The Design and Implementation of a Modeling Package

Size: px
Start display at page:

Download "The Design and Implementation of a Modeling Package"

Transcription

1 The Design and Implementation of a Modeling Package p.1/20 The Design and Implementation of a Modeling Package Hossein ZivariPiran hzp@cs.toronto.edu Department of Computer Science University of Toronto (part of my PhD thesis under the supervision of professor Wayne Enright)

2 Outline The Design and Implementation of a Modeling Package p.2/20 The Modeling Process Why Modeling Packages? Difficulties of Designing a Modeling Package A Proposed Framework Based on Experiment

3 The Modeling Process The Design and Implementation of a Modeling Package p.3/20 Physical/Biological Phenomenon Mathematical Model Physical Laws / Empirical Rules Observed Data Sensitivity Analysis Refined Mathematical Model Parameter Estimation Practical Mathematical Model

4 The Modeling Process - Parameterized Models The Design and Implementation of a Modeling Package p.4/20 y(t) y(t;p) y(x) y(x;p) y(x,t) y(x,t;p) Parameters are used to: Make the model applicable in similar situations. Analyze the effect of uncertainties. Represent unknown quantities.

5 The Modeling Process - Simulation The Design and Implementation of a Modeling Package p.5/20 Computing a numerical approximation for fixed values of parameters and some initial/boundary conditions. Traditionally considered as the core of numerical studies. Many researchers are working on developing faster/more reliable methods. Generalized Methods - vs - Specialized Methods

6 The Modeling Process - Sensitivity Analysis The Design and Implementation of a Modeling Package p.6/20 Forward Sensitivity Analysis The (first order) solution sensitivity with respect to the model parameter p i is defined as the vector s i (t;p) = { p i }y(t;p), (i = 1,...,L) The second order solution sensitivity with respect to the model parameters p i and p j is defined as the vector 2 r ij (t;p) = { }s i (t;p) = { }y(t;p), p j p j p i (i, j = 1,...,L)

7 The Modeling Process - Sensitivity Analysis The Design and Implementation of a Modeling Package p.6/20 Sensitivity information can be used to: Estimate which parameters are most influential in affecting the behavior of the simulation. Such information is crucial for Experimental Design Data Assimilation Reduction of complex nonlinear models Study of Dynamical Systems : Periodic orbits, the Lyapunov exponents, chaos indicators, and bifurcation analysis are fundamental objects for the complete study of a dynamical system, and they require computation of the sensitivities with respect to the initial conditions of the problem. Evaluate optimization gradients and Jacobians in the setting of Dynamic Optimization Parameter Estimation

8 The Modeling Process - Parameter Estimation The Design and Implementation of a Modeling Package p.7/20 Parameter Estimation Problem A Parameterized Model y(t; p) A Set of Data (Observations/Measurements) {Y (γ i ) y(γ i ;p )} Estimate p by minimizing an objective function. e.g. W(p) = i [Y (γ i ) y(γ i ;p)] 2.

9 The Modeling Process - Parameter Estimation The Design and Implementation of a Modeling Package p.7/20 Parameter Estimation/Fitting is not easy, like almost any other optimization problem, The parameters may not be identifiable Numerical Difficulties The efficiency may depend strongly on the place/number of data points Strategies for Collecting the Best Data

10 Why Modeling Packages? The Design and Implementation of a Modeling Package p.8/20 Sensitivity analyzer and parameter estimator have become as essential as simulator for studying a phenomenon using a mathematical model. Increase of the processing power Use of more complex/detailed models sensitivity analysis and parameter estimation become more complicated. Sensitivity analysis and parameter estimation are highly dependent on the simulator An integrated design could lead to efficient communications and prevent possible redundancies.

11 Difficulties of Designing a Modeling Package The Design and Implementation of a Modeling Package p.9/20 We need to develop an efficient simulator, a sensitivity analyzer and a parameter estimator Time Consuming/Expensive How to deal with the "Generality - vs - Efficiency" problem? Want to have a manageable design with little effort be able to change some algorithms or add new algorithms. Want to have a user-friendly interface Easy enough for nonspecialists and controllable enough for specialist. Ideally Parallelizable At least thread safe No Global Variables. Easily incorporable into other packages/programms Easy to do experiments, for instance, comparing different algorithms No Assumption for Global Modules.

12 A Proposed Framework Based on Experiment - DDEs The Design and Implementation of a Modeling Package p.10/20 An Initial Value Problem (IVP) for Ordinary Differential Equations (ODEs) y (t) = f(t, y(t)) y(t 0 ) = y 0 Retarded Delay Differential Equations (RDDEs) y (t) = f(t, y(t), y(t σ 1 ),, y(t σ ν )) for t 0 t t F y(t) = φ(t), for t t 0 σ i = σ i (t, y(t)) 0 delay (constant / time dependent / state dependent) φ(t) history function (constant / time dependent) Neutral Delay Differential Equations (NDDEs) y (t) = f(t, y(t), y(t σ 1 ),, y(t σ ν ), y (t σ ν+1 ),, y (t σ ν+ω )) for t 0 t t F y(t) = φ(t), y (t) = φ (t), for t t 0,

13 DDEs - An Example A Parameterized DDE y (t;p) = f(t, y(t;p), y(t σ(t;p));p) for t 0 (p) t y(t;p) = φ(t;p), for t t 0 (p) For Example, in the neutral delay logistic Gause-type predator-prey system [Kuang 1991] y 1(t) = y 1 (t)(1 y 1 (t τ) ρy 1(t τ)) y 2(t)y 1 (t) 2 y 1 (t) ( y 2(t) y1 (t) 2 ) = y 2 (t) y 1 (t) α where α = 1/10, ρ = 29/10 and τ = 21/50, for t in [0, 30]. The history functions are for t 0. Parameters are φ 1 (t) = t φ 2 (t) = t p = [τ, ρ, α, a = , b = 1 10, c = , d = 1 10 ] The Design and Implementation of a Modeling Package p.11/20

14 DDEs - Numerical Simulation The Design and Implementation of a Modeling Package p.12/20 Classical Theory of Step by Step Integration for IVPs. Runge-Kutta (RK). Linear Multistep (LM). + Continuous Solution using Polynomial Approximation. Continuous Runge-Kutta (CRK). Linear Multistep methods have natural approximating polynomials. DDEs : Combining an interpolation method (for evaluating delayed solution values) with an ODE integration method (for solving the resulting ODE ).

15 DDEs - Special Difficulties The Design and Implementation of a Modeling Package p.13/20 Derivative Discontinuities In general φ (t 0 ) f(t 0, φ(t 0 ), φ(t 0 σ 1 ),, φ(t 0 σ ν )) Due to the existence of delays, discontinuities propagate along the integration interval. Solution is smoothed for RDDEs but in general not for NDDEs. The RK and LM methods fail in presence of discontinuities. Treatment : Tracking Discontinuities and forcing them to be mesh points.

16 DDEs - Special Difficulties The Design and Implementation of a Modeling Package p.14/20 The predator-prey model y t

17 DDEs - Sensitivity Analysis The Design and Implementation of a Modeling Package p.15/20 Internal Differentiation Approach for IVPs y (t;p) = f(t, y(t;p);p), y(t 0 ) = y 0 (p) Differentiation + Chain Rule + Clairaut s Theorem s i = f y s i + f p i, s i (t 0 ) = y 0(p) p i, (i = 1,... L)

18 DDEs - Sensitivity Analysis The Design and Implementation of a Modeling Package p.15/20 Adapted Internal Differentiation Approach for DDEs y (t;p) = f(t, y(t;p), y(α(t, y;p);p), y (α(t, y;p);p);p) y(t;p) = φ(t;p), for t t 0 (p) Differentiation + Chain Rule + Clairaut s Theorem s i(t) = f y s i(t) + f y(α k ) f + y (α) + f p ( ( α y (α k ) ( y (α) y s i(t) + α ) p ( α y s i(t) + α ) p ) + s i (α) ) + s i(α)

19 DDEs - Proper Handling of Sensitivity Jumps The Design and Implementation of a Modeling Package p.16/20 The predator-prey model y t y 1 τ t

20 DDEs - Proper Handling of Sensitivity Jumps The Design and Implementation of a Modeling Package p.16/20 Using the Theory of Hybrid ODE systems [Tolsma & Barton] Sensitivity Update Equation, where y (λ + r+1 p ) = y (λ r+1 l p ) + ( y (λ r+1 ) y (λ + r+1 )) λ r+1 (p) l p l λ r+1 (p) p l = α y λ 1 (p) p l = t 0(p) p l y p l + α p l λ r(p) p l α y y + α t for r 1

21 DDEs - Parameter Estimation The Design and Implementation of a Modeling Package p.17/20 Algorithms for Nonlinear Least-Squares Unconstrained min p W(p) = i [Y (γ i ) y(γ i ;p)] 2. Levenberg-Marquardt Variations of Sequential Quadratic Programming (SQP) Constrained min p W(p) = i [Y (γ i ) y(γ i ;p)] 2, c j (p) = 0, j E, c j (p) 0, j I. Sequential Quadratic Programming (SQP) The smoothness of functions involved in the problem, the objective function and constraints, is a necessary assumption.

22 DDEs - Parameter Estimation The Design and Implementation of a Modeling Package p.17/20 Computing the Gradient/Hessian ( 2 ) W(p) p l p m ±± = 2 i ( ) W(p) p l ± = 2 i [ ( ) y(γi ;p) p l ± ( ) y(γi ;p) [Y (γ i ) y(γ i ;p)] p l ( ) y(γi ;p) p m Recall the jump equation for sensitivities ± ( 2 ) y(γ i ;p) [Y (γ i ) y(γ i ;p)] p l p m y p l (λ + r+1 ) = y p l (λ r+1 ) + ( y (λ r+1 ) y (λ + r+1 )) λ r+1 (p) p l The General Rule : A jump occurs in W(p) when a discontinuity point λ r+1 (p) passes a data point γ i. ± ±± ]

23 DDEs - Parameter Estimation The Design and Implementation of a Modeling Package p.17/20 Avoiding The Non-smoothness y true solution continiously extended solution discontinuity point data point λ r (p) γ i λ r+1 (p) t y λ r (p) γ i λ r+1 (p) t Force the ordering by adding λ r (p) γ i λ r+1 (p) to the set of constraints. The partial derivatives (gradient) of the new constraints, λ r+1(p), can be computed recursively. p

24 Software Design The Design and Implementation of a Modeling Package p.18/20 User Calls

25 Software Design The Design and Implementation of a Modeling Package p.18/20 Simulator

26 Software Design The Design and Implementation of a Modeling Package p.18/20 Sensitivity Analyzer

27 Software Design The Design and Implementation of a Modeling Package p.18/20 Parameter Estimator

28 User Interface The Design and Implementation of a Modeling Package p.19/20 Simulation

29 User Interface The Design and Implementation of a Modeling Package p.19/20 Sensitivity Analysis

30 User Interface The Design and Implementation of a Modeling Package p.19/20 Parameter Estimation

31 Difficulties of Designing a Modeling Package - Revisited The Design and Implementation of a Modeling Package p.20/20 We need to develop an efficient simulator, a sensitivity analyzer and a parameter estimator Time Consuming/Expensive How to deal with the "Generality - vs - Efficiency" problem? Want to have a manageable design with little effort be able to change some algorithms or add new algorithms. Want to have a user-friendly interface Easy enough for nonspecialists and controllable enough for specialist. Ideally Parallelizable At least thread safe No Global Variables. Easily incorporable into other packages/programms Easy to do experiments, for instance, comparing different algorithms No Assumption for Global Modules.

User Documentation for DDEM. Hossein ZivariPiran

User Documentation for DDEM. Hossein ZivariPiran User Documentation for DDEM Hossein ZivariPiran February 16, 2011 Contents Contents i 1 Simulation 2 1.1 Defining the System....................... 3 1.2 Simulating the System...................... 9 1.2.1

More information

Model Parameter Estimation

Model Parameter Estimation Model Parameter Estimation Shan He School for Computational Science University of Birmingham Module 06-23836: Computational Modelling with MATLAB Outline Outline of Topics Concepts about model parameter

More information

Mathematics for chemical engineers

Mathematics for chemical engineers Mathematics for chemical engineers Drahoslava Janovská Department of mathematics Winter semester 2013-2014 Numerical solution of ordinary differential equations Initial value problem Outline 1 Introduction

More information

Level Set Method in a Finite Element Setting

Level Set Method in a Finite Element Setting Level Set Method in a Finite Element Setting John Shopple University of California, San Diego November 6, 2007 Outline 1 Level Set Method 2 Solute-Solvent Model 3 Reinitialization 4 Conclusion Types of

More information

over The idea is to construct an algorithm to solve the IVP ODE (8.1)

over The idea is to construct an algorithm to solve the IVP ODE (8.1) Runge- Ku(a Methods Review of Heun s Method (Deriva:on from Integra:on) The idea is to construct an algorithm to solve the IVP ODE (8.1) over To obtain the solution point we can use the fundamental theorem

More information

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

Math 225 Scientific Computing II Outline of Lectures

Math 225 Scientific Computing II Outline of Lectures Math 225 Scientific Computing II Outline of Lectures Spring Semester 2003 I. Interpolating polynomials Lagrange formulation of interpolating polynomial Uniqueness of interpolating polynomial of degree

More information

Introduction to optimization methods and line search

Introduction to optimization methods and line search Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

More information

Numerical Method in Optimization as a Multi-stage Decision Control System

Numerical Method in Optimization as a Multi-stage Decision Control System Numerical Method in Optimization as a Multi-stage Decision Control System B.S. GOH Institute of Mathematical Sciences University of Malaya 50603 Kuala Lumpur MLYSI gohoptimum@gmail.com bstract: - Numerical

More information

Classification of Optimization Problems and the Place of Calculus of Variations in it

Classification of Optimization Problems and the Place of Calculus of Variations in it Lecture 1 Classification of Optimization Problems and the Place of Calculus of Variations in it ME256 Indian Institute of Science G. K. Ananthasuresh Professor, Mechanical Engineering, Indian Institute

More information

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10 MATH 573 LECTURE NOTES 77 13.8. Predictor-corrector methods. We consider the Adams methods, obtained from the formula xn+1 xn+1 y(x n+1 y(x n ) = y (x)dx = f(x,y(x))dx x n x n by replacing f by an interpolating

More information

Interior point algorithm for the optimization of a space shuttle re-entry trajectory

Interior point algorithm for the optimization of a space shuttle re-entry trajectory Interior point algorithm for the optimization of a space shuttle re-entry trajectory. Julien Laurent-Varin, CNES-INRIA-ONERA Common work with Julien Laurent-Varin J. F. Bonnans INRIA, N. Bérend ONERA,

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization in Low Level Vision Low level vision problems concerned with estimating some quantity at each pixel Visual motion (u(x,y),v(x,y))

More information

Quasilinear First-Order PDEs

Quasilinear First-Order PDEs MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 16 Lecture 3 Quasilinear First-Order PDEs A first order quasilinear PDE is of the form a(x, y, z) + b(x, y, z) x y = c(x, y, z). (1) Such equations

More information

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used.

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used. 1 4.12 Generalization In back-propagation learning, as many training examples as possible are typically used. It is hoped that the network so designed generalizes well. A network generalizes well when

More information

Sensitivity Characteristics of Response Surface Models for Estimation of Ecological Parameters in Ratio-Dependent Predator-Prey Systems

Sensitivity Characteristics of Response Surface Models for Estimation of Ecological Parameters in Ratio-Dependent Predator-Prey Systems Sensitivity Characteristics of Response Surface Models for Estimation of Ecological Parameters in Ratio-Dependent Predator-Prey Systems Dale B. McDonald McCoy School of Engineering Midwestern State University

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Outlining Midterm Projects Topic 3: GPU-based FEA Topic 4: GPU Direct Solver for Sparse Linear Algebra March 01, 2011 Dan Negrut, 2011 ME964

More information

The Pre-Image Problem in Kernel Methods

The Pre-Image Problem in Kernel Methods The Pre-Image Problem in Kernel Methods James Kwok Ivor Tsang Department of Computer Science Hong Kong University of Science and Technology Hong Kong The Pre-Image Problem in Kernel Methods ICML-2003 1

More information

MATH2071: LAB 2: Explicit ODE methods

MATH2071: LAB 2: Explicit ODE methods MATH2071: LAB 2: Explicit ODE methods 1 Introduction Introduction Exercise 1 Euler s method review Exercise 2 The Euler Halfstep (RK2) Method Exercise 3 Runge-Kutta Methods Exercise 4 The Midpoint Method

More information

Imaging of flow in porous media - from optimal transport to prediction

Imaging of flow in porous media - from optimal transport to prediction Imaging of flow in porous media - from optimal transport to prediction Eldad Haber Dept of EOS and Mathematics, UBC October 15, 2013 With Rowan Lars Jenn Cocket Ruthotto Fohring Outline Prediction is very

More information

arxiv: v1 [cond-mat.dis-nn] 30 Dec 2018

arxiv: v1 [cond-mat.dis-nn] 30 Dec 2018 A General Deep Learning Framework for Structure and Dynamics Reconstruction from Time Series Data arxiv:1812.11482v1 [cond-mat.dis-nn] 30 Dec 2018 Zhang Zhang, Jing Liu, Shuo Wang, Ruyue Xin, Jiang Zhang

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Optimal Control Techniques for Dynamic Walking

Optimal Control Techniques for Dynamic Walking Optimal Control Techniques for Dynamic Walking Optimization in Robotics & Biomechanics IWR, University of Heidelberg Presentation partly based on slides by Sebastian Sager, Moritz Diehl and Peter Riede

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Applications of Generic Interpolants In the Investigation and Visualization of Approximate Solutions of PDEs on Coarse Unstructured Meshes

Applications of Generic Interpolants In the Investigation and Visualization of Approximate Solutions of PDEs on Coarse Unstructured Meshes Applications of Generic Interpolants In the Investigation and Visualization of Approximate Solutions of PDEs on Coarse Unstructured Meshes by Hassan Goldani Moghaddam A thesis submitted in conformity with

More information

An Introduction to Numerical Analysis

An Introduction to Numerical Analysis Weimin Han AMCS & Dept of Math University of Iowa MATH:38 Example 1 Question: What is the area of the region between y = e x 2 and the x-axis for x 1? Answer: Z 1 e x 2 dx = : 1.9.8.7.6.5.4.3.2.1 1.5.5

More information

System Identification Algorithms and Techniques for Systems Biology

System Identification Algorithms and Techniques for Systems Biology System Identification Algorithms and Techniques for Systems Biology by c Choujun Zhan A Thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor

More information

Lecture IV Bézier Curves

Lecture IV Bézier Curves Lecture IV Bézier Curves Why Curves? Why Curves? Why Curves? Why Curves? Why Curves? Linear (flat) Curved Easier More pieces Looks ugly Complicated Fewer pieces Looks smooth What is a curve? Intuitively:

More information

Review Initial Value Problems Euler s Method Summary

Review Initial Value Problems Euler s Method Summary THE EULER METHOD P.V. Johnson School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY OUTLINE 1 REVIEW 2 INITIAL

More information

A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method

A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method Mrs. P. Sampoornam P.K.R Arts College for Women, Gobichettipalayam Abstract: In this paper, I will discuss the Runge

More information

Finite difference methods

Finite difference methods Finite difference methods Siltanen/Railo/Kaarnioja Spring 8 Applications of matrix computations Applications of matrix computations Finite difference methods Spring 8 / Introduction Finite difference methods

More information

Announcements. Edges. Last Lecture. Gradients: Numerical Derivatives f(x) Edge Detection, Lines. Intro Computer Vision. CSE 152 Lecture 10

Announcements. Edges. Last Lecture. Gradients: Numerical Derivatives f(x) Edge Detection, Lines. Intro Computer Vision. CSE 152 Lecture 10 Announcements Assignment 2 due Tuesday, May 4. Edge Detection, Lines Midterm: Thursday, May 6. Introduction to Computer Vision CSE 152 Lecture 10 Edges Last Lecture 1. Object boundaries 2. Surface normal

More information

over The idea is to construct an algorithm to solve the IVP ODE (9.1)

over The idea is to construct an algorithm to solve the IVP ODE (9.1) Runge- Ku(a Methods Review of Heun s Method (Deriva:on from Integra:on) The idea is to construct an algorithm to solve the IVP ODE (9.1) over To obtain the solution point we can use the fundamental theorem

More information

Optimization III: Constrained Optimization

Optimization III: Constrained Optimization Optimization III: Constrained Optimization CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization III: Constrained Optimization

More information

MATH3016: OPTIMIZATION

MATH3016: OPTIMIZATION MATH3016: OPTIMIZATION Lecturer: Dr Huifu Xu School of Mathematics University of Southampton Highfield SO17 1BJ Southampton Email: h.xu@soton.ac.uk 1 Introduction What is optimization? Optimization is

More information

Proposal of Research Activity. PhD Course in Space Sciences, Technologies and Measurements (STMS)

Proposal of Research Activity. PhD Course in Space Sciences, Technologies and Measurements (STMS) Proposal of Research Activity PhD Course in Space Sciences, Technologies and Measurements (STMS) Curriculum: Sciences and Technologies for Aeronautics and Satellite Applications (STASA) XXXIV Cycle PhD

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

Algorithms for convex optimization

Algorithms for convex optimization Algorithms for convex optimization Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University kocvara@utia.cas.cz http://www.utia.cas.cz/kocvara

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations The Level Set Method Lecture Notes, MIT 16.920J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations Per-Olof Persson persson@mit.edu March 7, 2005 1 Evolving Curves and Surfaces Evolving

More information

LOCAL-GLOBAL OPTICAL FLOW FOR IMAGE REGISTRATION

LOCAL-GLOBAL OPTICAL FLOW FOR IMAGE REGISTRATION LOCAL-GLOBAL OPTICAL FLOW FOR IMAGE REGISTRATION Ammar Zayouna Richard Comley Daming Shi Middlesex University School of Engineering and Information Sciences Middlesex University, London NW4 4BT, UK A.Zayouna@mdx.ac.uk

More information

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

Recent Developments in Model-based Derivative-free Optimization

Recent Developments in Model-based Derivative-free Optimization Recent Developments in Model-based Derivative-free Optimization Seppo Pulkkinen April 23, 2010 Introduction Problem definition The problem we are considering is a nonlinear optimization problem with constraints:

More information

The Euler Equidimensional Equation ( 3.2)

The Euler Equidimensional Equation ( 3.2) The Euler Equidimensional Equation ( 3.) The Euler Equidimensional Equation ( 3.) The Euler Equidimensional Equation Definition The Euler equidimensional equation for the unknown function y with singular

More information

Animation Lecture 10 Slide Fall 2003

Animation Lecture 10 Slide Fall 2003 Animation Lecture 10 Slide 1 6.837 Fall 2003 Conventional Animation Draw each frame of the animation great control tedious Reduce burden with cel animation layer keyframe inbetween cel panoramas (Disney

More information

Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

Scattered Data Problems on (Sub)Manifolds

Scattered Data Problems on (Sub)Manifolds Scattered Data Problems on (Sub)Manifolds Lars-B. Maier Technische Universität Darmstadt 04.03.2016 Lars-B. Maier (Darmstadt) Scattered Data Problems on (Sub)Manifolds 04.03.2016 1 / 60 Sparse Scattered

More information

Quick Start with CASSY Lab. Bi-05-05

Quick Start with CASSY Lab. Bi-05-05 Quick Start with CASSY Lab Bi-05-05 About this manual This manual helps you getting started with the CASSY system. The manual does provide you the information you need to start quickly a simple CASSY experiment

More information

An Introduction to Flow Visualization (1) Christoph Garth

An Introduction to Flow Visualization (1) Christoph Garth An Introduction to Flow Visualization (1) Christoph Garth cgarth@ucdavis.edu Motivation What will I be talking about? Classical: Physical experiments to understand flow. 2 Motivation What will I be talking

More information

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits Solving ODEs General Stuff ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits need workhorse solvers to deal

More information

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder Final Report Discontinuous Galerkin Compressible Euler Equation Solver May 14, 2013 Andrey Andreyev Adviser: Dr. James Baeder Abstract: In this work a Discontinuous Galerkin Method is developed for compressible

More information

Edge Detection Free Postprocessing for Pseudospectral Approximations

Edge Detection Free Postprocessing for Pseudospectral Approximations Edge Detection Free Postprocessing for Pseudospectral Approximations Scott A. Sarra March 4, 29 Abstract Pseudospectral Methods based on global polynomial approximation yield exponential accuracy when

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Concept of Curve Fitting Difference with Interpolation

Concept of Curve Fitting Difference with Interpolation Curve Fitting Content Concept of Curve Fitting Difference with Interpolation Estimation of Linear Parameters by Least Squares Curve Fitting by Polynomial Least Squares Estimation of Non-linear Parameters

More information

Module1: Numerical Solution of Ordinary Differential Equations. Lecture 6. Higher order Runge Kutta Methods

Module1: Numerical Solution of Ordinary Differential Equations. Lecture 6. Higher order Runge Kutta Methods Module1: Numerical Solution of Ordinary Differential Equations Lecture 6 Higher order Runge Kutta Methods Keywords: higher order methods, functional evaluations, accuracy Higher order Runge Kutta Methods

More information

Data Visualization. Fall 2017

Data Visualization. Fall 2017 Data Visualization Fall 2017 Vector Fields Vector field v: D R n D is typically 2D planar surface or 2D surface embedded in 3D n = 2 fields tangent to 2D surface n = 3 volumetric fields When visualizing

More information

Parameter Estimation in Differential Equations: A Numerical Study of Shooting Methods

Parameter Estimation in Differential Equations: A Numerical Study of Shooting Methods Parameter Estimation in Differential Equations: A Numerical Study of Shooting Methods Franz Hamilton Faculty Advisor: Dr Timothy Sauer January 5, 2011 Abstract Differential equation modeling is central

More information

A Parallel Hardware Architecture for Information-Theoretic Adaptive Filtering

A Parallel Hardware Architecture for Information-Theoretic Adaptive Filtering A Parallel Hardware Architecture for Information-Theoretic Adaptive Filtering HPRCTA 2010 Stefan Craciun Dr. Alan D. George Dr. Herman Lam Dr. Jose C. Principe November 14, 2010 NSF CHREC Center ECE Department,

More information

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Particles Matthias Teschner Computer Science Department University of Freiburg Outline introduction particle motion finite differences system of first order ODEs second

More information

LECTURE 13, THURSDAY APRIL 1, 2004

LECTURE 13, THURSDAY APRIL 1, 2004 LECTURE 13, THURSDAY APRIL 1, 2004 FRANZ LEMMERMEYER 1. Parametrizing Curves of Genus 0 As a special case of the theorem that curves of genus 0, in particular those with the maximal number of double points,

More information

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Spline Curves Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Problem: In the previous chapter, we have seen that interpolating polynomials, especially those of high degree, tend to produce strong

More information

Circular Arc Approximation by Quartic H-Bézier Curve

Circular Arc Approximation by Quartic H-Bézier Curve Circular Arc Approximation by Quartic H-Bézier Curve Maria Hussain Department of Mathematics Lahore College for Women University, Pakistan maria.hussain@lcwu.edu.pk W. E. Ong School of Mathematical Sciences

More information

Huei-Huang Lee. Programming with MATLAB2016 SDC ACCESS CODE. Better Textbooks. Lower Prices. UNIQUE CODE INSIDE

Huei-Huang Lee. Programming with MATLAB2016 SDC ACCESS CODE. Better Textbooks. Lower Prices.   UNIQUE CODE INSIDE Programming with Huei-Huang Lee MATLAB2016 SDC P U B L I C AT I O N S Better Textbooks. Lower Prices. www.sdcpublications.com ACCESS CODE UNIQUE CODE INSIDE Powered by TCPDF (www.tcpdf.org) Visit the following

More information

A Friendly Fortran DDE Solver

A Friendly Fortran DDE Solver A Friendly Fortran DDE Solver S. Thompson Department of Mathematics & Statistics Radford University Radford, VA 24142 thompson@radford.edu L.F. Shampine Mathematics Department Southern Methodist University

More information

Numerical Methods on the Image Processing Problems

Numerical Methods on the Image Processing Problems Numerical Methods on the Image Processing Problems Department of Mathematics and Statistics Mississippi State University December 13, 2006 Objective Develop efficient PDE (partial differential equations)

More information

the Simulation of Dynamics Using Simulink

the Simulation of Dynamics Using Simulink INTRODUCTION TO the Simulation of Dynamics Using Simulink Michael A. Gray CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group an informa business

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

Semi-Conservative Schemes for Conservation Laws

Semi-Conservative Schemes for Conservation Laws Semi-Conservative Schemes for Conservation Laws Rosa Maria Pidatella 1 Gabriella Puppo, 2 Giovanni Russo, 1 Pietro Santagati 1 1 Università degli Studi di Catania, Catania, Italy 2 Università dell Insubria,

More information

PROGRAMMING AND ENGINEERING COMPUTING WITH MATLAB Huei-Huang Lee SDC. Better Textbooks. Lower Prices.

PROGRAMMING AND ENGINEERING COMPUTING WITH MATLAB Huei-Huang Lee SDC. Better Textbooks. Lower Prices. PROGRAMMING AND ENGINEERING COMPUTING WITH MATLAB 2018 Huei-Huang Lee SDC P U B L I C AT I O N S Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

INVERSE PROBLEMS IN GROUNDWATER MODELING

INVERSE PROBLEMS IN GROUNDWATER MODELING INVERSE PROBLEMS IN GROUNDWATER MODELING Theory and Applications of Transport in Porous Media Series Editor: Jacob Bear, Technion - Israel Institute of Technology, Haifa, Israel Volume 6 The titles published

More information

Curriculum Map: Mathematics

Curriculum Map: Mathematics Curriculum Map: Mathematics Course: Honors Advanced Precalculus and Trigonometry Grade(s): 11-12 Unit 1: Functions and Their Graphs This chapter will develop a more complete, thorough understanding of

More information

On the Max Coloring Problem

On the Max Coloring Problem On the Max Coloring Problem Leah Epstein Asaf Levin May 22, 2010 Abstract We consider max coloring on hereditary graph classes. The problem is defined as follows. Given a graph G = (V, E) and positive

More information

Physics 235 Chapter 6. Chapter 6 Some Methods in the Calculus of Variations

Physics 235 Chapter 6. Chapter 6 Some Methods in the Calculus of Variations Chapter 6 Some Methods in the Calculus of Variations In this Chapter we focus on an important method of solving certain problems in Classical Mechanics. In many problems we need to determine how a system

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

Approximation of 3D-Parametric Functions by Bicubic B-spline Functions

Approximation of 3D-Parametric Functions by Bicubic B-spline Functions International Journal of Mathematical Modelling & Computations Vol. 02, No. 03, 2012, 211-220 Approximation of 3D-Parametric Functions by Bicubic B-spline Functions M. Amirfakhrian a, a Department of Mathematics,

More information

Numerical Analysis of Shock Tube Problem by using TVD and ACM Schemes

Numerical Analysis of Shock Tube Problem by using TVD and ACM Schemes Numerical Analysis of Shock Tube Problem by using TVD and Schemes Dr. Mukkarum Husain, Dr. M. Nauman Qureshi, Syed Zaid Hasany IST Karachi, Email: mrmukkarum@yahoo.com Abstract Computational Fluid Dynamics

More information

Implicit Matrix Representations of Rational Bézier Curves and Surfaces

Implicit Matrix Representations of Rational Bézier Curves and Surfaces Implicit Matrix Representations of Rational Bézier Curves and Surfaces Laurent Busé INRIA Sophia Antipolis, France Laurent.Buse@inria.fr GD/SPM Conference, Denver, USA November 11, 2013 Overall motivation

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - C) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

An Orthogonal Curvilinear Terrain-Following Coordinate for Atmospheric Models!

An Orthogonal Curvilinear Terrain-Following Coordinate for Atmospheric Models! Solution of Partial Differential Equations on the Sphere! An Orthogonal Curvilinear Terrain-Following Coordinate for Atmospheric Models! Yiyuan Li 1, Bin Wang 1, Donghai Wang 2! 1. Institute of Atmospheric

More information

Post-Processing Radial Basis Function Approximations: A Hybrid Method

Post-Processing Radial Basis Function Approximations: A Hybrid Method Post-Processing Radial Basis Function Approximations: A Hybrid Method Muhammad Shams Dept. of Mathematics UMass Dartmouth Dartmouth MA 02747 Email: mshams@umassd.edu August 4th 2011 Abstract With the use

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

The WENO Method in the Context of Earlier Methods To approximate, in a physically correct way, [3] the solution to a conservation law of the form u t

The WENO Method in the Context of Earlier Methods To approximate, in a physically correct way, [3] the solution to a conservation law of the form u t An implicit WENO scheme for steady-state computation of scalar hyperbolic equations Sigal Gottlieb Mathematics Department University of Massachusetts at Dartmouth 85 Old Westport Road North Dartmouth,

More information

SPLINE APPROXIMATION VIA THE CONTROL POLYGON

SPLINE APPROXIMATION VIA THE CONTROL POLYGON SPLINE APPROXIMATION VIA THE CONTROL POLYGON by Håkon Mørk THESIS for the degree of MASTER S DEGREE IN APPLIED MATHEMATICS AND MECHANICS (Master i Anvendt matematikk og mekanikk) Faculty of Mathematics

More information

Experiments with Edge Detection using One-dimensional Surface Fitting

Experiments with Edge Detection using One-dimensional Surface Fitting Experiments with Edge Detection using One-dimensional Surface Fitting Gabor Terei, Jorge Luis Nunes e Silva Brito The Ohio State University, Department of Geodetic Science and Surveying 1958 Neil Avenue,

More information

Part I: Theoretical Background and Integration-Based Methods

Part I: Theoretical Background and Integration-Based Methods Large Vector Field Visualization: Theory and Practice Part I: Theoretical Background and Integration-Based Methods Christoph Garth Overview Foundations Time-Varying Vector Fields Numerical Integration

More information

An augmented Lagrangian method for equality constrained optimization with fast infeasibility detection

An augmented Lagrangian method for equality constrained optimization with fast infeasibility detection An augmented Lagrangian method for equality constrained optimization with fast infeasibility detection Paul Armand 1 Ngoc Nguyen Tran 2 Institut de Recherche XLIM Université de Limoges Journées annuelles

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

DIRECT SEQUENTIAL DYNAMIC OPTIMIZATION WITH AUTOMATIC SWITCHING STRUCTURE DETECTION. Martin Schlegel, Wolfgang Marquardt 1

DIRECT SEQUENTIAL DYNAMIC OPTIMIZATION WITH AUTOMATIC SWITCHING STRUCTURE DETECTION. Martin Schlegel, Wolfgang Marquardt 1 DIRECT SEQUENTIAL DYNAMIC OPTIMIZATION WITH AUTOMATIC SWITCHING STRUCTURE DETECTION Martin Schlegel, Wolfgang Marquardt 1 Lehrstuhl für Prozesstechnik, RWTH Aachen University D 52056 Aachen, Germany Abstract:

More information

A brief introduction to fluidstructure. O. Souček

A brief introduction to fluidstructure. O. Souček A brief introduction to fluidstructure interactions O. Souček Fluid-structure interactions Important class computational models Civil engineering Biomechanics Industry Geophysics From http://www.ihs.uni-stuttgart.de

More information

Optimal designs for comparing curves

Optimal designs for comparing curves Optimal designs for comparing curves Holger Dette, Ruhr-Universität Bochum Maria Konstantinou, Ruhr-Universität Bochum Kirsten Schorning, Ruhr-Universität Bochum FP7 HEALTH 2013-602552 Outline 1 Motivation

More information

Vision par ordinateur

Vision par ordinateur Epipolar geometry π Vision par ordinateur Underlying structure in set of matches for rigid scenes l T 1 l 2 C1 m1 l1 e1 M L2 L1 e2 Géométrie épipolaire Fundamental matrix (x rank 2 matrix) m2 C2 l2 Frédéric

More information

Using MATLAB, SIMULINK and Control System Toolbox

Using MATLAB, SIMULINK and Control System Toolbox Using MATLAB, SIMULINK and Control System Toolbox A practical approach Alberto Cavallo Roberto Setola Francesco Vasca Prentice Hall London New York Toronto Sydney Tokyo Singapore Madrid Mexico City Munich

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information