquiring data to produce accurate digital elevation models

More information

Efficient surface reconstruction using generalized Coulomb potentials Jalba, A.C.; Roerdink, J.B.T.M.

Efficient surface reconstruction using generalized Coulomb potentials Jalba, A.C.; Roerdink, J.B.T.M. Efficient surface reconstruction using generalized Coulomb potentials Jalba, A.C.; Roerdink, J.B.T.M. Published in: IEEE Transactions on Visualization and Computer Graphics DOI: 10.1109/TVCG.2007.70553

More information

Using Isosurface Methods for Visualizing the Envelope of a Swept Trivariate Solid

Using Isosurface Methods for Visualizing the Envelope of a Swept Trivariate Solid Using Isosurface Methods for Visualizing the Envelope of a Swept Trivariate Solid Jason Conkey Kenneth I. Joy Center for Image Processing and Integrated Computing Department of Computer Science University

More information

implicit surfaces, approximate implicitization, B-splines, A- patches, surface fitting

implicit surfaces, approximate implicitization, B-splines, A- patches, surface fitting 24. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE ZBYNĚK ŠÍR FITTING OF PIECEWISE POLYNOMIAL IMPLICIT SURFACES Abstrakt In our contribution we discuss the possibility of an efficient fitting of piecewise

More information

Curves and Surfaces Computer Graphics I Lecture 10

Curves and Surfaces Computer Graphics I Lecture 10 15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

More information

A fast algorithm for manifold reconstruction of surfaces

A fast algorithm for manifold reconstruction of surfaces Proceedings of the IMProVe 2011 International conference on Innovative Methods in Product Design June 15 th 17 th, 2011, Venice, Italy L. Di Angelo (a), L. Giaccari (a) (a) Department of Industrial Engineering,

More information

Geometric and Solid Modeling. Problems

Geometric and Solid Modeling. Problems Geometric and Solid Modeling Problems Define a Solid Define Representation Schemes Devise Data Structures Construct Solids Page 1 Mathematical Models Points Curves Surfaces Solids A shape is a set of Points

More information

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A Top-Down Approach with Shader-Based

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

TERRAIN RECONSTRUCTION FROM GROUND BASED LASER DATA

TERRAIN RECONSTRUCTION FROM GROUND BASED LASER DATA TERRAIN RECONSTRUCTION FROM GROUND BASED LASER DATA Bruce King1, Elzbieta Matuk1, Krzysztof Matuk1, Christopher M. Gold 1 Address: The Department of Land Surveying & Geo Informatics The Hong Kong Polytechnic

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

Freeform Shape Representations for Efficient Geometry Processing

Freeform Shape Representations for Efficient Geometry Processing Freeform Shape Representations for Efficient Geometry Processing Leif Kobbelt Mario Botsch Computer Graphics Group RWTH Aachen Abstract The most important concepts for the handling and storage of freeform

More information

A Toolbox of Level Set Methods

A Toolbox of Level Set Methods A Toolbox of Level Set Methods Ian Mitchell Department of Computer Science University of British Columbia http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca research supported by the Natural Science and

More information

Lecture 17: Solid Modeling.... a cubit on the one side, and a cubit on the other side Exodus 26:13

Lecture 17: Solid Modeling.... a cubit on the one side, and a cubit on the other side Exodus 26:13 Lecture 17: Solid Modeling... a cubit on the one side, and a cubit on the other side Exodus 26:13 Who is on the LORD's side? Exodus 32:26 1. Solid Representations A solid is a 3-dimensional shape with

More information

The Medial Axis of the Union of Inner Voronoi Balls in the Plane

The Medial Axis of the Union of Inner Voronoi Balls in the Plane The Medial Axis of the Union of Inner Voronoi Balls in the Plane Joachim Giesen a, Balint Miklos b,, Mark Pauly b a Max-Planck Institut für Informatik, Saarbrücken, Germany b Applied Geometry Group, ETH

More information

Implicit Surface Reconstruction from 3D Scattered Points Based on Variational Level Set Method

Implicit Surface Reconstruction from 3D Scattered Points Based on Variational Level Set Method Implicit Surface econstruction from D Scattered Points Based on Variational Level Set Method Hanbo Liu Department ofshenzhen graduate school, Harbin Institute oftechnology, Shenzhen, 58055, China liu_hanbo@hit.edu.cn

More information

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25 Curve and Surface Reconstruction Kurt Mehlhorn MPI für Informatik Curve and Surface Reconstruction p.1/25 Curve Reconstruction: An Example probably, you see more than a set of points Curve and Surface

More information

Fast Surface Reconstruction Using the Level Set Method

Fast Surface Reconstruction Using the Level Set Method Fast Surface Reconstruction Using the Level Set Method Hong-Kai Zhao Stanley Osher y Ronald Fedkiw z Abstract In this paper we describe new formulations and develop fast algorithms for implicit surface

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

Lecture 2.2 Cubic Splines

Lecture 2.2 Cubic Splines Lecture. Cubic Splines Cubic Spline The equation for a single parametric cubic spline segment is given by 4 i t Bit t t t i (..) where t and t are the parameter values at the beginning and end of the segment.

More information

Plotting technologies for the study of functions of two real variables

Plotting technologies for the study of functions of two real variables Plotting technologies for the study of functions of two real variables David Zeitoun 1 and Thierry Dana-Picard 2 1 Department of Mathematics, Orot College of Education, Rehovot, Israel, ed.technologie@gmail.com

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Point Cloud Library - Toyota Code Sprint Final Report

Point Cloud Library - Toyota Code Sprint Final Report Point Cloud Library - Toyota Code Sprint Final Report Alexandru E. Ichim April 1, 2012 1 Work Done This section will present the work I have done in addition to the results presented in the midterm report.

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 597D, Fall 2003 3D Object Representations What makes a good 3D object representation? Stanford and Hearn & Baker 1 3D Object

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS.

SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS. SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS. 1. 3D AIRWAY TUBE RECONSTRUCTION. RELATED TO FIGURE 1 AND STAR METHODS

More information

Level Set Extraction from Gridded 2D and 3D Data

Level Set Extraction from Gridded 2D and 3D Data Level Set Extraction from Gridded 2D and 3D Data David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4 Solid Modeling Solid: Boundary + Interior Volume occupied by geometry Solid representation schemes Constructive Solid Geometry (CSG) Boundary representations (B-reps) Space-partition representations Operations

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

Shape and Appearance from Images and Range Data

Shape and Appearance from Images and Range Data SIGGRAPH 2000 Course on 3D Photography Shape and Appearance from Images and Range Data Brian Curless University of Washington Overview Range images vs. point clouds Registration Reconstruction from point

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000 3D Modeling I CG08b Lior Shapira Lecture 8 Based on: Thomas Funkhouser,Princeton University Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

Recent Developments in Model-based Derivative-free Optimization

Recent Developments in Model-based Derivative-free Optimization Recent Developments in Model-based Derivative-free Optimization Seppo Pulkkinen April 23, 2010 Introduction Problem definition The problem we are considering is a nonlinear optimization problem with constraints:

More information

Comparative Study of Combinatorial 3D Reconstruction Algorithms

Comparative Study of Combinatorial 3D Reconstruction Algorithms Comparative Study of Combinatorial 3D Reconstruction Algorithms Abdelaaziz MAHDAOUI #1, Aziz BOUAZI *2, Abdallah. MARHRAOUI HSAINI *2, El Hassan SBAI *2 # Department of Physics, Faculty of Science, University

More information

Moving Least Squares Multiresolution Surface Approximation

Moving Least Squares Multiresolution Surface Approximation Moving Least Squares Multiresolution Surface Approximation BORIS MEDEROS LUIZ VELHO LUIZ HENRIQUE DE FIGUEIREDO IMPA Instituto de Matemática Pura e Aplicada Estrada Dona Castorina 110, 22461-320 Rio de

More information

Scalar Visualization

Scalar Visualization Scalar Visualization Visualizing scalar data Popular scalar visualization techniques Color mapping Contouring Height plots outline Recap of Chap 4: Visualization Pipeline 1. Data Importing 2. Data Filtering

More information