Power analysis. Wednesday, Lecture 3 Jeanette Mumford University of Wisconsin - Madison

Size: px
Start display at page:

Download "Power analysis. Wednesday, Lecture 3 Jeanette Mumford University of Wisconsin - Madison"

Transcription

1 Power analysis Wednesday, Lecture 3 Jeanette Mumford University of Wisconsin - Madison

2 Power Analysis-Why? To answer the question. How many subjects do I need for my study? How many runs per subject should I collect? To create thorough grant applications that will make reviewers happy! Don t waste money on underpowered studies OR collecting data on more subjects than you need

3 Wait, what is efficiency? Remember efficiency? What specifically did we look at? What would happen with efficiency if we simply kept adding subjects?

4 Power More meaningful than efficiency We know that a design with over 80% power is a pretty good one Important point With efficiency we were optimizing the time series model With power we are focusing on the group analysis

5 What is Power? Null Distribu3on Alterna3ve Distribu3on Power: The probability 0.4 of rejecting H 0 when 0.35 H A is true 0.3 Specify your null 0.25 distribution Mean=0, variance=σ Specify the effect size 0.15 (Δ), which leads to 0.1 alternative distribution 0.05 Specify the false α Power positive rate, α Δ/σ

6 Interpreta3on 1100 total voxels 100 voxels have β=δ A test with 50% power on average will detect 50 of these voxels with true ac3va3on 1000 voxels have β=0 α=5% implies on average 50 null voxels will have false posi3ves fmri Power Test Result (observed) Reject H 0 Accept H 0 Truth (unobserved) H 0 True Type I Error α 50 Correct 950 H 0 False Power 50 Type II Error

7 Two approaches for trea3ng the data Region of interest Focus on a set of voxels Whole brain Focus on all voxels, simultaneously

8 Region of interest analysis Subject-specific 3me series data (4D) subject 1 subject 2 subject N...

9 Region of interest analysis Subject-specific 3me series data (4D) subject 1 subject 2 subject N... Subject-specific ac3va3on maps (3D)

10 Region of interest analysis Subject-specific 3me series data (4D) subject 1 subject 2 subject N... Average data over region of interest

11 Region of interest analysis Subject-specific 3me series data (4D) subject 1 subject 2 subject N... Average data over region of interest (1D) Single region of interest analysis Brain ac3va3on Depression

12 Whole brain analysis Subject-specific 3me series data (4D) subject 1 subject 2 subject N...

13 Whole brain analysis Subject-specific 3me series data (4D) subject 1 subject 2 subject N... Subject-specific ac3va3on maps (3D)

14 Whole brain analysis Subject-specific 3me series data (4D) subject 1 subject 2 subject N... Subject-specific ac3va3on maps (3D) Group sta3s3c map (3D)

15 Whole brain: Thresholding the map What type of error rate does the researcher want to control? Per comparison error Use p < 0.05 at each voxel Family wise error Probability of any false posi3ves False discovery rate Propor3on of voxels found to be ac3ve that are false ac3va3ons What sta3s3c does the researcher want to use? Voxelwise Clusterwise Peakwise

16 Whole brain: Thresholding the map What type of error rate does the researcher want to control? Per comparison error Use p < 0.05 for each sta3s3c Family wise error Probability of any false posi3ves False discovery rate Propor3on of voxels found to be ac3ve that are false ac3va3ons What sta3s3c does the researcher want to use? Voxelwise Clusterwise Peakwise

17 Whole brain: Thresholding the map What type of error rate does the researcher want to control? Per comparison error Use p < 0.05 for each sta3s3c Family wise error Probability of any false posi3ves False discovery rate Propor3on of voxels found to be ac3ve that are false ac3va3ons What sta3s3c does the researcher want to use? Voxelwise Clusterwise Peakwise

18 Whole brain: Thresholding the map What type of error rate does the researcher want to control? Per comparison error Use p < 0.05 for each sta3s3c Family wise error Probability of any false posi3ves False discovery rate Propor3on of sta3s3cs found to be ac3ve that are false ac3va3ons What sta3s3c does the researcher want to use? Voxelwise Clusterwise Peakwise

19 Whole brain: Thresholding the map What type of error rate does the researcher want to control? Per comparison error Use p < 0.05 for each sta3s3c Family wise error Probability of any false posi3ves False discovery rate Propor3on of sta3s3cs found to be ac3ve that are false ac3va3ons What sta3s3c does the researcher want to use? Voxelwise Clusterwise Peakwise

20 Voxel-level Inference Retain voxels above α-level threshold u α Gives best spa3al specificity The null hyp. at a single voxel can be rejected Statistic values space

21 Voxel-level Inference Retain voxels above α-level threshold u α Gives best spa3al specificity The null hyp. at a single voxel can be rejected u α space

22 Voxel-level Inference Retain voxels above α-level threshold u α u α space Significant Voxels No significant Voxels

23 Cluster-level Inference Two step-process Define clusters by arbitrary threshold u clus u clus space

24 Cluster-level Inference Two step-process Define clusters by arbitrary threshold u clus Retain clusters larger than α-level threshold k α u clus space Cluster not significant k α k α Cluster significant

25 Peak level inference Again start with a cluster forming threshold Instead of cluster size, focus on peak height Similarly to cluster level inference, significance applies to a set of voxels The peak and its neighbors u clus space

26 Peak level inference Again start with a cluster forming threshold Instead of cluster size, focus on peak height Similarly to cluster level inference, significance applies to a set of voxels The peak and its neighbors Z 4 Z 2 Z 3 u clus Z 1 Z 5 space

27 Peak level inference Again start with a cluster forming threshold Instead of cluster size, focus on peak height Similarly to cluster level inference, significance applies to a set of voxels The peak and its neighbors Z 4 u peak Z u 1 clus Z 2 Z 3 Z 5 space

28 Peak level inference Again start with a cluster forming threshold Instead of cluster size, focus on peak height Significance applies to a set of voxels The peak and its neighbors Z 4 u peak Z u 1 clus Z 2 Z 3 Z 5 space

29 Whole brain: Thresholding the map What type of error rate does the researcher want to control? Per comparison error Use p < 0.05 for each sta3s3c Family wise error Probability of any false posi3ves False discovery rate Propor3on of sta3s3cs found to be ac3ve that are false ac3va3ons What sta3s3c does the researcher want to use? Voxelwise Clusterwise Peakwise

30 Power analysis Are studies currently well powered? How well do the methods meet the needs of researchers

31 Sample sizes over 3me Poldrack et al. (2016) Scanning the Horizon: Future Challenges of NeuroImaging Research. BioRxiv preprint

32 Sample sizes over 3me Poldrack et al. (2016) Scanning the Horizon: Future Challenges of NeuroImaging Research. BioRxiv preprint

33 2002: Desmond and Glover ROI analysis approach Simplified 3me series model Based on mixed model Abstract says about 12 subjects for 80% power Only the discussion points out different studies could have smaller effect sizes Desmond and Glover (2002) PMID:

34 2002: Desmond and Glover ROI analysis approach Simplified 3me series model Based on mixed model Abstract says about 12 subjects for 80% power Only the discussion points out different studies could have smaller effect sizes Desmond and Glover (2002) PMID:

35 2002: Desmond and Glover ROI analysis approach Simplified 3me series model Based on mixed model Abstract says about 12 subjects for 80% power Only the discussion points out different studies could have smaller effect sizes Desmond and Glover (2002) PMID:

36 2002: Desmond and Glover ROI analysis approach Simplified 3me series model Based on mixed model Abstract says about 12 subjects for 80% power Only the discussion points out different studies could have smaller effect sizes Desmond and Glover (2002) PMID:

37 2006: Mumford and Nichols ROI-based Match the true models used more closely Desmond and Glover were likely overes3ma3ng power

38 2006: Mumford and Nichols ROI-based Match the true models used more closely Desmond and Glover were likely overes3ma3ng power

39 2006: Mumford and Nichols ROI-based Match the true models used more closely Previous approach was an overes3mate Desmond & Glover Correct

40 2006: Mumford and Nichols ROI-based Match the true models used more closely Previous approach was an overes3mate MATLAB toolbox fmripower.org Desmond & Glover Correct

41 fmripower Beta version at fmripower.org ROI based power analysis Can apply to old FSL or SPM anlayses Runs in Matlab Current version only allows user to specify different # s of subjects Assumes # of runs for future study will be the same Assumes between subject variability is same across subjects Doesn t control for multiple comparisons

42 fmripower

43 2006: Hayasaka Whole brain Voxelwise Random Field Theory Obtain power or sample size map MATLAB toolbox hlps:// sourceforge.net/ projects/powermap/

44 2006: Hayasaka Whole brain Voxelwise FWE or sample size map MATLAB toolbox hlps:// sourceforge.net/ projects/powermap/

45 2006: Hayasaka Whole brain Voxelwise FWE Obtain power or sample size map MATLAB toolbox hlps:// sourceforge.net/ projects/powermap/

46 2006: Hayasaka Whole brain Voxelwise FWE Obtain power or sample size map MATLAB toolbox sourceforge.net/ projects/powermap/

47 2014: Posthoc Power by Durnez Whole brain FWER/FDR peaks or clusters Es3mate power for a given study mul3plicity works in our favor Use mixture of distribu3ons to es3mate propor3on of nonac3ve

48 2014: Posthoc Power by Durnez Whole brain FWER/FDR peaks or clusters Es3mate power for a given study mul3plicity works in our favor Use mixture of distribu3ons to es3mate propor3on of nonac3ve

49 2014: Posthoc Power by Durnez Whole brain FWER/FDR peaks or clusters Es3mate power for a given study mul3plicity works in our favor Use mixture of distribu3ons to es3mate propor3on of non-ac3ve

50 Why no posthoc power for ROI s? Power is a function of alpha If you rejected your null, post hoc power is always less than 50% See The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis Hoenig et al, Amer. Stat cutoff cutoff

51 Why no posthoc power for ROI s? Power is a function of alpha If you rejected your null, post hoc power is always less than 50% See The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis Hoenig et al, Amer. Stat cutoff

52 You still need to do something You need to have data! You need to have a region that you re interested in Based on findings of other studies is best Anatomical hypothesis are also quite good DO NOT simply take the region that was active for your task. This is biased.

53 What if you don t have data? Try to get as much information from similar papers as possible authors for raw ROI data Try to get mean and sd estimates off of plots in paper Durnez approaches only require a group statistics map! Check out data bases

54 That s it!

Controlling for mul2ple comparisons in imaging analysis. Where we re going. Where we re going 8/15/16

Controlling for mul2ple comparisons in imaging analysis. Where we re going. Where we re going 8/15/16 Controlling for mul2ple comparisons in imaging analysis Wednesday, Lecture 2 Jeane?e Mumford University of Wisconsin - Madison Where we re going Review of hypothesis tes2ng introduce mul2ple tes2ng problem

More information

Controlling for multiple comparisons in imaging analysis. Wednesday, Lecture 2 Jeanette Mumford University of Wisconsin - Madison

Controlling for multiple comparisons in imaging analysis. Wednesday, Lecture 2 Jeanette Mumford University of Wisconsin - Madison Controlling for multiple comparisons in imaging analysis Wednesday, Lecture 2 Jeanette Mumford University of Wisconsin - Madison Motivation Run 100 hypothesis tests on null data using p

More information

Controlling for mul-ple comparisons in imaging analysis. Wednesday, Lecture 2 Jeane:e Mumford University of Wisconsin - Madison

Controlling for mul-ple comparisons in imaging analysis. Wednesday, Lecture 2 Jeane:e Mumford University of Wisconsin - Madison Controlling for mul-ple comparisons in imaging analysis Wednesday, Lecture 2 Jeane:e Mumford University of Wisconsin - Madison Where we re going Review of hypothesis tes-ng introduce mul-ple tes-ng problem

More information

Group Sta*s*cs in MEG/EEG

Group Sta*s*cs in MEG/EEG Group Sta*s*cs in MEG/EEG Will Woods NIF Fellow Brain and Psychological Sciences Research Centre Swinburne University of Technology A Cau*onary tale. A Cau*onary tale. A Cau*onary tale. Overview Introduc*on

More information

New and best-practice approaches to thresholding

New and best-practice approaches to thresholding New and best-practice approaches to thresholding Thomas Nichols, Ph.D. Department of Statistics & Warwick Manufacturing Group University of Warwick FIL SPM Course 17 May, 2012 1 Overview Why threshold?

More information

Correction for multiple comparisons. Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh

Correction for multiple comparisons. Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh Correction for multiple comparisons Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh Overview Multiple comparisons correction procedures Levels of inferences (set, cluster, voxel) Circularity issues

More information

Multiple Testing and Thresholding

Multiple Testing and Thresholding Multiple Testing and Thresholding NITP, 2009 Thanks for the slides Tom Nichols! Overview Multiple Testing Problem Which of my 100,000 voxels are active? Two methods for controlling false positives Familywise

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis Instructor: Moo K. Chung mchung@stat.wisc.edu Lecture 10. Multiple Comparisons March 06, 2007 This lecture will show you how to construct P-value maps fmri Multiple Comparisons 4-Dimensional

More information

Multiple Testing and Thresholding

Multiple Testing and Thresholding Multiple Testing and Thresholding NITP, 2010 Thanks for the slides Tom Nichols! Overview Multiple Testing Problem Which of my 100,000 voxels are active? Two methods for controlling false positives Familywise

More information

Multiple comparisons problem and solutions

Multiple comparisons problem and solutions Multiple comparisons problem and solutions James M. Kilner http://sites.google.com/site/kilnerlab/home What is the multiple comparisons problem How can it be avoided Ways to correct for the multiple comparisons

More information

Multiple Testing and Thresholding

Multiple Testing and Thresholding Multiple Testing and Thresholding UCLA Advanced NeuroImaging Summer School, 2007 Thanks for the slides Tom Nichols! Overview Multiple Testing Problem Which of my 100,000 voxels are active? Two methods

More information

Linear Models in Medical Imaging. John Kornak MI square February 22, 2011

Linear Models in Medical Imaging. John Kornak MI square February 22, 2011 Linear Models in Medical Imaging John Kornak MI square February 22, 2011 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Linear Models in Medical Imaging. John Kornak MI square February 23, 2010

Linear Models in Medical Imaging. John Kornak MI square February 23, 2010 Linear Models in Medical Imaging John Kornak MI square February 23, 2010 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Linear Models in Medical Imaging. John Kornak MI square February 19, 2013

Linear Models in Medical Imaging. John Kornak MI square February 19, 2013 Linear Models in Medical Imaging John Kornak MI square February 19, 2013 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Linear Models in Medical Imaging. John Kornak MI square February 21, 2012

Linear Models in Medical Imaging. John Kornak MI square February 21, 2012 Linear Models in Medical Imaging John Kornak MI square February 21, 2012 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Statistical inference on images

Statistical inference on images 7 Statistical inference on images The goal of statistical inference is to make decisions based on our data, while accounting for uncertainty due to noise in the data. From a broad perspective, statistical

More information

Resources for Nonparametric, Power and Meta-Analysis Practical SPM Course 2015, Zurich

Resources for Nonparametric, Power and Meta-Analysis Practical SPM Course 2015, Zurich Resources for Nonparametric, Power and Meta-Analysis Practical SPM Course 2015, Zurich http://www.translationalneuromodeling.org/practical-sessions/ Preliminary Get this file: http://warwick.ac.uk/tenichols/zurich.pdf

More information

Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question.

Single Subject Demo Data Instructions 1) click New and answer No to the spatially preprocess question. (1) conn - Functional connectivity toolbox v1.0 Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question. 2) in "Basic" enter "1" subject, "6" seconds

More information

Introductory Concepts for Voxel-Based Statistical Analysis

Introductory Concepts for Voxel-Based Statistical Analysis Introductory Concepts for Voxel-Based Statistical Analysis John Kornak University of California, San Francisco Department of Radiology and Biomedical Imaging Department of Epidemiology and Biostatistics

More information

Group (Level 2) fmri Data Analysis - Lab 4

Group (Level 2) fmri Data Analysis - Lab 4 Group (Level 2) fmri Data Analysis - Lab 4 Index Goals of this Lab Before Getting Started The Chosen Ten Checking Data Quality Create a Mean Anatomical of the Group Group Analysis: One-Sample T-Test Examine

More information

Advances in FDR for fmri -p.1

Advances in FDR for fmri -p.1 Advances in FDR for fmri Ruth Heller Department of Statistics, University of Pennsylvania Joint work with: Yoav Benjamini, Nava Rubin, Damian Stanley, Daniel Yekutieli, Yulia Golland, Rafael Malach Advances

More information

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal!

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal! ARE YOUR ANALYSES TOO PARAMETRIC? That s not Normal! Martin M Monti http://montilab.psych.ucla.edu WHY IS YOUR ANALYSIS PARAMETRIC? i. Optimal power (defined as the probability to detect a real difference)

More information

Extending the GLM. Outline. Mixed effects motivation Evaluating mixed effects methods Three methods. Conclusions. Overview

Extending the GLM. Outline. Mixed effects motivation Evaluating mixed effects methods Three methods. Conclusions. Overview Extending the GLM So far, we have considered the GLM for one run in one subject The same logic can be applied to multiple runs and multiple subjects GLM Stats For any given region, we can evaluate the

More information

Quality Checking an fmri Group Result (art_groupcheck)

Quality Checking an fmri Group Result (art_groupcheck) Quality Checking an fmri Group Result (art_groupcheck) Paul Mazaika, Feb. 24, 2009 A statistical parameter map of fmri group analyses relies on the assumptions of the General Linear Model (GLM). The assumptions

More information

Data Visualisation in SPM: An introduction

Data Visualisation in SPM: An introduction Data Visualisation in SPM: An introduction Alexa Morcom Edinburgh SPM course, April 2015 SPMmip [-30, 3, -9] 3 Visualising results remembered vs. fixation contrast(s) < < After the results table - what

More information

Artifact detection and repair in fmri

Artifact detection and repair in fmri Artifact detection and repair in fmri Paul K. Mazaika, Ph.D. Center for Interdisciplinary Brain Sciences Research (CIBSR) Division of Interdisciplinary Behavioral Sciences Stanford University School of

More information

Data Visualisation in SPM: An introduction

Data Visualisation in SPM: An introduction Data Visualisation in SPM: An introduction Alexa Morcom Edinburgh SPM course, April 2010 Centre for Cognitive & Neural Systems/ Department of Psychology University of Edinburgh Visualising results remembered

More information

Cluster failure: Why fmri inferences for spatial extent have inflated false positive rates

Cluster failure: Why fmri inferences for spatial extent have inflated false positive rates Supporting Information Appendix Cluster failure: Why fmri inferences for spatial extent have inflated false positive rates Anders Eklund, Thomas Nichols, Hans Knutsson Methods Resting state fmri data Resting

More information

First-level fmri modeling

First-level fmri modeling First-level fmri modeling Monday, Lecture 3 Jeanette Mumford University of Wisconsin - Madison What do we need to remember from the last lecture? What is the general structure of a t- statistic? How about

More information

Documentation for imcalc (SPM 5/8/12) Robert J Ellis

Documentation for imcalc (SPM 5/8/12) Robert J Ellis (_) _ '_ ` _ \ / / _` / Image calculations and transformations (using SPM) (_ (_ ( This software version: 09-Nov-2017 _ _ _ _ \ \,_ _ \ (C) Robert J Ellis (http://tools.robjellis.net) Documentation for

More information

Network statistics and thresholding

Network statistics and thresholding Network statistics and thresholding Andrew Zalesky azalesky@unimelb.edu.au HBM Educational Course June 25, 2017 Network thresholding Unthresholded Moderate thresholding Severe thresholding Strong link

More information

Statistical Methods in functional MRI. False Discovery Rate. Issues with FWER. Lecture 7.2: Multiple Comparisons ( ) 04/25/13

Statistical Methods in functional MRI. False Discovery Rate. Issues with FWER. Lecture 7.2: Multiple Comparisons ( ) 04/25/13 Statistical Methods in functional MRI Lecture 7.2: Multiple Comparisons 04/25/13 Martin Lindquist Department of iostatistics Johns Hopkins University Issues with FWER Methods that control the FWER (onferroni,

More information

Introduction to Neuroimaging Janaina Mourao-Miranda

Introduction to Neuroimaging Janaina Mourao-Miranda Introduction to Neuroimaging Janaina Mourao-Miranda Neuroimaging techniques have changed the way neuroscientists address questions about functional anatomy, especially in relation to behavior and clinical

More information

fmri Analysis Sackler Ins2tute 2011

fmri Analysis Sackler Ins2tute 2011 fmri Analysis Sackler Ins2tute 2011 How do we get from this to this? How do we get from this to this? And what are those colored blobs we re all trying to see, anyway? Raw fmri data straight from the scanner

More information

Figure 1. Comparison of the frequency of centrality values for central London and our region of Soho studied. The comparison shows that Soho falls

Figure 1. Comparison of the frequency of centrality values for central London and our region of Soho studied. The comparison shows that Soho falls A B C Figure 1. Comparison of the frequency of centrality values for central London and our region of Soho studied. The comparison shows that Soho falls well within the distribution for London s streets.

More information

How to make ROI files

How to make ROI files How to make ROI files Ver. 1.0 2012/08/07 Introduction Functional ROI Structural ROI Hand-made ROI History Contact 2 Introduction This manual explains how to make ROI (Region Of Interest) files that you

More information

Event-related design efficiency and How to plot fmri time series. Sepideh Sadaghiani NeuroSpin Methods Meeting 15. Sept. 2008

Event-related design efficiency and How to plot fmri time series. Sepideh Sadaghiani NeuroSpin Methods Meeting 15. Sept. 2008 Event-related design efficiency and How to plot fmri time series Sepideh Sadaghiani NeuroSpin Methods Meeting 15. Sept. 2008 Event-related averaging or FIR? event-related fmri ability to average responses

More information

Statistical Analysis of MRI Data

Statistical Analysis of MRI Data Statistical Analysis of MRI Data Shelby Cummings August 1, 2012 Abstract Every day, numerous people around the country go under medical testing with the use of MRI technology. Developed in the late twentieth

More information

SnPM is an SPM toolbox developed by Andrew Holmes & Tom Nichols

SnPM is an SPM toolbox developed by Andrew Holmes & Tom Nichols 1 of 14 3/30/2005 9:24 PM SnPM A Worked fmri Example SnPM is an SPM toolbox developed by Andrew Holmes & Tom Nichols This page... introduction example data background design setup computation viewing results

More information

Sta$s$cs & Experimental Design with R. Barbara Kitchenham Keele University

Sta$s$cs & Experimental Design with R. Barbara Kitchenham Keele University Sta$s$cs & Experimental Design with R Barbara Kitchenham Keele University 1 Comparing two or more groups Part 5 2 Aim To cover standard approaches for independent and dependent groups For two groups Student

More information

CONN fmri functional connectivity toolbox

CONN fmri functional connectivity toolbox CONN fmri functional connectivity toolbox Gabrieli Lab. McGovern Institute for Brain Research Massachusetts Institute of Technology http://www.nitrc.org/projects/conn Susan Whitfield-Gabrieli Alfonso Nieto-Castanon

More information

NA-MIC National Alliance for Medical Image Computing fmri Data Analysis

NA-MIC National Alliance for Medical Image Computing   fmri Data Analysis NA-MIC fmri Data Analysis Sonia Pujol, Ph.D. Wendy Plesniak, Ph.D. Randy Gollub, M.D., Ph.D. Acknowledgments NIH U54EB005149 Neuroimage Analysis Center NIH P41RR013218 FIRST Biomedical Informatics Research

More information

arxiv: v1 [stat.ap] 1 Jun 2016

arxiv: v1 [stat.ap] 1 Jun 2016 Permutation-based cluster size correction for voxel-based lesion-symptom mapping arxiv:1606.00475v1 [stat.ap] 1 Jun 2016 June 3, 2016 Daniel Mirman a,b,1 Jon-Frederick Landrigan a Spiro Kokolis a Sean

More information

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd CHAPTER 2 Morphometry on rodent brains A.E.H. Scheenstra J. Dijkstra L. van der Weerd This chapter was adapted from: Volumetry and other quantitative measurements to assess the rodent brain, In vivo NMR

More information

fmri Basics: Single Subject Analysis

fmri Basics: Single Subject Analysis fmri Basics: Single Subject Analysis This session is intended to give an overview of the basic process of setting up a general linear model for a single subject. This stage of the analysis is also variously

More information

A User s Guide to Graphical-Model-based Multivariate Analysis

A User s Guide to Graphical-Model-based Multivariate Analysis A User s Guide to Graphical-Model-based Multivariate Analysis 1. Introduction Rong Chen December 2006 Graphical-Model-based Multivariate Analysis (GAMMA) is a Bayesian data mining software for structural

More information

Contents. comparison. Multiple comparison problem. Recap & Introduction Inference & multiple. «Take home» message. DISCOS SPM course, CRC, Liège, 2009

Contents. comparison. Multiple comparison problem. Recap & Introduction Inference & multiple. «Take home» message. DISCOS SPM course, CRC, Liège, 2009 DISCOS SPM course, CRC, Liège, 2009 Contents Multiple comparison problem Recap & Introduction Inference & multiple comparison «Take home» message C. Phillips, Centre de Recherches du Cyclotron, ULg, Belgium

More information

- Ar$ficial Neural Network- ADALINE and MADALINE

- Ar$ficial Neural Network- ADALINE and MADALINE - Ar$ficial Neural Network- ADALINE and MADALINE ADALINE ADALINE (Adap$ve Linear Neuron) is a network model proposed by Bernard Widrow in 1959. X 1 X 2 single processing element... X 3 2 Training Rule

More information

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Nivedita Agarwal, MD Nivedita.agarwal@apss.tn.it Nivedita.agarwal@unitn.it Volume and surface morphometry Brain volume White matter

More information

Introduc)on to fmri. Natalia Zaretskaya

Introduc)on to fmri. Natalia Zaretskaya Introduc)on to fmri Natalia Zaretskaya Content fmri signal fmri versus neural ac)vity A classical experiment: flickering checkerboard Preprocessing Univariate analysis Single- subject analysis Group analysis

More information

Spatial Filtering Methods in MEG. Part 3: Template Normalization and Group Analysis"

Spatial Filtering Methods in MEG. Part 3: Template Normalization and Group Analysis Spatial Filtering Methods in MEG Part 3: Template Normalization and Group Analysis" Douglas Cheyne, PhD" Program in Neurosciences and Mental Health" Hospital for Sick Children Research Institute " &" Department

More information

Journal of Statistical Software

Journal of Statistical Software JSS Journal of Statistical Software January 2014, Volume 56, Issue 9. http://www.jstatsoft.org/ POBE: A Computer Program for Optimal Design of Multi-Subject Blocked fmri Experiments Bärbel Maus University

More information

Confidence Intervals. Dennis Sun Data 301

Confidence Intervals. Dennis Sun Data 301 Dennis Sun Data 301 Statistical Inference probability Population / Box Sample / Data statistics The goal of statistics is to infer the unknown population from the sample. We ve already seen one mode of

More information

STAT 5200 Handout #24: Power Calculation in Mixed Models

STAT 5200 Handout #24: Power Calculation in Mixed Models STAT 5200 Handout #24: Power Calculation in Mixed Models Statistical power is the probability of finding an effect (i.e., calling a model term significant), given that the effect is real. ( Effect here

More information

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015 Statistical Analysis of Neuroimaging Data Phebe Kemmer BIOS 516 Sept 24, 2015 Review from last time Structural Imaging modalities MRI, CAT, DTI (diffusion tensor imaging) Functional Imaging modalities

More information

Supplementary methods

Supplementary methods Supplementary methods This section provides additional technical details on the sample, the applied imaging and analysis steps and methods. Structural imaging Trained radiographers placed all participants

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 14: Introduction to hypothesis testing (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 10 Hypotheses 2 / 10 Quantifying uncertainty Recall the two key goals of inference:

More information

Lecture 25: Review I

Lecture 25: Review I Lecture 25: Review I Reading: Up to chapter 5 in ISLR. STATS 202: Data mining and analysis Jonathan Taylor 1 / 18 Unsupervised learning In unsupervised learning, all the variables are on equal standing,

More information

We can see that some anatomical details are lost after aligning and averaging brains, especially on the cortical level.

We can see that some anatomical details are lost after aligning and averaging brains, especially on the cortical level. Homework 3 - Model answer Background: Listen to the lecture on Data formats (Voxel and affine transformation matrices, nifti formats) and group analysis (Group Analysis, Anatomical Normalization, Multiple

More information

Multiple Linear Regression: Global tests and Multiple Testing

Multiple Linear Regression: Global tests and Multiple Testing Multiple Linear Regression: Global tests and Multiple Testing Author: Nicholas G Reich, Jeff Goldsmith This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike

More information

Search Engines. Informa1on Retrieval in Prac1ce. Annota1ons by Michael L. Nelson

Search Engines. Informa1on Retrieval in Prac1ce. Annota1ons by Michael L. Nelson Search Engines Informa1on Retrieval in Prac1ce Annota1ons by Michael L. Nelson All slides Addison Wesley, 2008 Evalua1on Evalua1on is key to building effec$ve and efficient search engines measurement usually

More information

An independent component analysis based tool for exploring functional connections in the brain

An independent component analysis based tool for exploring functional connections in the brain An independent component analysis based tool for exploring functional connections in the brain S. M. Rolfe a, L. Finney b, R. F. Tungaraza b, J. Guan b, L.G. Shapiro b, J. F. Brinkely b, A. Poliakov c,

More information

Chemical Reaction dataset ( https://stat.wvu.edu/~cjelsema/data/chemicalreaction.txt )

Chemical Reaction dataset ( https://stat.wvu.edu/~cjelsema/data/chemicalreaction.txt ) JMP Output from Chapter 9 Factorial Analysis through JMP Chemical Reaction dataset ( https://stat.wvu.edu/~cjelsema/data/chemicalreaction.txt ) Fitting the Model and checking conditions Analyze > Fit Model

More information

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan SPM Introduction Scott Peltier FMRI Laboratory University of Michigan! Slides adapted from T. Nichols SPM! SPM : Overview Library of MATLAB and C functions Graphical user interface Four main components:

More information

Pattern Recognition for Neuroimaging Data

Pattern Recognition for Neuroimaging Data Pattern Recognition for Neuroimaging Data Edinburgh, SPM course April 2013 C. Phillips, Cyclotron Research Centre, ULg, Belgium http://www.cyclotron.ulg.ac.be Overview Introduction Univariate & multivariate

More information

Zurich SPM Course Voxel-Based Morphometry. Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group

Zurich SPM Course Voxel-Based Morphometry. Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group Zurich SPM Course 2015 Voxel-Based Morphometry Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group Examples applications of VBM Many scientifically or clinically interesting

More information

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data SPM Introduction Scott Peltier FMRI Laboratory University of Michigan Slides adapted from T. Nichols SPM! Software to perform computation, manipulation and display of imaging data 1 1 SPM : Overview Library

More information

0.1. Setting up the system path to allow use of BIAC XML headers (BXH). Depending on the computer(s), you may only have to do this once.

0.1. Setting up the system path to allow use of BIAC XML headers (BXH). Depending on the computer(s), you may only have to do this once. Week 3 Exercises Last week you began working with MR data, both in the form of anatomical images and functional time series. This week we will discuss some concepts related to the idea of fmri data as

More information

FSL Workshop Session 3 David Smith & John Clithero

FSL Workshop Session 3 David Smith & John Clithero FSL Workshop 12.09.08 Session 3 David Smith & John Clithero What is MELODIC? Probabilistic ICA Improves upon standard ICA Allows for inference Avoids over-fitting Three stage process ( ppca ) 1.) Dimension

More information

Thresholding of Statistical Maps in Functional Neuroimaging via Independent Filtering

Thresholding of Statistical Maps in Functional Neuroimaging via Independent Filtering Clemson University TigerPrints All Theses Theses 8-2015 Thresholding of Statistical Maps in Functional Neuroimaging via Independent Filtering Jaqueline Kwiasowski Clemson University, jkwiaso@clemson.edu

More information

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data Seyoung Kim, Padhraic Smyth, and Hal Stern Bren School of Information and Computer Sciences University of California,

More information

Introduction to fmri. Pre-processing

Introduction to fmri. Pre-processing Introduction to fmri Pre-processing Tibor Auer Department of Psychology Research Fellow in MRI Data Types Anatomical data: T 1 -weighted, 3D, 1/subject or session - (ME)MPRAGE/FLASH sequence, undistorted

More information

the PyHRF package P. Ciuciu1,2 and T. Vincent1,2 Methods meeting at Neurospin 1: CEA/NeuroSpin/LNAO

the PyHRF package P. Ciuciu1,2 and T. Vincent1,2 Methods meeting at Neurospin 1: CEA/NeuroSpin/LNAO Joint detection-estimation of brain activity from fmri time series: the PyHRF package Methods meeting at Neurospin P. Ciuciu1,2 and T. Vincent1,2 philippe.ciuciu@cea.fr 1: CEA/NeuroSpin/LNAO www.lnao.fr

More information

EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS

EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS Anders Eklund a,b,c, Thomas Nichols d, Mats Andersson a,c, Hans Knutsson a,c a Department of Biomedical

More information

All have parameters: Voxel dimensions: 90 * 108 * 78, Voxel size: 1.5mm * 1.5mm * 1.5mm, Data type: float, Orientation: Axial (S=>I).

All have parameters: Voxel dimensions: 90 * 108 * 78, Voxel size: 1.5mm * 1.5mm * 1.5mm, Data type: float, Orientation: Axial (S=>I). Week 5 Exercises This week we will discuss some concepts related to the idea of fmri data as sets of numbers that can be manipulated computationally. We will also introduce the concept of "statistical

More information

Statistical Methods in functional MRI. Standard Analysis. Data Processing Pipeline. Multiple Comparisons Problem. Multiple Comparisons Problem

Statistical Methods in functional MRI. Standard Analysis. Data Processing Pipeline. Multiple Comparisons Problem. Multiple Comparisons Problem Statistical Methods in fnctional MRI Lectre 7: Mltiple Comparisons 04/3/13 Martin Lindqist Department of Biostatistics Johns Hopkins University Data Processing Pipeline Standard Analysis Data Acqisition

More information

The Effect of Correlation and Error Rate Specification on Thresholding Methods in fmri Analysis

The Effect of Correlation and Error Rate Specification on Thresholding Methods in fmri Analysis The Effect of Correlation and Error Rate Specification on Thresholding Methods in fmri Analysis Brent R. Logan and Daniel B. Rowe, Division of Biostatistics and Department of Biophysics Division of Biostatistics

More information

9.2 Types of Errors in Hypothesis testing

9.2 Types of Errors in Hypothesis testing 9.2 Types of Errors in Hypothesis testing 1 Mistakes we could make As I mentioned, when we take a sample we won t be 100% sure of something because we do not take a census (we only look at information

More information

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar CS395T Visual Recogni5on and Search Gautam S. Muralidhar Today s Theme Unsupervised discovery of images Main mo5va5on behind unsupervised discovery is that supervision is expensive Common tasks include

More information

Bayesian Methods in Functional Magnetic Resonance Imaging

Bayesian Methods in Functional Magnetic Resonance Imaging Bayesian Methods in Functional Magnetic Resonance Imaging Galin L. Jones Kuo-Jung Lee Brian S. Caffo Susan Spear Bassett Abstract: One of the major objectives of functional magnetic resonance imaging studies

More information

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series Jingyuan Chen //Department of Electrical Engineering, cjy2010@stanford.edu//

More information

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy Basic Introduction to Data Analysis Block Design Demonstration Robert Savoy Sample Block Design Experiment Demonstration Use of Visual and Motor Task Separability of Responses Combined Visual and Motor

More information

Section 2.3: Simple Linear Regression: Predictions and Inference

Section 2.3: Simple Linear Regression: Predictions and Inference Section 2.3: Simple Linear Regression: Predictions and Inference Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.4 1 Simple

More information

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Xavier Le Faucheur a, Brani Vidakovic b and Allen Tannenbaum a a School of Electrical and Computer Engineering, b Department of Biomedical

More information

Percent Change and Power Calculation NITP 2010

Percent Change and Power Calculation NITP 2010 Percent Change and Power Calculation NITP 2010 Outline Calculating %-change How to do it What featquery does Why %-Change? As it is, parameter estimates do not reflect a specific unit T-stats are okay

More information

Preprocessing II: Between Subjects John Ashburner

Preprocessing II: Between Subjects John Ashburner Preprocessing II: Between Subjects John Ashburner Pre-processing Overview Statistics or whatever fmri time-series Anatomical MRI Template Smoothed Estimate Spatial Norm Motion Correct Smooth Coregister

More information

SPM Course! Single Subject Analysis

SPM Course! Single Subject Analysis SPM Course! Single Subject Analysis Practical Session Dr. Jakob Heinzle & Dr. Frederike Petzschner & Dr. Lionel Rigoux Hands up: Who has programming experience with Matlab? Who has analyzed an fmri experiment

More information

Multi-voxel pattern analysis: Decoding Mental States from fmri Activity Patterns

Multi-voxel pattern analysis: Decoding Mental States from fmri Activity Patterns Multi-voxel pattern analysis: Decoding Mental States from fmri Activity Patterns Artwork by Leon Zernitsky Jesse Rissman NITP Summer Program 2012 Part 1 of 2 Goals of Multi-voxel Pattern Analysis Decoding

More information

Pattern recognition (4)

Pattern recognition (4) Pattern recognition (4) 1 Things we have discussed until now Statistical pattern recognition Building simple classifiers Supervised classification Minimum distance classifier Bayesian classifier (1D and

More information

Efficiency and design optimization

Efficiency and design optimization Efficiency and design optimization Tuesday, Lecture 3 Jeanette Mumford University of Wisconsin - Madison Thanks to Tom Liu for letting me use some of his slides! What is the best way to increase your power?

More information

Effect of age and dementia on topology of brain functional networks. Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand

Effect of age and dementia on topology of brain functional networks. Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand Effect of age and dementia on topology of brain functional networks Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand 1 Structural changes in aging brain Age-related changes in

More information

Selected topics on fmri image processing

Selected topics on fmri image processing fmri Symposium, 24 January, 2006, Ghent Selected topics on fmri image processing Jan Sijbers The fmri folks of the Vision Lab UZA Bio-Imaging Lab Vision Lab Univ. Maastricht T.U. Delft 1 Overview generalized

More information

FNC Toolbox Walk Through

FNC Toolbox Walk Through FNC Toolbox Walk Through Date: August 10 th, 2009 By: Nathan Swanson, Vince Calhoun at The Mind Research Network Email: nswanson@mrn.org Introduction The FNC Toolbox is an extension of the GIFT toolbox

More information

Robust Realignment of fmri Time Series Data

Robust Realignment of fmri Time Series Data Robust Realignment of fmri Time Series Data Ben Dodson bjdodson@stanford.edu Olafur Gudmundsson olafurg@stanford.edu December 12, 2008 Abstract FMRI data has become an increasingly popular source for exploring

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

BPM e Toolbox Biological Parametric Mapping - Extended

BPM e Toolbox Biological Parametric Mapping - Extended BPM e Toolbox Biological Parametric Mapping - Extended The BPM Random Regressors Toolbox is provided as an overlay on the WFU Biological Parametric Mapping Toolbox release 1.5d as modified by the robust

More information

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Zurich SPM Course 2012 Voxel-Based Morphometry & DARTEL Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Aims of computational neuroanatomy * Many interesting and clinically

More information

Pattern Recognition for Neuroimaging Toolbox: PRoNTo

Pattern Recognition for Neuroimaging Toolbox: PRoNTo Click to edit Master title style Pattern Recognition for Neuroimaging Toolbox: PRoNTo Jessica Schrouff PRNI 2018 June 14 th NUS, Singapore Click Outline to edit Master title style PRoNTo s goals and history

More information

Example 5.25: (page 228) Screenshots from JMP. These examples assume post-hoc analysis using a Protected LSD or Protected Welch strategy.

Example 5.25: (page 228) Screenshots from JMP. These examples assume post-hoc analysis using a Protected LSD or Protected Welch strategy. JMP Output from Chapter 5 Factorial Analysis through JMP Example 5.25: (page 228) Screenshots from JMP. These examples assume post-hoc analysis using a Protected LSD or Protected Welch strategy. Fitting

More information

Workshop 8: Model selection

Workshop 8: Model selection Workshop 8: Model selection Selecting among candidate models requires a criterion for evaluating and comparing models, and a strategy for searching the possibilities. In this workshop we will explore some

More information