Case Study 4: Collaborative Filtering. GraphLab

Size: px
Start display at page:

Download "Case Study 4: Collaborative Filtering. GraphLab"

Transcription

1 Case Study 4: Collaborative Filtering GraphLab Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin March 14 th, 2013 Carlos Guestrin Social Media Science Adver0sing Web! Graphs encode the rela0onships between: People Facts Products Interests Ideas! Big: 100 billions of ver0ces and edges and rich metadata! Facebook (10/2012): 1B users, 144B friendships! Twi@er (2011): 15B follower edges Carlos Guestrin

2 Facebook Graph Carlos Guestrin 2013 Slide from Facebook Engineering presentation 3 Addressing Graph- Parallel ML Data-Parallel Map Reduce Feature ExtracOon Cross ValidaOon CompuOng Sufficient StaOsOcs Graph-Parallel Graph- Parallel AbstracOon Graphical Models Gibbs Sampling Belief Propagation Variational Opt. Collaborative Filtering Tensor Factorization Semi-Supervised Learning Label Propagation CoEM Data-Mining PageRank Triangle Counting Carlos Guestrin

3 Asynchronous Belief PropagaOon Challenge = Boundaries Many Updates Synthetic Noisy Image Cumulative Vertex Updates Few Updates Graphical Model Algorithm idenofies and focuses on hidden sequenoal structure Carlos Guestrin Synchronous v. Asynchronous n Bulk synchronous processing: Computation in phases n All vertices participate in a phase n Though OK to say no-op All messages are sent Simpler to build, like Map-Reduce n No worries about race conditions, barrier guarantees data consistency n Simpler to make fault-tolerant, save data on barrier Slower convergence for many ML problems In matrix-land, called Jacobi Iteration Implemented by Google Pregel 2010 n Asynchronous processing: Vertices see latest information from neighbors n Most closely related to sequential execution Harder to build: n Race conditions can happen all the time Must protect against this issue n More complex fault tolerance n When are you done? n Must implement scheduler over vertices Faster convergence for many ML problems In matrix-land, called Gauss-Seidel Iteration Implemented by GraphLab 2010, 2012 Carlos Guestrin

4 The GraphLab Goals Know how to solve ML problem on 1 machine Efficient parallel predicoons Carlos Guestrin Data Graph Data associated with veroces and edges Graph: Social Network Vertex Data: User profile text Current interests esomates Edge Data: Similarity weights Carlos Guestrin

5 How do we program graph computaoon? Think like a Vertex. - Malewicz et al. [SIGMOD 10] Update FuncOons User- defined program: applied to vertex transforms data in scope of vertex pagerank(i, scope){ } Carlos Guestrin

6 Connected Components Carlos Guestrin Update FuncOon Example: Connected Components Carlos Guestrin

7 The Scheduler The scheduler determines order vertices are updated CPU 1 a b c d Scheduler b a h i CPU 2 h e f g i j k Carlos Guestrin Example Schedulers! Round- robin! SelecOve scheduling (skipping):! round robin but jump over un- scheduled veroce! FIFO! PrioriOze scheduling! Hard to implement in a distributed fashion! ApproximaOons used (each machine has its own priority queue) Carlos Guestrin

8 Ensuring Race- Free Code How much can computaoon overlap? Carlos Guestrin Need for Consistency? Higher Throughput (#updates/sec) No Consistency PotenOally Slower Convergence of ML Carlos Guestrin

9 GraphLab Ensures Sequen0al Consistency For each parallel execution, there exists a sequential execution of update functions which produces the same result Parallel CPU 1 CPU 2 time Sequential Single CPU Carlos Guestrin Consistency in CollaboraOve Filtering Train RMSE Dynamic Inconsistent Inconsistent updates Dynamic Consistent updates Updates Millions Nemlix data, 8 cores Carlos Guestrin

10 The GraphLab Framework Graph Based Data Representa.on Update FuncOons User Computa.on Scheduler Consistency Model Carlos Guestrin Triangle CounOng in Graph 40M Users 1.2B Edges Total: 34.8 Billion Triangles Hadoop GraphLab 1536 Machines 423 Minutes 64 Machines, 1024 Cores 1.5 Minutes Carlos Guestrin 2013 Hadoop results from [Suri & Vassilvitskii '11] 20 10

11 CoEM (Jones et al., 2005) Named Entity Recognition Task Is Dog an animal? Is Catalina a place? dog <X> ran quickly Australia travelled to <X> Catalina Island <X> is pleasant Carlos Guestrin Never Ending Learner Project (CoEM) Vertices: 2 Million Edges: 200 Million Hadoop 95 Cores 7.5 hrs Distributed GraphLab 32 EC2 machines 80 secs Carlos Guestrin

12 Women on the Verge of a Nervous Breakdown The CelebraOon recommend City of God Wild Strawberries What do I recommend??? La Dolce Vita Carlos Guestrin Interpreting Low-Rank Matrix Completion (aka Matrix Factorization) X = L R Carlos Guestrin

13 Matrix Completion as a Graph X = X ij known for black cells X ij unknown for white cells Rows index users movies Columns index index movies users Carlos Guestrin Coordinate Descent for Matrix Factorization: Alternating Least-Squares min L,R X (L u R v r uv ) 2 (u,v,r uv)2x:r uv6=? n n n Fix movie factors, optimize for user factors X Independent least-squares over users min (L u R v r uv ) 2 L u v2v u Fix user factors, optimize for movie factors X Independent least-squares over movies min (L u R v r uv ) 2 R v u2u v System may be underdetermined: n Converges to Carlos Guestrin

14 Alternating Least Squares Update Function min L u X v2v u (L u R v r uv ) 2 min Rv X (L u R v r uv ) 2 u2uv recommend Carlos Guestrin t = L (t) u SGD for Matrix Factorization in Map-Reduce? R (t) v r uv " L (t+1) u R (t+1) v # " (1 t u )L (t) u (1 t v )R v (t) t t R v (t) t t L (t) u # recommend Carlos Guestrin

15 6. Before GraphChi: Going small with GraphLab 7. After 8. After Solve huge problems on small or embedded devices? Key: Exploit non- volaole memory (starong with SSDs and HDs) Carlos Guestrin GraphChi disk- based GraphLab Challenge: Random Accesses Novel GraphChi solu0on: Parallel sliding windows method è minimizes number of random accesses Carlos Guestrin

16 Naive Graph Disk Layouts 19 5! Symmetrized adjacency file with values, vertex in- neighbors out- neighbors 5 3:2.3, 19: 1.3, 49: 0.65, : 2.3, 881: : 1.4, 9: 12.1,... synchronize 5: 1.3, 28: 2.2,...! or with file index pointers Random write vertex in- neighbor- ptr out- neighbors 5 3: 881, 19: 10092, 49: 20763, : 2.3, 881: Random... read read/write 19 3: 882, 9: 2872,... 5: 1.3, 28: 2.2,... Carlos Guestrin Parallel Sliding Windows Layout Shard: in- edges for subset of veroces; sorted by source_id in- edges for veroces sorted by source_id Shard 1 Shard 2 Shard 3 Shard 4 Shards small enough to fit in memory; balance size of shards Carlos Guestrin

17 Parallel Sliding Windows ExecuOon Load subgraph for ver0ces in- edges for veroces sorted by source_id Shard 1 Shard 2 Shard 3 Shard 4 Load all in- edges in memory What about out- edges? Arranged in sequence in other shards! And sequenoal writes! Carlos Guestrin Parallel Sliding Windows ExecuOon Load subgraph for ver0ces in- edges for veroces sorted by source_id Shard 1 Shard 2 Shard 3 Shard 4 Load all in- edges in memory Only O(P 2 ) random reads per pass on enore graph Carlos Guestrin

18 Triangle CounOng on Graph Total: 34.8 Billion Triangles 40M Users 1.2B Edges Hadoop GraphChi GraphLab Machines 423 Minutes 59 Minutes 59 Minutes, 1 Mac Mini! 64 Machines, 1024 Cores 1.5 Minutes Carlos Guestrin 2013 Hadoop results from [Suri & Vassilvitskii '11] 35 Release 2.1 available now Documentation Code Tutorials (more on the way) GraphChi 0.1 available now 18

19 What you need to know n Data-parallel versus graph-parallel computation n Bulk synchronous processing versus asynchronous processing n GraphLab system for graph-parallel computation Data representation Update functions Scheduling Consistency model Carlos Guestrin

Graph-Parallel Problems. ML in the Context of Parallel Architectures

Graph-Parallel Problems. ML in the Context of Parallel Architectures Case Study 4: Collaborative Filtering Graph-Parallel Problems Synchronous v. Asynchronous Computation Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 20 th, 2014

More information

Case Study 4: Collabora1ve Filtering

Case Study 4: Collabora1ve Filtering Case Study 4: Collabora1ve Filtering Graph- Parallel Problems Synchronous v. Asynchronous ComputaPon Machine Learning for Big Data CSE547/STAT548, University of Washington Carlos Guestrin, guest lecturer

More information

GraphChi: Large-Scale Graph Computation on Just a PC

GraphChi: Large-Scale Graph Computation on Just a PC OSDI 12 GraphChi: Large-Scale Graph Computation on Just a PC Aapo Kyrölä (CMU) Guy Blelloch (CMU) Carlos Guestrin (UW) In co- opera+on with the GraphLab team. BigData with Structure: BigGraph social graph

More information

GraphLab: A New Framework for Parallel Machine Learning

GraphLab: A New Framework for Parallel Machine Learning GraphLab: A New Framework for Parallel Machine Learning Yucheng Low, Aapo Kyrola, Carlos Guestrin, Joseph Gonzalez, Danny Bickson, Joe Hellerstein Presented by Guozhang Wang DB Lunch, Nov.8, 2010 Overview

More information

Joseph hgonzalez. A New Parallel Framework for Machine Learning. Joint work with. Yucheng Low. Aapo Kyrola. Carlos Guestrin.

Joseph hgonzalez. A New Parallel Framework for Machine Learning. Joint work with. Yucheng Low. Aapo Kyrola. Carlos Guestrin. A New Parallel Framework for Machine Learning Joseph hgonzalez Joint work with Yucheng Low Aapo Kyrola Danny Bickson Carlos Guestrin Alex Smola Guy Blelloch Joe Hellerstein David O Hallaron Carnegie Mellon

More information

Why do we need graph processing?

Why do we need graph processing? Why do we need graph processing? Community detection: suggest followers? Determine what products people will like Count how many people are in different communities (polling?) Graphs are Everywhere Group

More information

Graphs (Part II) Shannon Quinn

Graphs (Part II) Shannon Quinn Graphs (Part II) Shannon Quinn (with thanks to William Cohen and Aapo Kyrola of CMU, and J. Leskovec, A. Rajaraman, and J. Ullman of Stanford University) Parallel Graph Computation Distributed computation

More information

Apache Giraph. for applications in Machine Learning & Recommendation Systems. Maria Novartis

Apache Giraph. for applications in Machine Learning & Recommendation Systems. Maria Novartis Apache Giraph for applications in Machine Learning & Recommendation Systems Maria Stylianou @marsty5 Novartis Züri Machine Learning Meetup #5 June 16, 2014 Apache Giraph for applications in Machine Learning

More information

modern database systems lecture 10 : large-scale graph processing

modern database systems lecture 10 : large-scale graph processing modern database systems lecture 1 : large-scale graph processing Aristides Gionis spring 18 timeline today : homework is due march 6 : homework out april 5, 9-1 : final exam april : homework due graphs

More information

Graph-Processing Systems. (focusing on GraphChi)

Graph-Processing Systems. (focusing on GraphChi) Graph-Processing Systems (focusing on GraphChi) Recall: PageRank in MapReduce (Hadoop) Input: adjacency matrix H D F S (a,[c]) (b,[a]) (c,[a,b]) (c,pr(a) / out (a)), (a,[c]) (a,pr(b) / out (b)), (b,[a])

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 60 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models Pregel: A System for Large-Scale Graph Processing

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Graph Data Management

Graph Data Management Graph Data Management Analysis and Optimization of Graph Data Frameworks presented by Fynn Leitow Overview 1) Introduction a) Motivation b) Application for big data 2) Choice of algorithms 3) Choice of

More information

Graph Processing. Connor Gramazio Spiros Boosalis

Graph Processing. Connor Gramazio Spiros Boosalis Graph Processing Connor Gramazio Spiros Boosalis Pregel why not MapReduce? semantics: awkward to write graph algorithms efficiency: mapreduces serializes state (e.g. all nodes and edges) while pregel keeps

More information

Distributed Graph Algorithms

Distributed Graph Algorithms Distributed Graph Algorithms Alessio Guerrieri University of Trento, Italy 2016/04/26 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Contents 1 Introduction

More information

Asynchronous Graph Processing

Asynchronous Graph Processing Asynchronous Graph Processing CompSci 590.03 Instructor: Ashwin Machanavajjhala (slides adapted from Graphlab talks at UAI 10 & VLDB 12 and Gouzhang Wang s talk at CIDR 2013) Lecture 15 : 590.02 Spring

More information

Domain-specific programming on graphs

Domain-specific programming on graphs Lecture 23: Domain-specific programming on graphs Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2014 Tunes Alt-J Tessellate (An Awesome Wave) We wrote the lyrics to Tessellate

More information

CS 5220: Parallel Graph Algorithms. David Bindel

CS 5220: Parallel Graph Algorithms. David Bindel CS 5220: Parallel Graph Algorithms David Bindel 2017-11-14 1 Graphs Mathematically: G = (V, E) where E V V Convention: V = n and E = m May be directed or undirected May have weights w V : V R or w E :

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

Domain-specific programming on graphs

Domain-specific programming on graphs Lecture 25: Domain-specific programming on graphs Parallel Computer Architecture and Programming CMU 15-418/15-618, Fall 2016 1 Last time: Increasing acceptance of domain-specific programming systems Challenge

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 24, 2015 Course Information Website: www.stat.ucdavis.edu/~chohsieh/ecs289g_scalableml.html My office: Mathematical Sciences Building (MSB)

More information

King Abdullah University of Science and Technology. CS348: Cloud Computing. Large-Scale Graph Processing

King Abdullah University of Science and Technology. CS348: Cloud Computing. Large-Scale Graph Processing King Abdullah University of Science and Technology CS348: Cloud Computing Large-Scale Graph Processing Zuhair Khayyat 10/March/2013 The Importance of Graphs A graph is a mathematical structure that represents

More information

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 1. Introduction Reddit is one of the most popular online social news websites with millions

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017 3/0/207 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/0/207 Perceptron as a neural

More information

Pregel: A System for Large-Scale Graph Proces sing

Pregel: A System for Large-Scale Graph Proces sing Pregel: A System for Large-Scale Graph Proces sing Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkwoski Google, Inc. SIGMOD July 20 Taewhi

More information

VENUS: Vertex-Centric Streamlined Graph Computation on a Single PC

VENUS: Vertex-Centric Streamlined Graph Computation on a Single PC VENUS: Vertex-Centric Streamlined Graph Computation on a Single PC Jiefeng Cheng 1, Qin Liu 2, Zhenguo Li 1, Wei Fan 1, John C.S. Lui 2, Cheng He 1 1 Huawei Noah s Ark Lab, Hong Kong {cheng.jiefeng,li.zhenguo,david.fanwei,hecheng}@huawei.com

More information

One Trillion Edges. Graph processing at Facebook scale

One Trillion Edges. Graph processing at Facebook scale One Trillion Edges Graph processing at Facebook scale Introduction Platform improvements Compute model extensions Experimental results Operational experience How Facebook improved Apache Giraph Facebook's

More information

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets Nadathur Satish, Narayanan Sundaram, Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park, M. Amber Hassaan, Shubho Sengupta, Zhaoming

More information

Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem

Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem I J C T A, 9(41) 2016, pp. 1235-1239 International Science Press Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem Hema Dubey *, Nilay Khare *, Alind Khare **

More information

Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G.

Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G. Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G. Speaker: Chong Li Department: Applied Health Science Program: Master of Health Informatics 1 Term

More information

Automatic Scaling Iterative Computations. Aug. 7 th, 2012

Automatic Scaling Iterative Computations. Aug. 7 th, 2012 Automatic Scaling Iterative Computations Guozhang Wang Cornell University Aug. 7 th, 2012 1 What are Non-Iterative Computations? Non-iterative computation flow Directed Acyclic Examples Batch style analytics

More information

FPGP: Graph Processing Framework on FPGA

FPGP: Graph Processing Framework on FPGA FPGP: Graph Processing Framework on FPGA Guohao DAI, Yuze CHI, Yu WANG, Huazhong YANG E.E. Dept., TNLIST, Tsinghua University dgh14@mails.tsinghua.edu.cn 1 Big graph is widely used Big graph is widely

More information

arxiv: v1 [cs.db] 26 Apr 2012

arxiv: v1 [cs.db] 26 Apr 2012 Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud Yucheng Low Carnegie Mellon University ylow@cs.cmu.edu Joseph Gonzalez Carnegie Mellon University jegonzal@cs.cmu.edu

More information

DSCI 575: Advanced Machine Learning. PageRank Winter 2018

DSCI 575: Advanced Machine Learning. PageRank Winter 2018 DSCI 575: Advanced Machine Learning PageRank Winter 2018 http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf Web Search before Google Unsupervised Graph-Based Ranking We want to rank importance based on

More information

Clustering Documents. Document Retrieval. Case Study 2: Document Retrieval

Clustering Documents. Document Retrieval. Case Study 2: Document Retrieval Case Study 2: Document Retrieval Clustering Documents Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April, 2017 Sham Kakade 2017 1 Document Retrieval n Goal: Retrieve

More information

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Accelerating PageRank using Partition-Centric Processing Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Outline Introduction Partition-centric Processing Methodology Analytical Evaluation

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models RCFile: A Fast and Space-efficient Data

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

COSC 6339 Big Data Analytics. Graph Algorithms and Apache Giraph

COSC 6339 Big Data Analytics. Graph Algorithms and Apache Giraph COSC 6339 Big Data Analytics Graph Algorithms and Apache Giraph Parts of this lecture are adapted from UMD Jimmy Lin s slides, which is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

Lecture 15: More Iterative Ideas

Lecture 15: More Iterative Ideas Lecture 15: More Iterative Ideas David Bindel 15 Mar 2010 Logistics HW 2 due! Some notes on HW 2. Where we are / where we re going More iterative ideas. Intro to HW 3. More HW 2 notes See solution code!

More information

Measurements on (Complete) Graphs: The Power of Wedge and Diamond Sampling

Measurements on (Complete) Graphs: The Power of Wedge and Diamond Sampling Measurements on (Complete) Graphs: The Power of Wedge and Diamond Sampling Tamara G. Kolda plus Grey Ballard, Todd Plantenga, Ali Pinar, C. Seshadhri Workshop on Incomplete Network Data Sandia National

More information

Apache Giraph: Facebook-scale graph processing infrastructure. 3/31/2014 Avery Ching, Facebook GDM

Apache Giraph: Facebook-scale graph processing infrastructure. 3/31/2014 Avery Ching, Facebook GDM Apache Giraph: Facebook-scale graph processing infrastructure 3/31/2014 Avery Ching, Facebook GDM Motivation Apache Giraph Inspired by Google s Pregel but runs on Hadoop Think like a vertex Maximum value

More information

Statistical Physics of Community Detection

Statistical Physics of Community Detection Statistical Physics of Community Detection Keegan Go (keegango), Kenji Hata (khata) December 8, 2015 1 Introduction Community detection is a key problem in network science. Identifying communities, defined

More information

X-Stream: A Case Study in Building a Graph Processing System. Amitabha Roy (LABOS)

X-Stream: A Case Study in Building a Graph Processing System. Amitabha Roy (LABOS) X-Stream: A Case Study in Building a Graph Processing System Amitabha Roy (LABOS) 1 X-Stream Graph processing system Single Machine Works on graphs stored Entirely in RAM Entirely in SSD Entirely on Magnetic

More information

GridGraph: Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning. Xiaowei ZHU Tsinghua University

GridGraph: Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning. Xiaowei ZHU Tsinghua University GridGraph: Large-Scale Graph Processing on a Single Machine Using -Level Hierarchical Partitioning Xiaowei ZHU Tsinghua University Widely-Used Graph Processing Shared memory Single-node & in-memory Ligra,

More information

Report. X-Stream Edge-centric Graph processing

Report. X-Stream Edge-centric Graph processing Report X-Stream Edge-centric Graph processing Yassin Hassan hassany@student.ethz.ch Abstract. X-Stream is an edge-centric graph processing system, which provides an API for scatter gather algorithms. The

More information

Domain-specific Programming on Graphs

Domain-specific Programming on Graphs Lecture 16: Domain-specific Programming on Graphs Parallel Computer Architecture and Programming Last time: Increasing acceptance of domain-specific programming systems Challenge to programmers: modern

More information

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21 Big Processing -Parallel Computation COS 418: Distributed Systems Lecture 21 Michael Freedman 2 Ex: Word count using partial aggregation Putting it together 1. Compute word counts from individual files

More information

TI2736-B Big Data Processing. Claudia Hauff

TI2736-B Big Data Processing. Claudia Hauff TI2736-B Big Data Processing Claudia Hauff ti2736b-ewi@tudelft.nl Intro Streams Streams Map Reduce HDFS Pig Ctd. Graphs Pig Design Patterns Hadoop Ctd. Giraph Zoo Keeper Spark Spark Ctd. Learning objectives

More information

PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING

PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING Grzegorz Malewicz, Matthew Austern, Aart Bik, James Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski (Google, Inc.) SIGMOD 2010 Presented by : Xiu

More information

Pregel. Ali Shah

Pregel. Ali Shah Pregel Ali Shah s9alshah@stud.uni-saarland.de 2 Outline Introduction Model of Computation Fundamentals of Pregel Program Implementation Applications Experiments Issues with Pregel 3 Outline Costs of Computation

More information

Graphs / Networks. CSE 6242/ CX 4242 Feb 18, Centrality measures, algorithms, interactive applications. Duen Horng (Polo) Chau Georgia Tech

Graphs / Networks. CSE 6242/ CX 4242 Feb 18, Centrality measures, algorithms, interactive applications. Duen Horng (Polo) Chau Georgia Tech CSE 6242/ CX 4242 Feb 18, 2014 Graphs / Networks Centrality measures, algorithms, interactive applications Duen Horng (Polo) Chau Georgia Tech Partly based on materials by Professors Guy Lebanon, Jeffrey

More information

Giraph: Large-scale graph processing infrastructure on Hadoop. Qu Zhi

Giraph: Large-scale graph processing infrastructure on Hadoop. Qu Zhi Giraph: Large-scale graph processing infrastructure on Hadoop Qu Zhi Why scalable graph processing? Web and social graphs are at immense scale and continuing to grow In 2008, Google estimated the number

More information

Linear Regression Optimization

Linear Regression Optimization Gradient Descent Linear Regression Optimization Goal: Find w that minimizes f(w) f(w) = Xw y 2 2 Closed form solution exists Gradient Descent is iterative (Intuition: go downhill!) n w * w Scalar objective:

More information

Pregel: A System for Large- Scale Graph Processing. Written by G. Malewicz et al. at SIGMOD 2010 Presented by Chris Bunch Tuesday, October 12, 2010

Pregel: A System for Large- Scale Graph Processing. Written by G. Malewicz et al. at SIGMOD 2010 Presented by Chris Bunch Tuesday, October 12, 2010 Pregel: A System for Large- Scale Graph Processing Written by G. Malewicz et al. at SIGMOD 2010 Presented by Chris Bunch Tuesday, October 12, 2010 1 Graphs are hard Poor locality of memory access Very

More information

Graphs / Networks CSE 6242/ CX Centrality measures, algorithms, interactive applications. Duen Horng (Polo) Chau Georgia Tech

Graphs / Networks CSE 6242/ CX Centrality measures, algorithms, interactive applications. Duen Horng (Polo) Chau Georgia Tech CSE 6242/ CX 4242 Graphs / Networks Centrality measures, algorithms, interactive applications Duen Horng (Polo) Chau Georgia Tech Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John

More information

Database Architecture 2 & Storage. Instructor: Matei Zaharia cs245.stanford.edu

Database Architecture 2 & Storage. Instructor: Matei Zaharia cs245.stanford.edu Database Architecture 2 & Storage Instructor: Matei Zaharia cs245.stanford.edu Summary from Last Time System R mostly matched the architecture of a modern RDBMS» SQL» Many storage & access methods» Cost-based

More information

SociaLite: A Datalog-based Language for

SociaLite: A Datalog-based Language for SociaLite: A Datalog-based Language for Large-Scale Graph Analysis Jiwon Seo M OBIS OCIAL RESEARCH GROUP Overview Overview! SociaLite: language for large-scale graph analysis! Extensions to Datalog! Compiler

More information

Clustering Documents. Case Study 2: Document Retrieval

Clustering Documents. Case Study 2: Document Retrieval Case Study 2: Document Retrieval Clustering Documents Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 21 th, 2015 Sham Kakade 2016 1 Document Retrieval Goal: Retrieve

More information

Datacenter Simulation Methodologies: GraphLab. Tamara Silbergleit Lehman, Qiuyun Wang, Seyed Majid Zahedi and Benjamin C. Lee

Datacenter Simulation Methodologies: GraphLab. Tamara Silbergleit Lehman, Qiuyun Wang, Seyed Majid Zahedi and Benjamin C. Lee Datacenter Simulation Methodologies: GraphLab Tamara Silbergleit Lehman, Qiuyun Wang, Seyed Majid Zahedi and Benjamin C. Lee Tutorial Schedule Time Topic 09:00-10:00 Setting up MARSSx86 and DRAMSim2 10:00-10:15

More information

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing /34 Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing Zuhair Khayyat 1 Karim Awara 1 Amani Alonazi 1 Hani Jamjoom 2 Dan Williams 2 Panos Kalnis 1 1 King Abdullah University of

More information

G(B)enchmark GraphBench: Towards a Universal Graph Benchmark. Khaled Ammar M. Tamer Özsu

G(B)enchmark GraphBench: Towards a Universal Graph Benchmark. Khaled Ammar M. Tamer Özsu G(B)enchmark GraphBench: Towards a Universal Graph Benchmark Khaled Ammar M. Tamer Özsu Bioinformatics Software Engineering Social Network Gene Co-expression Protein Structure Program Flow Big Graphs o

More information

Final Exam. 1. (8 pts) Consider the following directed graph. If you iterate through all of the vertices as

Final Exam. 1. (8 pts) Consider the following directed graph. If you iterate through all of the vertices as NAME: CS 241 Algorithms and Data Structures Spring Semester, 2004 Final Exam May 11, 2004 Do not spend too much time on any problem. The point value approximates the time I expect you to need for the problem.

More information

Big Graph Processing. Fenggang Wu Nov. 6, 2016

Big Graph Processing. Fenggang Wu Nov. 6, 2016 Big Graph Processing Fenggang Wu Nov. 6, 2016 Agenda Project Publication Organization Pregel SIGMOD 10 Google PowerGraph OSDI 12 CMU GraphX OSDI 14 UC Berkeley AMPLab PowerLyra EuroSys 15 Shanghai Jiao

More information

Mosaic: Processing a Trillion-Edge Graph on a Single Machine

Mosaic: Processing a Trillion-Edge Graph on a Single Machine Mosaic: Processing a Trillion-Edge Graph on a Single Machine Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Kumar, Taesoo Kim Georgia Institute of Technology Best Student Paper @ EuroSys

More information

Domain-specific programming on graphs

Domain-specific programming on graphs Lecture 23: Domain-specific programming on graphs Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Tunes Alt-J Tessellate (An Awesome Wave) We wrote the lyrics to Tessellate

More information

Social-Network Graphs

Social-Network Graphs Social-Network Graphs Mining Social Networks Facebook, Google+, Twitter Email Networks, Collaboration Networks Identify communities Similar to clustering Communities usually overlap Identify similarities

More information

.. Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar..

.. Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. .. Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. Link Analysis in Graphs: PageRank Link Analysis Graphs Recall definitions from Discrete math and graph theory. Graph. A graph

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

Jure Leskovec Including joint work with Y. Perez, R. Sosič, A. Banarjee, M. Raison, R. Puttagunta, P. Shah

Jure Leskovec Including joint work with Y. Perez, R. Sosič, A. Banarjee, M. Raison, R. Puttagunta, P. Shah Jure Leskovec (@jure) Including joint work with Y. Perez, R. Sosič, A. Banarjee, M. Raison, R. Puttagunta, P. Shah 2 My research group at Stanford: Mining and modeling large social and information networks

More information

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research Counting Triangles & The Curse of the Last Reducer Siddharth Suri Yahoo! Research Why Count Triangles? 2 Why Count Triangles? Clustering Coefficient: Given an undirected graph G =(V,E) cc(v) = fraction

More information

A New Parallel Algorithm for Connected Components in Dynamic Graphs. Robert McColl Oded Green David Bader

A New Parallel Algorithm for Connected Components in Dynamic Graphs. Robert McColl Oded Green David Bader A New Parallel Algorithm for Connected Components in Dynamic Graphs Robert McColl Oded Green David Bader Overview The Problem Target Datasets Prior Work Parent-Neighbor Subgraph Results Conclusions Problem

More information

Lecture 22 : Distributed Systems for ML

Lecture 22 : Distributed Systems for ML 10-708: Probabilistic Graphical Models, Spring 2017 Lecture 22 : Distributed Systems for ML Lecturer: Qirong Ho Scribes: Zihang Dai, Fan Yang 1 Introduction Big data has been very popular in recent years.

More information

Asynchronous and Fault-Tolerant Recursive Datalog Evalua9on in Shared-Nothing Engines

Asynchronous and Fault-Tolerant Recursive Datalog Evalua9on in Shared-Nothing Engines Asynchronous and Fault-Tolerant Recursive Datalog Evalua9on in Shared-Nothing Engines Jingjing Wang, Magdalena Balazinska, Daniel Halperin University of Washington Modern Analy>cs Requires Itera>on Graph

More information

More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server

More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server Q. Ho, J. Cipar, H. Cui, J.K. Kim, S. Lee, *P.B. Gibbons, G.A. Gibson, G.R. Ganger, E.P. Xing Carnegie Mellon University

More information

Batch-Incremental vs. Instance-Incremental Learning in Dynamic and Evolving Data

Batch-Incremental vs. Instance-Incremental Learning in Dynamic and Evolving Data Batch-Incremental vs. Instance-Incremental Learning in Dynamic and Evolving Data Jesse Read 1, Albert Bifet 2, Bernhard Pfahringer 2, Geoff Holmes 2 1 Department of Signal Theory and Communications Universidad

More information

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, G. Czajkowski Google, Inc. SIGMOD 2010 Presented by Ke Hong (some figures borrowed from

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

High-Performance Graph Primitives on the GPU: Design and Implementation of Gunrock

High-Performance Graph Primitives on the GPU: Design and Implementation of Gunrock High-Performance Graph Primitives on the GPU: Design and Implementation of Gunrock Yangzihao Wang University of California, Davis yzhwang@ucdavis.edu March 24, 2014 Yangzihao Wang (yzhwang@ucdavis.edu)

More information

Exploiting characteristics of machine learning applications for efficient parameter servers

Exploiting characteristics of machine learning applications for efficient parameter servers Exploiting characteristics of machine learning applications for efficient parameter servers Henggang Cui hengganc@ece.cmu.edu October 4, 2016 1 Introduction Large scale machine learning has emerged as

More information

Scalable Network Analysis

Scalable Network Analysis Inderjit S. Dhillon University of Texas at Austin COMAD, Ahmedabad, India Dec 20, 2013 Outline Unstructured Data - Scale & Diversity Evolving Networks Machine Learning Problems arising in Networks Recommender

More information

Lessons Learned While Building Infrastructure Software at Google

Lessons Learned While Building Infrastructure Software at Google Lessons Learned While Building Infrastructure Software at Google Jeff Dean jeff@google.com Google Circa 1997 (google.stanford.edu) Corkboards (1999) Google Data Center (2000) Google Data Center (2000)

More information

Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees

Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees Joseph Gonzalez Yucheng Low Arthur Gretton Carlos Guestrin Draw Samples Sampling as an Inference Procedure Suppose we wanted to know the

More information

Link Analysis. CSE 454 Advanced Internet Systems University of Washington. 1/26/12 16:36 1 Copyright D.S.Weld

Link Analysis. CSE 454 Advanced Internet Systems University of Washington. 1/26/12 16:36 1 Copyright D.S.Weld Link Analysis CSE 454 Advanced Internet Systems University of Washington 1/26/12 16:36 1 Ranking Search Results TF / IDF or BM25 Tag Information Title, headers Font Size / Capitalization Anchor Text on

More information

Bigtable. A Distributed Storage System for Structured Data. Presenter: Yunming Zhang Conglong Li. Saturday, September 21, 13

Bigtable. A Distributed Storage System for Structured Data. Presenter: Yunming Zhang Conglong Li. Saturday, September 21, 13 Bigtable A Distributed Storage System for Structured Data Presenter: Yunming Zhang Conglong Li References SOCC 2010 Key Note Slides Jeff Dean Google Introduction to Distributed Computing, Winter 2008 University

More information

CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees

CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees Reminders > HW4 is due today > HW5 will be posted shortly Dynamic Programming Review > Apply the steps... 1. Describe solution in terms of solution

More information

Efficient graph computation on hybrid CPU and GPU systems

Efficient graph computation on hybrid CPU and GPU systems J Supercomput (2015) 71:1563 1586 DOI 10.1007/s11227-015-1378-z Efficient graph computation on hybrid CPU and GPU systems Tao Zhang Jingjie Zhang Wei Shu Min-You Wu Xiaoyao Liang Published online: 21 January

More information

Frameworks for Graph-Based Problems

Frameworks for Graph-Based Problems Frameworks for Graph-Based Problems Dakshil Shah U.G. Student Computer Engineering Department Dwarkadas J. Sanghvi College of Engineering, Mumbai, India Chetashri Bhadane Assistant Professor Computer Engineering

More information

Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics

Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Presented by: Dishant Mittal Authors: Juwei Shi, Yunjie Qiu, Umar Firooq Minhas, Lemei Jiao, Chen Wang, Berthold Reinwald and Fatma

More information

CS 6453: Parameter Server. Soumya Basu March 7, 2017

CS 6453: Parameter Server. Soumya Basu March 7, 2017 CS 6453: Parameter Server Soumya Basu March 7, 2017 What is a Parameter Server? Server for large scale machine learning problems Machine learning tasks in a nutshell: Feature Extraction (1, 1, 1) (2, -1,

More information

Large Scale Distributed Deep Networks

Large Scale Distributed Deep Networks Large Scale Distributed Deep Networks Yifu Huang School of Computer Science, Fudan University huangyifu@fudan.edu.cn COMP630030 Data Intensive Computing Report, 2013 Yifu Huang (FDU CS) COMP630030 Report

More information

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing Giraphx: Parallel Yet Serializable Large-Scale Graph Processing Serafettin Tasci and Murat Demirbas Computer Science & Engineering Department University at Buffalo, SUNY Abstract. Bulk Synchronous Parallelism

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Markov Random Fields: Inference Exact: VE Exact+Approximate: BP Readings: Barber 5 Dhruv Batra

More information

Overview of this week

Overview of this week Overview of this week Debugging tips for ML algorithms Graph algorithms at scale A prototypical graph algorithm: PageRank n memory Putting more and more on disk Sampling from a graph What is a good sample

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Last time Network topologies Intro to MPI Matrix-matrix multiplication Today MPI I/O Randomized Algorithms Parallel k-select Graph coloring Assignment 2 Parallel I/O Goal of Parallel

More information

Large Scale Graph Processing Pregel, GraphLab and GraphX

Large Scale Graph Processing Pregel, GraphLab and GraphX Large Scale Graph Processing Pregel, GraphLab and GraphX Amir H. Payberah amir@sics.se KTH Royal Institute of Technology Amir H. Payberah (KTH) Large Scale Graph Processing 2016/10/03 1 / 76 Amir H. Payberah

More information

A Distributed System Case Study: Apache Kafka. High throughput messaging for diverse consumers

A Distributed System Case Study: Apache Kafka. High throughput messaging for diverse consumers A Distributed System Case Study: Apache Kafka High throughput messaging for diverse consumers As always, this is not a tutorial Some of the concepts may no longer be part of the current system or implemented

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

Irregular Graph Algorithms on Parallel Processing Systems

Irregular Graph Algorithms on Parallel Processing Systems Irregular Graph Algorithms on Parallel Processing Systems George M. Slota 1,2 Kamesh Madduri 1 (advisor) Sivasankaran Rajamanickam 2 (Sandia mentor) 1 Penn State University, 2 Sandia National Laboratories

More information

Introduction to MadSys

Introduction to MadSys Introduction to MadSys YONGWEI WU http://madsys.cs.tsinghua.edu.cn/publications.html What is MadSys? MadSys (Mad System) group is doing cuttingedge system research, especially focuses on the design, implementation,

More information