Case Study 4: Collabora1ve Filtering

Size: px
Start display at page:

Download "Case Study 4: Collabora1ve Filtering"

Transcription

1 Case Study 4: Collabora1ve Filtering Graph- Parallel Problems Synchronous v. Asynchronous ComputaPon Machine Learning for Big Data CSE547/STAT548, University of Washington Carlos Guestrin, guest lecturer May 14 th, 2015 Emily Fox ML in the Context of Parallel Architectures GPUs Multicore Clusters Clouds Supercomputers But scalable ML in these systems is hard, especially in terms of: 1. Programmability 2. Data distribupon 3. Failures Emily Fox

2 Move Towards Higher- Level AbstracPon Distributed compupng challenges are hard and annoying! 1. Programmability 2. Data distribupon 3. Failures High- level abstracpons try to simplify distributed programming by hiding challenges: Provide different levels of robustness to failures, oppmizing data movement and communicapon, protect against race condipons Generally, you are spll on your own WRT designing parallel algorithms Some common parallel abstracpons: Lower- level: Pthreads: abstracpon for distributed threads on single machine MPI: abstracpon for distributed communicapon in a cluster of computers Higher- level: Map- Reduce (Hadoop: open- source version): mostly data- parallel problems GraphLab: for graph- structured distributed problems Emily Fox Simplest Type of Parallelism: Data Parallel Problems You have already learned a classifier What s the test error You have 10B labeled documents and 1000 machines Problems that can be broken into independent subproblems are called data- parallel (or embarrassingly parallel) Map- Reduce is a great tool for this Focus of today s lecture but first a simple example Emily Fox

3 Data Parallelism (MapReduce) CPU. 1 CPU. 2 CPU.. 3 CPU Solve a huge number of independent subproblems, e.g., extract features Emily Fox 2015 in images 5 Map- Reduce AbstracPon Map: Data- parallel over elements, e.g., documents Generate (key,value) pairs value can be any data type Reduce: Aggregate values for each key Must be commutapve- associate operapon Data- parallel over keys Generate (key,value) pairs Map- Reduce has long history in funcponal programming But popularized by Google, and subsequently by open- source Hadoop implementapon from Yahoo! Emily Fox

4 Map- Reduce ExecuPon Overview Map Phase Shuffle Phase Reduce Phase M1 (k 1,v 1 ) (k 2,v 2 ) M1 (k 1,v 1 ) (k 2,v 2 ) Big Data Split data across machines M2 (k 1,v 1 ) (k 2,v 2 ) Assign tuple (k i,v i ) to machine h[k i ] M2 (k 3,v 3 ) (k 4,v 4 ) M1000 (k 1,v 1 ) (k 2,v 2 ) M1000 (k 5,v 5 ) (k 6,v 6 ) Emily Fox Issues with Map- Reduce AbstracPon Olen all data gets moved around cluster Very bad for iterapve senngs DefiniPon of Map & Reduce funcpons can be unintuipve in many apps Graphs are challenging ComputaPon is synchronous Emily Fox

5 SGD for Matrix FactorizaPon in Map- Reduce " L (t+1) u R (t+1) v # " (1 t u )L (t) u (1 t v )R v (t) t t R v (t) t t L (t) u # Map and Reduce funcpons Map- Reduce: Data- parallel over all mappers Data- parallel over reducers with same key t = L (t) u R (t) v r uv Here, one update at a Pme! Emily Fox Matrix FactorizaPon as a Graph 4 3 Women on the Verge of a Nervous Breakdown The CelebraPon City of God 2 5 Wild Strawberries La Dolce Vita Emily Fox

6 Flashback to 1998 Why First Google advantage: a Graph Algorithm & a System to Support it! Emily Fox Social Media Science Adver1sing Web Graphs encode the rela1onships between: People Facts Products Interests Ideas Big: 100 billions of ver1ces and edges and rich metadata Facebook (10/2012): 1B users, 144B friendships Twiqer (2011): 15B follower edges Emily Fox

7 5/14/15 Facebook Graph Emily Fox 2015 Slide from Facebook Engineering presentapon 13 Label a Face and Propagate Emily Fox

8 5/14/15 Pairwise similarity not enough Not similar enough to be sure Emily Fox Propagate SimilariPes & Co- occurrences for Accurate PredicPons similarity edges co- occurring faces further evidence Emily Fox

9 Example: Es9mate Poli9cal Bias Liberal ConservaPve Emily Fox Topic Modeling (e.g., LDA) Cat Apple Growth Hat Plant Emily Fox

10 ML Tasks Beyond Data- Parallelism Data-Parallel Graph-Parallel Map Reduce Feature ExtracPon Cross ValidaPon CompuPng Sufficient StaPsPcs Graphical Models Gibbs Sampling Belief PropagaPon VariaPonal Opt. Collabora1ve Filtering Tensor FactorizaPon Semi- Supervised Learning Label PropagaPon CoEM Graph Analysis PageRank Triangle CounPng Emily Fox Example of a Graph- Parallel Algorithm Emily Fox

11 PageRank Depends on rank of who follows her Depends on rank of who follows them What s the rank of this user Rank Loops in graph è Must iterate! Emily Fox PageRank IteraPon R[j] w ji R[i] = +(1 ) X (j,i)2e w ji R[j] R[i] α is the random reset probability w ji is the prob. transiponing (similarity) from j to i Emily Fox

12 ProperPes of Graph Parallel Algorithms Dependency Graph Local Updates IteraPve ComputaPon My Rank Friends Rank Emily Fox Addressing Graph- Parallel ML Data-Parallel Map Reduce Graph-Parallel Graph- Parallel AbstracPon Feature ExtracPon Cross ValidaPon CompuPng Sufficient StaPsPcs Graphical Models Gibbs Sampling Belief PropagaPon VariaPonal Opt. Collabora1ve Filtering Tensor FactorizaPon Semi- Supervised Learning Label PropagaPon CoEM Data- Mining PageRank Triangle CounPng Emily Fox

13 Graph ComputaPon: Synchronous v. Asynchronous Bulk Synchronous Parallel Model: Pregel (Giraph) [Valiant 90] Compute Communicate Barrier Emily Fox

14 Map- Reduce ExecuPon Overview Map Phase Shuffle Phase Reduce Phase M1 (k 1,v 1 ) (k 2,v 2 ) M1 (k 1,v 1 ) (k 2,v 2 ) Big Data Split data across machines M2 (k 1,v 1 ) (k 2,v 2 ) Assign tuple (k i,v i ) to machine h[k i ] M2 (k 3,v 3 ) (k 4,v 4 ) M1000 (k 1,v 1 ) (k 2,v 2 ) M1000 (k 5,v 5 ) (k 6,v 6 ) Emily Fox BSP ExecuPon Overview Compute Phase Communicate Phase M1 (vid 1,vid 1, v 1 ) (vid 2,vid 2, v 2 ) M1 Big Graph Split graph across machines M2 (vid 1,vid 1, v 1 ) (vid 2,vid 2, v 2 ) Message machine for every edge (vid,vid,val) M2 M1000 (vid 1,vid 1, v 1 ) (vid 2,vid 2, v 2 ) M1000 Emily Fox

15 Bulk synchronous parallel model provably inefficient for some ML tasks Analyzing Belief PropagaPon focus here [Gonzalez, Low, G. 09] A B Priority Queue Smart Scheduling important influence Emily Fox

16 Asynchronous Belief PropagaPon Challenge = Boundaries Many Updates SynthePc Noisy Image CumulaPve Vertex Updates Few Updates Graphical Model Algorithm idenpfies and focuses on hidden sequenpal structure Emily Fox BSP ML Problem: Synchronous Algorithms can be Inefficient Run1me in Seconds Bulk Synchronous (e.g., Pregel) Asynchronous Splash BP Number of CPUs Theorem: Bulk Synchronous BP O(#verPces) slower than Asynchronous BP Emily Fox

17 Synchronous v. Asynchronous Bulk synchronous processing: ComputaPon in phases All verpces parpcipate in a phase Though OK to say no- op All messages are sent Simpler to build, like Map- Reduce No worries about race condipons, barrier guarantees data consistency Simpler to make fault- tolerant, save data on barrier Slower convergence for many ML problems In matrix- land, called Jacobi IteraPon Implemented by Google Pregel 2010 Asynchronous processing: VerPces see latest informapon from neighbors Most closely related to sequenpal execupon Harder to build: Race condipons can happen all the Pme Must protect against this issue More complex fault tolerance When are you done Must implement scheduler over verpces Faster convergence for many ML problems In matrix- land, called Gauss- Seidel IteraPon Implemented by GraphLab 2010, 2012 Emily Fox Case Study 4: Collabora1ve Filtering GraphLab Machine Learning for Big Data CSE547/STAT548, University of Washington Carlos Guestrin, guest lecturer May 14 th, 2015 Emily Fox

18 Data Graph Data associated with verpces and edges Graph: Social Network Vertex Data: User profile text Current interests espmates Edge Data: Similarity weights Emily Fox How do we program graph computapon Think like a Vertex. - Malewicz et al. [SIGMOD 10] 18

19 Update FuncPons User- defined program: applied to vertex transforms data in scope of vertex pagerank(i, scope){ } Emily Fox Update FuncPon Example: Connected Components Emily Fox

20 Update FuncPon Example: Connected Components Emily Fox The Scheduler The scheduler determines order verpces are updated CPU 1 a b c d Scheduler b a h i CPU 2 h e f g i j k Emily Fox

21 Example Schedulers Round- robin SelecPve scheduling (skipping): round robin but jump over un- scheduled verpce FIFO PrioriPze scheduling Hard to implement in a distributed fashion ApproximaPons used (each machine has its own priority queue) Emily Fox Ensuring Race- Free Code How much can computapon overlap Emily Fox

22 Need for Consistency Higher Throughput (#updates/sec) No Consistency PotenPally Slower Convergence of ML Emily Fox GraphLab Ensures Sequen1al Consistency For each parallel execu1on, there exists a sequen1al execu1on of update funcpons which produces the same result Parallel CPU 1 CPU 2 Pme SequenPal Single CPU Emily Fox

23 Consistency in CollaboraPve Filtering 128 Train RMSE Dynamic Inconsistent Inconsistent updates Dynamic Consistent updates Updates Millions Ne{lix data, 8 cores Emily Fox The GraphLab Framework Graph Based Data Representa9on Update FuncPons User Computa9on Scheduler Consistency Model Emily Fox

24 Triangle CounPng in Twiqer Graph 40M Users 1.2B Edges Total: 34.8 Billion Triangles Hadoop GraphLab 1536 Machines 423 Minutes 64 Machines, 1024 Cores 1.5 Minutes Emily Fox Hadoop results from [Suri & Vassilvitskii '11] CoEM (Jones et al., 2005) Named En1ty Recogni1on Task Is Dog an animal Is Catalina a place dog <X> ran quickly Australia travelled to <X> Catalina Island <X> is pleasant Emily Fox

25 Never Ending Learner Project (CoEM) Ver1ces: 2 Million Edges: 200 Million Hadoop 95 Cores 7.5 hrs Distributed GraphLab EC2 machines 80 secs Emily Fox Women on the Verge of a Nervous Breakdown The CelebraPon What do I recommend recommend City of God Wild Strawberries La Dolce Vita Emily Fox

26 InterprePng Low- Rank Matrix ComplePon (aka Matrix FactorizaPon) X = L R Emily Fox Matrix ComplePon as a Graph X = X ij known for black cells X ij unknown for white cells Rows index users movies Columns index index movies users Emily Fox

27 Coordinate Descent for Matrix FactorizaPon: AlternaPng Least- Squares min L,R X (u,v):r uv 6= Fix movie factors, oppmize for user factors X Independent least- squares over users min (L u R v r uv ) 2 L u v2v u Fix user factors, oppmize for movie factors Independent least- squares over movies X min (L u R v r uv ) 2 R v u2u v System may be underdetermined: (L u R v r uv ) 2 Converges to Emily Fox AlternaPng Least Squares Update FuncPon X min (L u R v r uv ) 2 L u v2v u min Rv X (L u R v r uv ) 2 u2uv recommend Emily Fox

28 SGD for Matrix FactorizaPon in GraphLab t = L (t) u R (t) v r uv " L (t+1) u R (t+1) v # " (1 t u )L (t) u (1 t v )R v (t) t t R v (t) t t L (t) u # recommend Emily Fox Out- of- core computapon Olen data doesn t fit in memory Must use disk/ssds Although random accesses to disk are very slow, high performance is possible with oppmized memory layout. Implemented in: GraphChi GraphLab Create Example performance of GraphLab Create: Common Crawl Graph (3.5 billion Nodes and 128 billion Edges) PageRank iterapon in 9 mins on single, commodity machine Emily Fox

29 What you need to know Data- parallel versus graph- parallel computapon Bulk synchronous processing versus asynchronous processing GraphLab system for graph- parallel computapon Data representapon Update funcpons Scheduling Consistency model ALS, SGD for matrix factorizapon in GraphLab Emily Fox Reading Papers under Case Study IV: Parallel Learning with GraphLab OpPonal: Parallel Splash BP hqp:// papers/dap- gonzalez.pdf Emily Fox

Graph-Parallel Problems. ML in the Context of Parallel Architectures

Graph-Parallel Problems. ML in the Context of Parallel Architectures Case Study 4: Collaborative Filtering Graph-Parallel Problems Synchronous v. Asynchronous Computation Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 20 th, 2014

More information

Case Study 4: Collaborative Filtering. GraphLab

Case Study 4: Collaborative Filtering. GraphLab Case Study 4: Collaborative Filtering GraphLab Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin March 14 th, 2013 Carlos Guestrin 2013 1 Social Media

More information

Clustering Documents. Case Study 2: Document Retrieval

Clustering Documents. Case Study 2: Document Retrieval Case Study 2: Document Retrieval Clustering Documents Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 21 th, 2015 Sham Kakade 2016 1 Document Retrieval Goal: Retrieve

More information

Clustering Documents. Document Retrieval. Case Study 2: Document Retrieval

Clustering Documents. Document Retrieval. Case Study 2: Document Retrieval Case Study 2: Document Retrieval Clustering Documents Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April, 2017 Sham Kakade 2017 1 Document Retrieval n Goal: Retrieve

More information

GraphLab: A New Framework for Parallel Machine Learning

GraphLab: A New Framework for Parallel Machine Learning GraphLab: A New Framework for Parallel Machine Learning Yucheng Low, Aapo Kyrola, Carlos Guestrin, Joseph Gonzalez, Danny Bickson, Joe Hellerstein Presented by Guozhang Wang DB Lunch, Nov.8, 2010 Overview

More information

Joseph hgonzalez. A New Parallel Framework for Machine Learning. Joint work with. Yucheng Low. Aapo Kyrola. Carlos Guestrin.

Joseph hgonzalez. A New Parallel Framework for Machine Learning. Joint work with. Yucheng Low. Aapo Kyrola. Carlos Guestrin. A New Parallel Framework for Machine Learning Joseph hgonzalez Joint work with Yucheng Low Aapo Kyrola Danny Bickson Carlos Guestrin Alex Smola Guy Blelloch Joe Hellerstein David O Hallaron Carnegie Mellon

More information

Clustering Documents. Document Retrieval. Case Study 2: Document Retrieval

Clustering Documents. Document Retrieval. Case Study 2: Document Retrieval Case Study 2: Document Retrieval Clustering Documents Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox April 16 th, 2015 Emily Fox 2015 1 Document Retrieval n Goal: Retrieve

More information

GraphChi: Large-Scale Graph Computation on Just a PC

GraphChi: Large-Scale Graph Computation on Just a PC OSDI 12 GraphChi: Large-Scale Graph Computation on Just a PC Aapo Kyrölä (CMU) Guy Blelloch (CMU) Carlos Guestrin (UW) In co- opera+on with the GraphLab team. BigData with Structure: BigGraph social graph

More information

Graphs (Part II) Shannon Quinn

Graphs (Part II) Shannon Quinn Graphs (Part II) Shannon Quinn (with thanks to William Cohen and Aapo Kyrola of CMU, and J. Leskovec, A. Rajaraman, and J. Ullman of Stanford University) Parallel Graph Computation Distributed computation

More information

Why do we need graph processing?

Why do we need graph processing? Why do we need graph processing? Community detection: suggest followers? Determine what products people will like Count how many people are in different communities (polling?) Graphs are Everywhere Group

More information

Apache Giraph. for applications in Machine Learning & Recommendation Systems. Maria Novartis

Apache Giraph. for applications in Machine Learning & Recommendation Systems. Maria Novartis Apache Giraph for applications in Machine Learning & Recommendation Systems Maria Stylianou @marsty5 Novartis Züri Machine Learning Meetup #5 June 16, 2014 Apache Giraph for applications in Machine Learning

More information

Asynchronous Graph Processing

Asynchronous Graph Processing Asynchronous Graph Processing CompSci 590.03 Instructor: Ashwin Machanavajjhala (slides adapted from Graphlab talks at UAI 10 & VLDB 12 and Gouzhang Wang s talk at CIDR 2013) Lecture 15 : 590.02 Spring

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 60 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models Pregel: A System for Large-Scale Graph Processing

More information

modern database systems lecture 10 : large-scale graph processing

modern database systems lecture 10 : large-scale graph processing modern database systems lecture 1 : large-scale graph processing Aristides Gionis spring 18 timeline today : homework is due march 6 : homework out april 5, 9-1 : final exam april : homework due graphs

More information

Clustering Lecture 8: MapReduce

Clustering Lecture 8: MapReduce Clustering Lecture 8: MapReduce Jing Gao SUNY Buffalo 1 Divide and Conquer Work Partition w 1 w 2 w 3 worker worker worker r 1 r 2 r 3 Result Combine 4 Distributed Grep Very big data Split data Split data

More information

TI2736-B Big Data Processing. Claudia Hauff

TI2736-B Big Data Processing. Claudia Hauff TI2736-B Big Data Processing Claudia Hauff ti2736b-ewi@tudelft.nl Intro Streams Streams Map Reduce HDFS Pig Ctd. Graphs Pig Design Patterns Hadoop Ctd. Giraph Zoo Keeper Spark Spark Ctd. Learning objectives

More information

Pregel: A System for Large- Scale Graph Processing. Written by G. Malewicz et al. at SIGMOD 2010 Presented by Chris Bunch Tuesday, October 12, 2010

Pregel: A System for Large- Scale Graph Processing. Written by G. Malewicz et al. at SIGMOD 2010 Presented by Chris Bunch Tuesday, October 12, 2010 Pregel: A System for Large- Scale Graph Processing Written by G. Malewicz et al. at SIGMOD 2010 Presented by Chris Bunch Tuesday, October 12, 2010 1 Graphs are hard Poor locality of memory access Very

More information

Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem

Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem I J C T A, 9(41) 2016, pp. 1235-1239 International Science Press Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem Hema Dubey *, Nilay Khare *, Alind Khare **

More information

15-388/688 - Practical Data Science: Big data and MapReduce. J. Zico Kolter Carnegie Mellon University Spring 2018

15-388/688 - Practical Data Science: Big data and MapReduce. J. Zico Kolter Carnegie Mellon University Spring 2018 15-388/688 - Practical Data Science: Big data and MapReduce J. Zico Kolter Carnegie Mellon University Spring 2018 1 Outline Big data Some context in distributed computing map + reduce MapReduce MapReduce

More information

CS 5220: Parallel Graph Algorithms. David Bindel

CS 5220: Parallel Graph Algorithms. David Bindel CS 5220: Parallel Graph Algorithms David Bindel 2017-11-14 1 Graphs Mathematically: G = (V, E) where E V V Convention: V = n and E = m May be directed or undirected May have weights w V : V R or w E :

More information

Search Engine Architecture. Search Engine Architecture

Search Engine Architecture. Search Engine Architecture Search Engine Architecture CISC489/689 010, Lecture #2 Wednesday, Feb. 11 Ben CartereGe Search Engine Architecture A soiware architecture consists of soiware components, the interfaces provided by those

More information

Automatic Scaling Iterative Computations. Aug. 7 th, 2012

Automatic Scaling Iterative Computations. Aug. 7 th, 2012 Automatic Scaling Iterative Computations Guozhang Wang Cornell University Aug. 7 th, 2012 1 What are Non-Iterative Computations? Non-iterative computation flow Directed Acyclic Examples Batch style analytics

More information

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21 Big Processing -Parallel Computation COS 418: Distributed Systems Lecture 21 Michael Freedman 2 Ex: Word count using partial aggregation Putting it together 1. Compute word counts from individual files

More information

One Trillion Edges. Graph processing at Facebook scale

One Trillion Edges. Graph processing at Facebook scale One Trillion Edges Graph processing at Facebook scale Introduction Platform improvements Compute model extensions Experimental results Operational experience How Facebook improved Apache Giraph Facebook's

More information

Data Mining Learning from Large Data Sets

Data Mining Learning from Large Data Sets Data Mining Learning from Large Data Sets Lecture 8 Clustering large data sets 263-5200- 00L Andreas Krause Announcements! Homework 4 out tomorrow 2 Course organizapon! Retrieval! Given a query, find most

More information

Giraph: Large-scale graph processing infrastructure on Hadoop. Qu Zhi

Giraph: Large-scale graph processing infrastructure on Hadoop. Qu Zhi Giraph: Large-scale graph processing infrastructure on Hadoop Qu Zhi Why scalable graph processing? Web and social graphs are at immense scale and continuing to grow In 2008, Google estimated the number

More information

King Abdullah University of Science and Technology. CS348: Cloud Computing. Large-Scale Graph Processing

King Abdullah University of Science and Technology. CS348: Cloud Computing. Large-Scale Graph Processing King Abdullah University of Science and Technology CS348: Cloud Computing Large-Scale Graph Processing Zuhair Khayyat 10/March/2013 The Importance of Graphs A graph is a mathematical structure that represents

More information

Introduction to MapReduce Algorithms and Analysis

Introduction to MapReduce Algorithms and Analysis Introduction to MapReduce Algorithms and Analysis Jeff M. Phillips October 25, 2013 Trade-Offs Massive parallelism that is very easy to program. Cheaper than HPC style (uses top of the line everything)

More information

MapReduce: A Programming Model for Large-Scale Distributed Computation

MapReduce: A Programming Model for Large-Scale Distributed Computation CSC 258/458 MapReduce: A Programming Model for Large-Scale Distributed Computation University of Rochester Department of Computer Science Shantonu Hossain April 18, 2011 Outline Motivation MapReduce Overview

More information

Webinar Series TMIP VISION

Webinar Series TMIP VISION Webinar Series TMIP VISION TMIP provides technical support and promotes knowledge and information exchange in the transportation planning and modeling community. Today s Goals To Consider: Parallel Processing

More information

Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G.

Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G. Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G. Speaker: Chong Li Department: Applied Health Science Program: Master of Health Informatics 1 Term

More information

Distributed Graph Algorithms

Distributed Graph Algorithms Distributed Graph Algorithms Alessio Guerrieri University of Trento, Italy 2016/04/26 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Contents 1 Introduction

More information

COSC 6339 Big Data Analytics. Graph Algorithms and Apache Giraph

COSC 6339 Big Data Analytics. Graph Algorithms and Apache Giraph COSC 6339 Big Data Analytics Graph Algorithms and Apache Giraph Parts of this lecture are adapted from UMD Jimmy Lin s slides, which is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

Graph Processing. Connor Gramazio Spiros Boosalis

Graph Processing. Connor Gramazio Spiros Boosalis Graph Processing Connor Gramazio Spiros Boosalis Pregel why not MapReduce? semantics: awkward to write graph algorithms efficiency: mapreduces serializes state (e.g. all nodes and edges) while pregel keeps

More information

Distributed Systems. 21. Graph Computing Frameworks. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems. 21. Graph Computing Frameworks. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 21. Graph Computing Frameworks Paul Krzyzanowski Rutgers University Fall 2016 November 21, 2016 2014-2016 Paul Krzyzanowski 1 Can we make MapReduce easier? November 21, 2016 2014-2016

More information

MetaConc. Towards Meta-Level Engineering and Tooling for Complex Concurrent Systems

MetaConc. Towards Meta-Level Engineering and Tooling for Complex Concurrent Systems MetaConc Towards Meta-Level Engineering and Tooling for Complex Concurrent Systems Stefan Marr, Elisa Gonzalez Boix, Hanspeter Mössenböck Brussels, April 21, 2016 ENIAC's main control panel, U. S. Army

More information

The Future of High Performance Computing

The Future of High Performance Computing The Future of High Performance Computing Randal E. Bryant Carnegie Mellon University http://www.cs.cmu.edu/~bryant Comparing Two Large-Scale Systems Oakridge Titan Google Data Center 2 Monolithic supercomputer

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Distributed Machine Learning Week #9

Machine Learning for Large-Scale Data Analysis and Decision Making A. Distributed Machine Learning Week #9 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Distributed Machine Learning Week #9 Today Distributed computing for machine learning Background MapReduce/Hadoop & Spark Theory

More information

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros Data Clustering on the Parallel Hadoop MapReduce Model Dimitrios Verraros Overview The purpose of this thesis is to implement and benchmark the performance of a parallel K- means clustering algorithm on

More information

Sublinear Models for Streaming and/or Distributed Data

Sublinear Models for Streaming and/or Distributed Data Sublinear Models for Streaming and/or Distributed Data Qin Zhang Guest lecture in B649 Feb. 3, 2015 1-1 Now about the Big Data Big data is everywhere : over 2.5 petabytes of sales transactions : an index

More information

PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING

PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING Grzegorz Malewicz, Matthew Austern, Aart Bik, James Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski (Google, Inc.) SIGMOD 2010 Presented by : Xiu

More information

Domain-specific programming on graphs

Domain-specific programming on graphs Lecture 25: Domain-specific programming on graphs Parallel Computer Architecture and Programming CMU 15-418/15-618, Fall 2016 1 Last time: Increasing acceptance of domain-specific programming systems Challenge

More information

Op#mizing MapReduce for Highly- Distributed Environments

Op#mizing MapReduce for Highly- Distributed Environments Op#mizing MapReduce for Highly- Distributed Environments Abhishek Chandra Associate Professor Department of Computer Science and Engineering University of Minnesota hep://www.cs.umn.edu/~chandra 1 Big

More information

The amount of data increases every day Some numbers ( 2012):

The amount of data increases every day Some numbers ( 2012): 1 The amount of data increases every day Some numbers ( 2012): Data processed by Google every day: 100+ PB Data processed by Facebook every day: 10+ PB To analyze them, systems that scale with respect

More information

2/26/2017. The amount of data increases every day Some numbers ( 2012):

2/26/2017. The amount of data increases every day Some numbers ( 2012): The amount of data increases every day Some numbers ( 2012): Data processed by Google every day: 100+ PB Data processed by Facebook every day: 10+ PB To analyze them, systems that scale with respect to

More information

Graph Data Management

Graph Data Management Graph Data Management Analysis and Optimization of Graph Data Frameworks presented by Fynn Leitow Overview 1) Introduction a) Motivation b) Application for big data 2) Choice of algorithms 3) Choice of

More information

Introduction to MapReduce. Adapted from Jimmy Lin (U. Maryland, USA)

Introduction to MapReduce. Adapted from Jimmy Lin (U. Maryland, USA) Introduction to MapReduce Adapted from Jimmy Lin (U. Maryland, USA) Motivation Overview Need for handling big data New programming paradigm Review of functional programming mapreduce uses this abstraction

More information

Pregel. Ali Shah

Pregel. Ali Shah Pregel Ali Shah s9alshah@stud.uni-saarland.de 2 Outline Introduction Model of Computation Fundamentals of Pregel Program Implementation Applications Experiments Issues with Pregel 3 Outline Costs of Computation

More information

Pregel: A System for Large-Scale Graph Proces sing

Pregel: A System for Large-Scale Graph Proces sing Pregel: A System for Large-Scale Graph Proces sing Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkwoski Google, Inc. SIGMOD July 20 Taewhi

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Parallel Programming Principle and Practice. Lecture 10 Big Data Processing with MapReduce

Parallel Programming Principle and Practice. Lecture 10 Big Data Processing with MapReduce Parallel Programming Principle and Practice Lecture 10 Big Data Processing with MapReduce Outline MapReduce Programming Model MapReduce Examples Hadoop 2 Incredible Things That Happen Every Minute On The

More information

MapReduce and Friends

MapReduce and Friends MapReduce and Friends Craig C. Douglas University of Wyoming with thanks to Mookwon Seo Why was it invented? MapReduce is a mergesort for large distributed memory computers. It was the basis for a web

More information

Turning NoSQL data into Graph Playing with Apache Giraph and Apache Gora

Turning NoSQL data into Graph Playing with Apache Giraph and Apache Gora Turning NoSQL data into Graph Playing with Apache Giraph and Apache Gora Team Renato Marroquín! PhD student: Interested in: Information retrieval. Distributed and scalable data management. Apache Gora:

More information

Databases 2 (VU) ( / )

Databases 2 (VU) ( / ) Databases 2 (VU) (706.711 / 707.030) MapReduce (Part 3) Mark Kröll ISDS, TU Graz Nov. 27, 2017 Mark Kröll (ISDS, TU Graz) MapReduce Nov. 27, 2017 1 / 42 Outline 1 Problems Suited for Map-Reduce 2 MapReduce:

More information

CS 61C: Great Ideas in Computer Architecture. MapReduce

CS 61C: Great Ideas in Computer Architecture. MapReduce CS 61C: Great Ideas in Computer Architecture MapReduce Guest Lecturer: Justin Hsia 3/06/2013 Spring 2013 Lecture #18 1 Review of Last Lecture Performance latency and throughput Warehouse Scale Computing

More information

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, G. Czajkowski Google, Inc. SIGMOD 2010 Presented by Ke Hong (some figures borrowed from

More information

Introduction to MapReduce

Introduction to MapReduce Basics of Cloud Computing Lecture 4 Introduction to MapReduce Satish Srirama Some material adapted from slides by Jimmy Lin, Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Google Distributed

More information

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing /34 Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing Zuhair Khayyat 1 Karim Awara 1 Amani Alonazi 1 Hani Jamjoom 2 Dan Williams 2 Panos Kalnis 1 1 King Abdullah University of

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

TI2736-B Big Data Processing. Claudia Hauff

TI2736-B Big Data Processing. Claudia Hauff TI2736-B Big Data Processing Claudia Hauff ti2736b-ewi@tudelft.nl Intro Streams Streams Map Reduce HDFS Pig Pig Design Patterns Hadoop Ctd. Graphs Giraph Spark Zoo Keeper Spark Learning objectives Implement

More information

Lecture 7: MapReduce design patterns! Claudia Hauff (Web Information Systems)!

Lecture 7: MapReduce design patterns! Claudia Hauff (Web Information Systems)! Big Data Processing, 2014/15 Lecture 7: MapReduce design patterns!! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm

More information

Programming Systems for Big Data

Programming Systems for Big Data Programming Systems for Big Data CS315B Lecture 17 Including material from Kunle Olukotun Prof. Aiken CS 315B Lecture 17 1 Big Data We ve focused on parallel programming for computational science There

More information

HaLoop Efficient Iterative Data Processing on Large Clusters

HaLoop Efficient Iterative Data Processing on Large Clusters HaLoop Efficient Iterative Data Processing on Large Clusters Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst University of Washington Department of Computer Science & Engineering Presented

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017 3/0/207 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/0/207 Perceptron as a neural

More information

arxiv: v1 [cs.db] 26 Apr 2012

arxiv: v1 [cs.db] 26 Apr 2012 Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud Yucheng Low Carnegie Mellon University ylow@cs.cmu.edu Joseph Gonzalez Carnegie Mellon University jegonzal@cs.cmu.edu

More information

Lecture 11: Graph algorithms! Claudia Hauff (Web Information Systems)!

Lecture 11: Graph algorithms! Claudia Hauff (Web Information Systems)! Lecture 11: Graph algorithms!! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind the scenes of MapReduce:

More information

STATS Data Analysis using Python. Lecture 7: the MapReduce framework Some slides adapted from C. Budak and R. Burns

STATS Data Analysis using Python. Lecture 7: the MapReduce framework Some slides adapted from C. Budak and R. Burns STATS 700-002 Data Analysis using Python Lecture 7: the MapReduce framework Some slides adapted from C. Budak and R. Burns Unit 3: parallel processing and big data The next few lectures will focus on big

More information

Massive Online Analysis - Storm,Spark

Massive Online Analysis - Storm,Spark Massive Online Analysis - Storm,Spark presentation by R. Kishore Kumar Research Scholar Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Kharagpur-721302, India (R

More information

Lecture 22 : Distributed Systems for ML

Lecture 22 : Distributed Systems for ML 10-708: Probabilistic Graphical Models, Spring 2017 Lecture 22 : Distributed Systems for ML Lecturer: Qirong Ho Scribes: Zihang Dai, Fan Yang 1 Introduction Big data has been very popular in recent years.

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Queries on streams

More information

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing Giraphx: Parallel Yet Serializable Large-Scale Graph Processing Serafettin Tasci and Murat Demirbas Computer Science & Engineering Department University at Buffalo, SUNY Abstract. Bulk Synchronous Parallelism

More information

I ++ Mapreduce: Incremental Mapreduce for Mining the Big Data

I ++ Mapreduce: Incremental Mapreduce for Mining the Big Data IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 3, Ver. IV (May-Jun. 2016), PP 125-129 www.iosrjournals.org I ++ Mapreduce: Incremental Mapreduce for

More information

A brief history on Hadoop

A brief history on Hadoop Hadoop Basics A brief history on Hadoop 2003 - Google launches project Nutch to handle billions of searches and indexing millions of web pages. Oct 2003 - Google releases papers with GFS (Google File System)

More information

Improving Hadoop MapReduce Performance on Supercomputers with JVM Reuse

Improving Hadoop MapReduce Performance on Supercomputers with JVM Reuse Thanh-Chung Dao 1 Improving Hadoop MapReduce Performance on Supercomputers with JVM Reuse Thanh-Chung Dao and Shigeru Chiba The University of Tokyo Thanh-Chung Dao 2 Supercomputers Expensive clusters Multi-core

More information

Linear Regression Optimization

Linear Regression Optimization Gradient Descent Linear Regression Optimization Goal: Find w that minimizes f(w) f(w) = Xw y 2 2 Closed form solution exists Gradient Descent is iterative (Intuition: go downhill!) n w * w Scalar objective:

More information

Where We Are. Review: Parallel DBMS. Parallel DBMS. Introduction to Data Management CSE 344

Where We Are. Review: Parallel DBMS. Parallel DBMS. Introduction to Data Management CSE 344 Where We Are Introduction to Data Management CSE 344 Lecture 22: MapReduce We are talking about parallel query processing There exist two main types of engines: Parallel DBMSs (last lecture + quick review)

More information

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets Nadathur Satish, Narayanan Sundaram, Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park, M. Amber Hassaan, Shubho Sengupta, Zhaoming

More information

Information Retrieval (IR) Introduction to Information Retrieval. Lecture Overview. Why do we need IR? Basics of an IR system.

Information Retrieval (IR) Introduction to Information Retrieval. Lecture Overview. Why do we need IR? Basics of an IR system. Introduction to Information Retrieval Ethan Phelps-Goodman Some slides taken from http://www.cs.utexas.edu/users/mooney/ir-course/ Information Retrieval (IR) The indexing and retrieval of textual documents.

More information

PREGEL AND GIRAPH. Why Pregel? Processing large graph problems is challenging Options

PREGEL AND GIRAPH. Why Pregel? Processing large graph problems is challenging Options Data Management in the Cloud PREGEL AND GIRAPH Thanks to Kristin Tufte 1 Why Pregel? Processing large graph problems is challenging Options Custom distributed infrastructure Existing distributed computing

More information

Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees

Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees Joseph Gonzalez Yucheng Low Arthur Gretton Carlos Guestrin Draw Samples Sampling as an Inference Procedure Suppose we wanted to know the

More information

Large-Scale Graph Processing 1: Pregel & Apache Hama Shiow-yang Wu ( 吳秀陽 ) CSIE, NDHU, Taiwan, ROC

Large-Scale Graph Processing 1: Pregel & Apache Hama Shiow-yang Wu ( 吳秀陽 ) CSIE, NDHU, Taiwan, ROC Large-Scale Graph Processing 1: Pregel & Apache Hama Shiow-yang Wu ( 吳秀陽 ) CSIE, NDHU, Taiwan, ROC Lecture material is mostly home-grown, partly taken with permission and courtesy from Professor Shih-Wei

More information

Harp-DAAL for High Performance Big Data Computing

Harp-DAAL for High Performance Big Data Computing Harp-DAAL for High Performance Big Data Computing Large-scale data analytics is revolutionizing many business and scientific domains. Easy-touse scalable parallel techniques are necessary to process big

More information

A BigData Tour HDFS, Ceph and MapReduce

A BigData Tour HDFS, Ceph and MapReduce A BigData Tour HDFS, Ceph and MapReduce These slides are possible thanks to these sources Jonathan Drusi - SCInet Toronto Hadoop Tutorial, Amir Payberah - Course in Data Intensive Computing SICS; Yahoo!

More information

Apache Giraph: Facebook-scale graph processing infrastructure. 3/31/2014 Avery Ching, Facebook GDM

Apache Giraph: Facebook-scale graph processing infrastructure. 3/31/2014 Avery Ching, Facebook GDM Apache Giraph: Facebook-scale graph processing infrastructure 3/31/2014 Avery Ching, Facebook GDM Motivation Apache Giraph Inspired by Google s Pregel but runs on Hadoop Think like a vertex Maximum value

More information

Frameworks for Graph-Based Problems

Frameworks for Graph-Based Problems Frameworks for Graph-Based Problems Dakshil Shah U.G. Student Computer Engineering Department Dwarkadas J. Sanghvi College of Engineering, Mumbai, India Chetashri Bhadane Assistant Professor Computer Engineering

More information

Versioning, Consistency, and Agreement

Versioning, Consistency, and Agreement Lee Lorenz, Brent Sheppard Jenkins, if I want another yes man, I ll build one! Versioning, Consistency, and Agreement COS 461: Computer Networks Spring 2010 (MW 3:00 4:20 in CS105) Mike Freedman hip://www.cs.princeton.edu/courses/archive/spring10/cos461/

More information

Hadoop An Overview. - Socrates CCDH

Hadoop An Overview. - Socrates CCDH Hadoop An Overview - Socrates CCDH What is Big Data? Volume Not Gigabyte. Terabyte, Petabyte, Exabyte, Zettabyte - Due to handheld gadgets,and HD format images and videos - In total data, 90% of them collected

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Markov Random Fields: Inference Exact: VE Exact+Approximate: BP Readings: Barber 5 Dhruv Batra

More information

MapReduce Design Patterns

MapReduce Design Patterns MapReduce Design Patterns MapReduce Restrictions Any algorithm that needs to be implemented using MapReduce must be expressed in terms of a small number of rigidly defined components that must fit together

More information

Cloud Computing CS

Cloud Computing CS Cloud Computing CS 15-319 Programming Models- Part III Lecture 6, Feb 1, 2012 Majd F. Sakr and Mohammad Hammoud 1 Today Last session Programming Models- Part II Today s session Programming Models Part

More information

MapReduce ML & Clustering Algorithms

MapReduce ML & Clustering Algorithms MapReduce ML & Clustering Algorithms Reminder MapReduce: A trade-off between ease of use & possible parallelism Graph Algorithms Approaches: Reduce input size (filtering) Graph specific optimizations (Pregel

More information

15.1 Optimization, scaling, and gradient descent in Spark

15.1 Optimization, scaling, and gradient descent in Spark CME 323: Distributed Algorithms and Optimization, Spring 2017 http://stanford.edu/~rezab/dao. Instructor: Reza Zadeh, Matroid and Stanford. Lecture 16, 5/24/2017. Scribed by Andreas Santucci. Overview

More information

More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server

More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server Q. Ho, J. Cipar, H. Cui, J.K. Kim, S. Lee, *P.B. Gibbons, G.A. Gibson, G.R. Ganger, E.P. Xing Carnegie Mellon University

More information

MAPREDUCE FOR BIG DATA PROCESSING BASED ON NETWORK TRAFFIC PERFORMANCE Rajeshwari Adrakatti

MAPREDUCE FOR BIG DATA PROCESSING BASED ON NETWORK TRAFFIC PERFORMANCE Rajeshwari Adrakatti International Journal of Computer Engineering and Applications, ICCSTAR-2016, Special Issue, May.16 MAPREDUCE FOR BIG DATA PROCESSING BASED ON NETWORK TRAFFIC PERFORMANCE Rajeshwari Adrakatti 1 Department

More information

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research Counting Triangles & The Curse of the Last Reducer Siddharth Suri Yahoo! Research Why Count Triangles? 2 Why Count Triangles? Clustering Coefficient: Given an undirected graph G =(V,E) cc(v) = fraction

More information

Distributed Graph Storage. Veronika Molnár, UZH

Distributed Graph Storage. Veronika Molnár, UZH Distributed Graph Storage Veronika Molnár, UZH Overview Graphs and Social Networks Criteria for Graph Processing Systems Current Systems Storage Computation Large scale systems Comparison / Best systems

More information

Advanced Database Technologies NoSQL: Not only SQL

Advanced Database Technologies NoSQL: Not only SQL Advanced Database Technologies NoSQL: Not only SQL Christian Grün Database & Information Systems Group NoSQL Introduction 30, 40 years history of well-established database technology all in vain? Not at

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [MAPREDUCE] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Bit Torrent What is the right chunk/piece

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information