AFNI. h'p://afni.nimh.nih.gov/afni

Size: px
Start display at page:

Download "AFNI. h'p://afni.nimh.nih.gov/afni"

Transcription

1 AFNI h'p://afni.nimh.nih.gov/afni

2 AFNI Fundamentals Basic unit of data in AFNI is the dataset A collection of 1 or more 3D arrays of numbers o Each entry in the array is in a particular spatial location in a 3D grid (a voxel = 3D pixel) o Image datasets: each array holds a collection of slices from the scanner Each number is the signal intensity for that particular voxel o Derived datasets: each number is computed from other dataset(s) e.g., each voxel value is a t-statistic reporting activation significance from an FMRI time series dataset, for that voxel Each 3D array in a dataset is called a sub-brick o There is one number in each voxel in each sub-brick 3x3x3 Dataset With 4 Sub-bricks

3 AFNI Dataset Files AFNI forma'ed datasets are stored in 2 file types.head holds auxiliary informabon.brik hold all the numbers in the sub- briks 3 coordinate systems Original (+orig) AC- PC aligned (+acpc) Talairach (+tlrc) AFNI can read many kinds of datasets: analyze (.hdr/.img),.mnc,.mri,.1d.nii is the new standard (when giving a prefix, must end in.nii to be saved in that format)

4 AFNI controller window at startup Titlebar shows current datasets: first one is [A], etc Coordinates of current focus point Switch to different coordinate system for viewing images Control crosshairs appearance Time index Open images and graphs of datasets Open new AFNI controller Help Button Markers control transformation to +acpc and +tlrc coordinates Controls color functional overlay Miscellaneous menus Switch between directories, underlay (anatomical) datasets, and overlay (functional) datasets Close this controller Place to show amusing logos Controls display of overlaid surfaces

5 AFNI Image Viewer Disp and Mont control panels

6 AFNI Time Series Graph Viewer Data (black) and Reference waveforms (red) Menus for controlling graph displays

7 Define Overlay: Colorizing Panel (etc) Threshold slider: voxels with Thr subbrick above this get colorized from Olay sub-brick p-value of current threshold value Color map for overlay Hidden popup menus here Choose which dataset makes the underlay image Cluster above-threshold voxels into contiguous blobs bigger than some given size Choose which sub-brick from Underlay dataset to display (usually an anatomical dataset) Choose which sub-brick of functional dataset is colorized (after threshold) Choose which sub-brick of functional dataset is the Threshold Shows ranges of data in Underlay and Overlay dataset Choose range of threshold slider, in powers of 10 Shows automatic range for color scaling Rotates color map Positive-only or both signs of function? Number of panes in color map (2-20 or **) Shows voxel values at focus Lets you choose range for color scaling (instead of autorange)

8 Volume Rendering: an AFNI plugin Pick new underlay dataset Name of underlay dataset Sub-brick to display Open color overlay controls Range of values in underlay Change mapping from values in dataset to brightness in image Range of values to render Histogram of values in underlay dataset Mapping from values to opacity Maximum voxel opacity Cutout parts of 3D volume Compute many images in a row Show 2D crosshairs Menu to control scripting (control rendering from a file) Render new image immediately when a control is changed Control viewing angles Accumulate a history of rendered images (can later save to an animation) Detailed instructions Force a new image to be rendered Reload values from the dataset Close all rendering windows

9 Command Line Programs Most parts of AFNI are only available through the command line 3dDeconvolve mulbple linear regression on 3D+Bme datasets, to fit each voxel s Bme series to an acbvabon model and test these fits for significance 3dNLfim for nonlinear fizng 3dANOVA 1, 2, 3, and 4- way ANOVA layouts for combining and contrasbng datasets in standard space 3dcalc general purpose voxel- wise calculator 3dclust find clusters of acbvated voxels 3dresample re- orient and/or resize dataset voxel grid

10 Single Subject Data Processing Assemble images into AFNI-formatted datasets Check images for quality (visual & automatic) Register (realign) images Smooth images spatially Mask out non-brain parts of images Normalize time series baseline to 100 (for %-izing) Fit stimulus timing + hemodynamic model to time series catenates imaging runs, removes residual movement effects, computes response sizes & inter-stim contrasts Segregate into differentially activated blobs Look at results, and ponder to group analysis (next page) 3dvolreg OR 3dWarpDrive 3dmerge OR (optional) 3dBlurToFWHM afni AND your personal brain to3d OR can do at NIH scanners afni + 3dToutcount 3dAutomask + 3dcalc (optional) 3dTstat + 3dcalc (optional: could be done post-fit) Alphasim + 3dmerge OR Extraction from ROIs 3dDeconvolve

11 Single Subject Get the data from dicom into a format readable by AFNI to3d Structural scan to3d prefix anat *.dcm Can also use d2afni FuncBonal scan to3d Bme:zt alt+z prefix EPI1 *.dcm - Bme:zt slices presented in the order of space then Bme 34 number of slices 67 number of volumes 2.5 TR Alt+z slices gathered in alternabng order in the z direcbon - prefix name the output dataset; if you want a niei file format, use EPI1.nii

12 Single Subject Get the data from dicom into a format readable by AFNI to3d *.dcm

13 Single Subject Time shie to 0 3dTshie tzero 0 prefix Ts_Run1 EPI1.nii Register to one volume 3dvolreg base Ts_Run1+orig [173] prefix VrTs_Run1 Ts_Run1+orig Smoothing 3dmerge - 1blur_fwhm 4 doall prefix BlVeTs_Run1 VrTs_Run1 Remove highpass and lowpass 3dFourier prefix FrBlVrTs_Run1 lowpass.1 highpass.01 ignore 5 retrend BlVrTs_Run1+orig

14 Create brain- only mask Single Subject 3dAutomask dilate 1 prefix mask_run1 FrBlVrTs_Run1+orig Combine masks from mulbple runs 3dcalc a mask_run1+orig b mask_run2+orig c mask_run3+orig expr or(a+b+c) prefix fullmask Scale each run s mean to 100 (% signal change) 3dTstat prefix mean_run1 FrBlVrTs_Run1+orig 3dcalc a FrBlVrTs_Run1+orig b mean_run1+orig c fullmask+orig expr (a/b * 100)*c prefix ScFrBlVrTs_Run1

15 MoBon CorrecBon Single Subject movecensor.pl creates one file for each run with six values of mobon for each Bme point Concatenate mobon files cat mobon_1 mobon_2 mobon_3 > AllRuns_moBon

16 Single Subject Signal DeconvoluBon 3dDeconvolve \ - input ScBlVrTs_EPI1+orig ScBlVrTs_EPI2+orig ScBlVrTs_EPI3+orig \ - polort 3 \ - num_sbmts 12 \ - sbm_bmes 1 EPI_Studied_R.1D 'TENT(0,15,7)' \ - sbm_label 1 Studied_R \ - sbm_bmes 2 EPI_Studied_K.1D 'TENT(0,15,7)' \ - sbm_label 2 Studied_K \ - sbm_bmes 3 EPI_Studied_N.1D 'TENT(0,15,7)' \ - sbm_label 3 Studied_N \ - sbm_bmes 4 EPI_Novel_R.1D 'TENT(0,15,7)' \ - sbm_label 4 Novel_R \ - sbm_bmes 5 EPI_Novel_K.1D 'TENT(0,15,7)' \ - sbm_label 5 Novel_K \ - sbm_bmes 6 EPI_Novel_N.1D 'TENT(0,15,7)' \ - sbm_label 6 Novel_N \ - sbm_file 7 AllRuns_moBon_EPI'[0]' - sbm_base 7 \ - sbm_file 8 AllRuns_moBon_EPI'[1]' - sbm_base 8 \ - sbm_file 9 AllRuns_moBon_EPI'[2]' - sbm_base 9 \ - sbm_file 10 AllRuns_moBon_EPI'[3]' - sbm_base 10 \ - sbm_file 11 AllRuns_moBon_EPI'[4]' - sbm_base 11 \ - sbm_file 12 AllRuns_moBon_EPI'[5]' - sbm_base 12 \ - iresp 1 iresp_epi_studied_r \ - iresp 2 iresp_epi_studied_k \ - iresp 3 iresp_epi_studied_n \ - iresp 4 iresp_epi_novel_r \ - iresp 5 iresp_epi_novel_k \ - iresp 6 iresp_epi_novel_n \ - fout - tout - nobout - xjpeg Xmat \ - bucket bucket_epi_se1 \ - xsave \ - allzero_ok \ - num_glt 10 \ - gltsym 'SYM: +Studied_R' - glt_label 1 Studied- R \ - gltsym 'SYM: +Studied_K' - glt_label 2 Studied- K \ - gltsym 'SYM: +Studied_N' - glt_label 3 Studied- N \ - gltsym 'SYM: +Novel_R' - glt_label 4 Novel- R \ - gltsym 'SYM: +Novel_K' - glt_label 5 Novel- K \ - gltsym 'SYM: +Novel_N' - glt_label 6 Novel- N \ - gltsym 'SYM: +Novel_R +Novel_K' - glt_label 7 Novel- Inc \ - gltsym 'SYM: +Studied_R - Studied_K' - glt_label 8 Studied_R- K \ - gltsym 'SYM: +Studied_R - Studied_N' - glt_label 9 Studied_R- N \ - gltsym 'SYM: +Studied_K - Studied_N' - glt_label 10 Studied_K- N \ - censor censor_mobon_epi.txt

17 Single Subject ConverBng to Standard Space Manual or automabc ac- pc and talairaching Adwarp coverts funcbonals adwarp - apar ANAT+tlrc - dpar bucket_rt+orig \ - prefix bucket_rt \ - dxyz thr NN - func Bk

18 Group Analysis 3d'est \ - session../analysis_roi_hc+dn \ - prefix 'est_dn_12subj \ - base1 0.0 \ - set2 \ am041609_bucket_dn_ms_postdemons+tlrc'[3]' \ aw043009_bucket_dn_ms_postdemons+tlrc'[3]' \ ec041709_bucket_dn_ms_postdemons+tlrc'[3]' \ es041509_bucket_dn_ms_postdemons+tlrc'[3]' \ gg043009_bucket_dn_ms_postdemons+tlrc'[3]' \ jf042809_bucket_dn_ms_postdemons+tlrc'[3]' \ lk041509_bucket_dn_ms_postdemons+tlrc'[3]' \ mj043009_bucket_dn_ms_postdemons+tlrc'[3]' \ ng041609_bucket_dn_ms_postdemons+tlrc'[3]' \ rb041409_bucket_dn_ms_postdemons+tlrc'[3]' \ sk041709_bucket_dn_ms_postdemons+tlrc'[3]' \ sm042709_bucket_dn_ms_postdemons+tlrc'[3]' \

19 Group Analysis Clustering 3dmerge \ - 1thresh \ - 1clust \ - 1dindex 0 \ - 1Bndex 1 \ - prefix Clust_'est.05_DN_12subj \ 'est_dn_12subj

20 Group Analysis ExtracBng impulse response curves or beta values 3dROIstats - mask Clustorder_'est.05_DN_12subj+tlrc - nzmean \ Brewer_${subject}_bucket+tlrc'[3]' >>Analysis_HC/3dROIstats_HC_12subj.txt

Using AFNI Interactively

Using AFNI Interactively -1- Using AFNI Interactively Start AFNI from the command line afni reads datasets from the current directory afni dir1 dir2 reads datasets from directories listed afni -R reads datasets from the current

More information

Transforming Datasets to Talairach-Tournoux Coordinates

Transforming Datasets to Talairach-Tournoux Coordinates -1- Transforming Datasets to Talairach-Tournoux Coordinates The original purpose of AFNI was to perform the transformation of datasets to Talairach-Tournoux (stereotaxic) coordinates The transformation

More information

AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff. Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH

AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff. Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH HBM 2016 As a work of a US Government official, this presentation is not copyrighted

More information

Overview of fmri Analysis Software. McConnell BIC Open Methods Meetup January 13th 2013

Overview of fmri Analysis Software. McConnell BIC Open Methods Meetup January 13th 2013 Overview of fmri Analysis Software McConnell BIC Open Methods Meetup January 13th 2013 FSL Michael Ferreira Outline Introduction MRI scanners and fmri equipment FSL Image formats and conversion FSLView

More information

BrainVoyager TM. Getting Started Guide. Version 3.0. for BV 21

BrainVoyager TM. Getting Started Guide. Version 3.0. for BV 21 BrainVoyager TM Getting Started Guide Version 3.0 for BV 21 Rainer Goebel, Henk Jansma, Caroline Benjamins, Judith Eck, Hester Breman and Armin Heinecke Copyright 2018 Brain Innovation B.V. Contents About

More information

Getting Started Guide

Getting Started Guide Getting Started Guide Version 2.5 for BVQX 1.9 Rainer Goebel, Henk Jansma and Jochen Seitz Copyright 2007 Brain Innovation B.V. 2 Contents Preface...4 The Objects Tutorial...5 Scanning session information...5

More information

Function-Structure Integration in FreeSurfer

Function-Structure Integration in FreeSurfer Function-Structure Integration in FreeSurfer Outline Function-Structure Integration Function-Structure Registration in FreeSurfer fmri Analysis Preprocessing First-Level Analysis Higher-Level (Group) Analysis

More information

ANALYSIS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA USING SPM99: VOXEL-BASED MORPHOMETRY DONNA ROSE ADDIS

ANALYSIS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA USING SPM99: VOXEL-BASED MORPHOMETRY DONNA ROSE ADDIS Donna Rose Addis, TWRI, May 2004 1 ANALYSIS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA USING SPM99: VOXEL-BASED MORPHOMETRY DONNA ROSE ADDIS DEPT. OF PSYCHOLOGY, UNIVERSITY OF TORONTO TORONTO WESTERN

More information

NA-MIC National Alliance for Medical Image Computing fmri Data Analysis

NA-MIC National Alliance for Medical Image Computing   fmri Data Analysis NA-MIC fmri Data Analysis Sonia Pujol, Ph.D. Wendy Plesniak, Ph.D. Randy Gollub, M.D., Ph.D. Acknowledgments NIH U54EB005149 Neuroimage Analysis Center NIH P41RR013218 FIRST Biomedical Informatics Research

More information

User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization

User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization Software Written by Ali Gholipour SIP Lab, UTD, 2005-2007 Revision 1.7

More information

fmri/dti analysis using Dynasuite

fmri/dti analysis using Dynasuite fmri/dti analysis using Dynasuite Contents 1 Logging in 2 Finding patient session 3 Viewing and adjusting images 4 Checking brain segmentation 5 Checking image registration 6 Seeing fmri results 7 Saving

More information

Tutorial BOLD Module

Tutorial BOLD Module m a k i n g f u n c t i o n a l M R I e a s y n o r d i c B r a i n E x Tutorial BOLD Module Please note that this tutorial is for the latest released nordicbrainex. If you are using an older version please

More information

fmri pre-processing Juergen Dukart

fmri pre-processing Juergen Dukart fmri pre-processing Juergen Dukart Outline Why do we need pre-processing? fmri pre-processing Slice time correction Realignment Unwarping Coregistration Spatial normalisation Smoothing Overview fmri time-series

More information

Real-Time FMRI Tools & Automation in AFNI & SUMA

Real-Time FMRI Tools & Automation in AFNI & SUMA Real-Time FMRI Tools & Automation in AFNI & SUMA SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH Why bother? Image quality control Spikes, distortion, ghosting, noise, Amount of motion Operator error Functional

More information

fmri Basics: Single Subject Analysis

fmri Basics: Single Subject Analysis fmri Basics: Single Subject Analysis This session is intended to give an overview of the basic process of setting up a general linear model for a single subject. This stage of the analysis is also variously

More information

Tutorial Visualization and Interaction

Tutorial Visualization and Interaction m a k i n g f u n c t i o n a l M R I e a s y n o r d i c B r a i n E x Tutorial Visualization and Interaction Please note that this tutorial is for the latest released nordicbrainex. If you are using

More information

AFNI Introduction (Bob Cox)

AFNI Introduction (Bob Cox) AFNI Introduction (Bob Cox) AFNI Analysis of FUnctional NeuroImages AFNI has become a standard largely because 1) it allows you to se all levels of the data and know what good/bad data looks like, and

More information

Software Release Notes for nordicbrainex v1.1.3

Software Release Notes for nordicbrainex v1.1.3 Software Release Notes for nordicbrainex v1.1.3 Revision 1 Date: February 15 th 2013 Approved by: Sigvald Høyheim NOTE: The most current documentation for released products is available on http://www.nordicneurolab.com.

More information

Measuring baseline whole-brain perfusion on GE 3.0T using arterial spin labeling (ASL) MRI

Measuring baseline whole-brain perfusion on GE 3.0T using arterial spin labeling (ASL) MRI Measuring baseline whole-brain perfusion on GE 3.0T using arterial spin labeling (ASL) MRI Revision date: 09/15/2008 Overview This document describes the procedure for measuring baseline whole-brain perfusion

More information

User s Guide Neuroimage Processing ToolKit (NPTK) Version 2.0 fmri Registration Software Pipeline for Functional Localization

User s Guide Neuroimage Processing ToolKit (NPTK) Version 2.0 fmri Registration Software Pipeline for Functional Localization User s Guide Neuroimage Processing ToolKit (NPTK) Version 2.0 fmri Registration Software Pipeline for Functional Localization Software Written by Ali Gholipour SIP Lab, UTD, 2005-2010 Revision 2.0 February

More information

Data Loading & 3D Visualization

Data Loading & 3D Visualization Neuroimage Analysis Center Data Loading & 3D Visualization Sonia Pujol, Ph.D. Surgical Planning Laboratory Harvard Medical School Leonardo da Vinci (1452-1519), Virgin and Child Alte Pinakothek, München

More information

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan SPM Introduction Scott Peltier FMRI Laboratory University of Michigan! Slides adapted from T. Nichols SPM! SPM : Overview Library of MATLAB and C functions Graphical user interface Four main components:

More information

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data SPM Introduction Scott Peltier FMRI Laboratory University of Michigan Slides adapted from T. Nichols SPM! Software to perform computation, manipulation and display of imaging data 1 1 SPM : Overview Library

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Group (Level 2) fmri Data Analysis - Lab 4

Group (Level 2) fmri Data Analysis - Lab 4 Group (Level 2) fmri Data Analysis - Lab 4 Index Goals of this Lab Before Getting Started The Chosen Ten Checking Data Quality Create a Mean Anatomical of the Group Group Analysis: One-Sample T-Test Examine

More information

n o r d i c B r a i n E x Tutorial DSC Module

n o r d i c B r a i n E x Tutorial DSC Module m a k i n g f u n c t i o n a l M R I e a s y n o r d i c B r a i n E x Tutorial DSC Module Please note that this tutorial is for the latest released nordicbrainex. If you are using an older version please

More information

RT_Image v0.2β User s Guide

RT_Image v0.2β User s Guide RT_Image v0.2β User s Guide RT_Image is a three-dimensional image display and analysis suite developed in IDL (ITT, Boulder, CO). It offers a range of flexible tools for the visualization and quantitation

More information

Analysis of fmri data within Brainvisa Example with the Saccades database

Analysis of fmri data within Brainvisa Example with the Saccades database Analysis of fmri data within Brainvisa Example with the Saccades database 18/11/2009 Note : All the sentences in italic correspond to informations relative to the specific dataset under study TP participants

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

SPM99 fmri Data Analysis Workbook

SPM99 fmri Data Analysis Workbook SPM99 fmri Data Analysis Workbook This file is a description of the steps needed to use SPM99 analyze a fmri data set from a single subject using a simple on/off activation paradigm. There are two parts

More information

I.e. Sex differences in child appetitive traits and Eating in the Absence of Hunger:

I.e. Sex differences in child appetitive traits and Eating in the Absence of Hunger: Supplementary Materials I. Evidence of sex differences on eating behavior in children I.e. Sex differences in child appetitive traits and Eating in the Absence of Hunger: Table 2. Parent Report for Child

More information

Data Visualisation in SPM: An introduction

Data Visualisation in SPM: An introduction Data Visualisation in SPM: An introduction Alexa Morcom Edinburgh SPM course, April 2015 SPMmip [-30, 3, -9] 3 Visualising results remembered vs. fixation contrast(s) < < After the results table - what

More information

Cluster failure: Why fmri inferences for spatial extent have inflated false positive rates

Cluster failure: Why fmri inferences for spatial extent have inflated false positive rates Supporting Information Appendix Cluster failure: Why fmri inferences for spatial extent have inflated false positive rates Anders Eklund, Thomas Nichols, Hans Knutsson Methods Resting state fmri data Resting

More information

SIVIC GUI Overview. SIVIC GUI Layout Overview

SIVIC GUI Overview. SIVIC GUI Layout Overview SIVIC GUI Overview SIVIC GUI Layout Overview At the top of the SIVIC GUI is a row of buttons called the Toolbar. It is a quick interface for loading datasets, controlling how the mouse manipulates the

More information

fmri Analysis Sackler Ins2tute 2011

fmri Analysis Sackler Ins2tute 2011 fmri Analysis Sackler Ins2tute 2011 How do we get from this to this? How do we get from this to this? And what are those colored blobs we re all trying to see, anyway? Raw fmri data straight from the scanner

More information

Version. Getting Started: An fmri-cpca Tutorial

Version. Getting Started: An fmri-cpca Tutorial Version 11 Getting Started: An fmri-cpca Tutorial 2 Table of Contents Table of Contents... 2 Introduction... 3 Definition of fmri-cpca Data... 3 Purpose of this tutorial... 3 Prerequisites... 4 Used Terms

More information

Data Visualisation in SPM: An introduction

Data Visualisation in SPM: An introduction Data Visualisation in SPM: An introduction Alexa Morcom Edinburgh SPM course, April 2010 Centre for Cognitive & Neural Systems/ Department of Psychology University of Edinburgh Visualising results remembered

More information

Surface-based Analysis: Inter-subject Registration and Smoothing

Surface-based Analysis: Inter-subject Registration and Smoothing Surface-based Analysis: Inter-subject Registration and Smoothing Outline Exploratory Spatial Analysis Coordinate Systems 3D (Volumetric) 2D (Surface-based) Inter-subject registration Volume-based Surface-based

More information

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015 Statistical Analysis of Neuroimaging Data Phebe Kemmer BIOS 516 Sept 24, 2015 Review from last time Structural Imaging modalities MRI, CAT, DTI (diffusion tensor imaging) Functional Imaging modalities

More information

FMRI Pre-Processing and Model- Based Statistics

FMRI Pre-Processing and Model- Based Statistics FMRI Pre-Processing and Model- Based Statistics Brief intro to FMRI experiments and analysis FMRI pre-stats image processing Simple Single-Subject Statistics Multi-Level FMRI Analysis Advanced FMRI Analysis

More information

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy Basic Introduction to Data Analysis Block Design Demonstration Robert Savoy Sample Block Design Experiment Demonstration Use of Visual and Motor Task Separability of Responses Combined Visual and Motor

More information

Software Release Notes for nordicbrainex v2.3.2

Software Release Notes for nordicbrainex v2.3.2 Software Release Notes for nordicbrainex v2.3.2 Revision 1 Date: April 20 th, 2017 Approved by: VP Development NOTE: The most current documentation for released products is available on http://www.nordicneurolab.com.

More information

Display. Introduction page 67 2D Images page 68. All Orientations page 69 Single Image page 70 3D Images page 71

Display. Introduction page 67 2D Images page 68. All Orientations page 69 Single Image page 70 3D Images page 71 Display Introduction page 67 2D Images page 68 All Orientations page 69 Single Image page 70 3D Images page 71 Intersecting Sections page 71 Cube Sections page 72 Render page 73 1. Tissue Maps page 77

More information

QuickVol II Users Guide

QuickVol II Users Guide QuickVol II Users Guide Karl Schmidt (karl.schmidt@umassmed.edu) Working Draft 3/28/2006 This document is a working draft. If you find an error, please submit a bug on the Quickvol website. Thank you.

More information

Resting state network estimation in individual subjects

Resting state network estimation in individual subjects Resting state network estimation in individual subjects Data 3T NIL(21,17,10), Havard-MGH(692) Young adult fmri BOLD Method Machine learning algorithm MLP DR LDA Network image Correlation Spatial Temporal

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

CS/NEUR125 Brains, Minds, and Machines. Due: Wednesday, April 5

CS/NEUR125 Brains, Minds, and Machines. Due: Wednesday, April 5 CS/NEUR125 Brains, Minds, and Machines Lab 8: Using fmri to Discover Language Areas in the Brain Due: Wednesday, April 5 In this lab, you will analyze fmri data from an experiment that was designed to

More information

Turbo-BrainVoyager. Setup guide

Turbo-BrainVoyager. Setup guide Turbo-BrainVoyager Setup guide Turbo-BrainVoyager (TBV) is a highly optimized software package for real-time analysis and advanced visualization of functional and structural magnetic resonance imaging

More information

Introduction to fmri. Pre-processing

Introduction to fmri. Pre-processing Introduction to fmri Pre-processing Tibor Auer Department of Psychology Research Fellow in MRI Data Types Anatomical data: T 1 -weighted, 3D, 1/subject or session - (ME)MPRAGE/FLASH sequence, undistorted

More information

GLM for fmri data analysis Lab Exercise 1

GLM for fmri data analysis Lab Exercise 1 GLM for fmri data analysis Lab Exercise 1 March 15, 2013 Medical Image Processing Lab Medical Image Processing Lab GLM for fmri data analysis Outline 1 Getting Started 2 AUDIO 1 st level Preprocessing

More information

Image Processing Guideline for TMU 7T MRI

Image Processing Guideline for TMU 7T MRI Image Processing Guideline for TMU 7T MRI Chia Feng Lu Laboratory of NeuroImage Biomarker Analysis, Translational Imaging Research Center, TMU 08/18/2015, version 1.0 Section 1: Installation of ImageJ

More information

Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question.

Single Subject Demo Data Instructions 1) click New and answer No to the spatially preprocess question. (1) conn - Functional connectivity toolbox v1.0 Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question. 2) in "Basic" enter "1" subject, "6" seconds

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Amira For FEI Systems D Data Visualization and Analysis Software for Life Sciences

Amira For FEI Systems D Data Visualization and Analysis Software for Life Sciences RELEASE NOTES - AMIRA FOR FEI SYSTEMS 6.3.0, DECEMBER 2016 Amira For FEI Systems 6.3.0 3D Data Visualization and Analysis Software for Life Sciences Dear Amira for FEI Systems User, With this document

More information

n o r d i c B r a i n E x Tutorial DTI Module

n o r d i c B r a i n E x Tutorial DTI Module m a k i n g f u n c t i o n a l M R I e a s y n o r d i c B r a i n E x Tutorial DTI Module Please note that this tutorial is for the latest released nordicbrainex. If you are using an older version please

More information

Journal of Articles in Support of The Null Hypothesis

Journal of Articles in Support of The Null Hypothesis Data Preprocessing Martin M. Monti, PhD UCLA Psychology NITP 2016 Typical (task-based) fmri analysis sequence Image Pre-processing Single Subject Analysis Group Analysis Journal of Articles in Support

More information

Saturn User Manual. Rubén Cárdenes. 29th January 2010 Image Processing Laboratory, University of Valladolid. Abstract

Saturn User Manual. Rubén Cárdenes. 29th January 2010 Image Processing Laboratory, University of Valladolid. Abstract Saturn User Manual Rubén Cárdenes 29th January 2010 Image Processing Laboratory, University of Valladolid Abstract Saturn is a software package for DTI processing and visualization, provided with a graphic

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis MIT OpenCourseWare http://ocw.mit.edu Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Flicker Comparison of 2D Electrophoretic Gels

Flicker Comparison of 2D Electrophoretic Gels Flicker Comparison of 2D Electrophoretic Gels Peter F. Lemkin +, Greg Thornwall ++ Lab. Experimental & Computational Biology + National Cancer Institute - Frederick ++ SAIC - Frederick lemkin@ncifcrf.gov

More information

EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS

EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS Anders Eklund a,b,c, Thomas Nichols d, Mats Andersson a,c, Hans Knutsson a,c a Department of Biomedical

More information

0.1. Setting up the system path to allow use of BIAC XML headers (BXH). Depending on the computer(s), you may only have to do this once.

0.1. Setting up the system path to allow use of BIAC XML headers (BXH). Depending on the computer(s), you may only have to do this once. Week 3 Exercises Last week you began working with MR data, both in the form of anatomical images and functional time series. This week we will discuss some concepts related to the idea of fmri data as

More information

Normalization for clinical data

Normalization for clinical data Normalization for clinical data Christopher Rorden, Leonardo Bonilha, Julius Fridriksson, Benjamin Bender, Hans-Otto Karnath (2012) Agespecific CT and MRI templates for spatial normalization. NeuroImage

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

Robust Realignment of fmri Time Series Data

Robust Realignment of fmri Time Series Data Robust Realignment of fmri Time Series Data Ben Dodson bjdodson@stanford.edu Olafur Gudmundsson olafurg@stanford.edu December 12, 2008 Abstract FMRI data has become an increasingly popular source for exploring

More information

Supplementary methods

Supplementary methods Supplementary methods This section provides additional technical details on the sample, the applied imaging and analysis steps and methods. Structural imaging Trained radiographers placed all participants

More information

This Time. fmri Data analysis

This Time. fmri Data analysis This Time Reslice example Spatial Normalization Noise in fmri Methods for estimating and correcting for physiologic noise SPM Example Spatial Normalization: Remind ourselves what a typical functional image

More information

Measuring baseline whole-brain perfusion on GE 3.0T using arterial spin labeling (ASL) MRI

Measuring baseline whole-brain perfusion on GE 3.0T using arterial spin labeling (ASL) MRI Measuring baseline whole-brain perfusion on GE 3.0T using arterial spin labeling (ASL) MRI Revision date: 11/20/2006 Overview This document describes the procedure for measuring baseline whole-brain perfusion

More information

Computational Neuroanatomy

Computational Neuroanatomy Computational Neuroanatomy John Ashburner john@fil.ion.ucl.ac.uk Smoothing Motion Correction Between Modality Co-registration Spatial Normalisation Segmentation Morphometry Overview fmri time-series kernel

More information

SPM8 for Basic and Clinical Investigators. Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

Workflow 1. Description

Workflow 1. Description Workflow 1 Description Determine protein staining intensities and distances in mitotic apparatus in z-stack intensity images, which were stained for the inner-centromere protein INCENP, and compare the

More information

Enhanced material contrast by dual-energy microct imaging

Enhanced material contrast by dual-energy microct imaging Enhanced material contrast by dual-energy microct imaging Method note Page 1 of 12 2 Method note: Dual-energy microct analysis 1. Introduction 1.1. The basis for dual energy imaging Micro-computed tomography

More information

Image Registration + Other Stuff

Image Registration + Other Stuff Image Registration + Other Stuff John Ashburner Pre-processing Overview fmri time-series Motion Correct Anatomical MRI Coregister m11 m 21 m 31 m12 m13 m14 m 22 m 23 m 24 m 32 m 33 m 34 1 Template Estimate

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal!

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal! ARE YOUR ANALYSES TOO PARAMETRIC? That s not Normal! Martin M Monti http://montilab.psych.ucla.edu WHY IS YOUR ANALYSIS PARAMETRIC? i. Optimal power (defined as the probability to detect a real difference)

More information

BXH/XCEDE Tools manual

BXH/XCEDE Tools manual BXH/XCEDE Tools manual BXH/XCEDE Tools manual Table of Contents 1. Overview... 1 1.1. Image Wrapping... 1 1.1.1. BXH/XCEDE creation tools... 1 1.1.2. BXH/XCEDE conversion tools... 1 1.1.3. BXH/XCEDE manipulation

More information

Spatial Preprocessing

Spatial Preprocessing Spatial Preprocessing Overview of SPM Analysis fmri time-series Design matrix Statistical Parametric Map John Ashburner john@fil.ion.ucl.ac.uk Motion Correction Smoothing General Linear Model Smoothing

More information

Flicker Comparison of 2D Electrophoretic Gels

Flicker Comparison of 2D Electrophoretic Gels Flicker Comparison of 2D Electrophoretic Gels Peter F. Lemkin +, Greg Thornwall ++ Lab. Experimental & Computational Biology + National Cancer Institute ++ SAIC-Frederick Frederick, MD, USA lemkin@ncifcrf.gov

More information

Supplementary Data. in residuals voxel time-series exhibiting high variance, for example, large sinuses.

Supplementary Data. in residuals voxel time-series exhibiting high variance, for example, large sinuses. Supplementary Data Supplementary Materials and Methods Step-by-step description of principal component-orthogonalization technique Below is a step-by-step description of the principal component (PC)-orthogonalization

More information

Attention modulates spatial priority maps in human occipital, parietal, and frontal cortex

Attention modulates spatial priority maps in human occipital, parietal, and frontal cortex Attention modulates spatial priority maps in human occipital, parietal, and frontal cortex Thomas C. Sprague 1 and John T. Serences 1,2 1 Neuroscience Graduate Program, University of California San Diego

More information

Flicker Comparison of 2D Electrophoretic Gels

Flicker Comparison of 2D Electrophoretic Gels Flicker Comparison of 2D Electrophoretic Gels Peter F. Lemkin +, Greg Thornwall ++ Lab. Experimental & Computational Biology + National Cancer Institute ++ SAIC-Frederick Frederick, MD, USA lemkin@ncifcrf.gov

More information

CTvox Quick Start Guide

CTvox Quick Start Guide CTvox Quick Start Guide For Software Version 3.0 CTvox Quick Start Guide (for Software Version 3.0) Page 1 Contents Version history... 3 Introduction... 4 Loading a dataset... 5 Navigating the scene...

More information

2. Creating Field Maps Using the Field Map GUI (Version 2.0) in SPM5

2. Creating Field Maps Using the Field Map GUI (Version 2.0) in SPM5 1. Introduction This manual describes how to use the Field Map Toolbox Version 2.0 for creating unwrapped field maps that can be used to do geometric distortion correction of EPI images in SPM5. 1. 1.

More information

BrainMask. Quick Start

BrainMask. Quick Start BrainMask Quick Start Segmentation of the brain from three-dimensional MR images is a crucial pre-processing step in morphological and volumetric brain studies. BrainMask software implements a fully automatic

More information

Rat 2D EPSI Dual Band Variable Flip Angle 13 C Dynamic Spectroscopy

Rat 2D EPSI Dual Band Variable Flip Angle 13 C Dynamic Spectroscopy Rat 2D EPSI Dual Band Variable Flip Angle 13 C Dynamic Spectroscopy In this example you will load a dynamic MRS animal data set acquired on a GE 3T scanner. This data was acquired with an EPSI sequence

More information

/5 Stacks. Displays the slice that follows the currently displayed slice. As a shortcut, press the > key.

/5 Stacks. Displays the slice that follows the currently displayed slice. As a shortcut, press the > key. 20-02-2018 1/5 Stacks Stacks This submenu contains commands that work with stacks. Add Slice Inserts a blank slice after the currently displayed slice. Hold down the Alt key to add the slice before the

More information

Playing with data from lab

Playing with data from lab Playing with data from lab Getting data off the scanner From the Patient Browser, select the folder for the study you want (or within that study, the set of images you want), and then from the Transfer

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 BOLD and CBV functional maps showing EPI versus line-scanning FLASH fmri. A. Colored BOLD and CBV functional maps are shown in the highlighted window (green frame) of the raw EPI

More information

Artifact Detection and Repair: Overview and Sample Outputs

Artifact Detection and Repair: Overview and Sample Outputs Artifact Detection and Repair: Overview and Sample Outputs Paul Mazaika February 2007 Programs originated in Gabrieli Neuroscience Laboratory, updated and enhanced at Center for Interdisciplinary Brain

More information

Introduction to Neuroimaging Janaina Mourao-Miranda

Introduction to Neuroimaging Janaina Mourao-Miranda Introduction to Neuroimaging Janaina Mourao-Miranda Neuroimaging techniques have changed the way neuroscientists address questions about functional anatomy, especially in relation to behavior and clinical

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

Amira 5.5 Advanced Visualization and Data Analysis

Amira 5.5 Advanced Visualization and Data Analysis Amira 5.5 Advanced Visualization and Data Analysis Release Notes Version 5.5 Amira 5.5 Page 1 of 9 Release Notes Amira 5.5 Dear Amira User: This document informs you about the most important changes in

More information

COBRE Scan Information

COBRE Scan Information COBRE Scan Information Below is more information on the directory structure for the COBRE imaging data. Also below are the imaging parameters for each series. Directory structure: var/www/html/dropbox/1139_anonymized/human:

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

SPM Course! Single Subject Analysis

SPM Course! Single Subject Analysis SPM Course! Single Subject Analysis Practical Session Dr. Jakob Heinzle & Dr. Frederike Petzschner & Dr. Lionel Rigoux Hands up: Who has programming experience with Matlab? Who has analyzed an fmri experiment

More information

Hannah s Guide to Imaging Data Analysis

Hannah s Guide to Imaging Data Analysis Hannah s Guide to Imaging Data Analysis The basic three steps are: 1. Preprocessing (we have avi scripts for this) 2. Making GLMs 3. Group Analyses Preprocessing Note: Preprocessing is kept constant in

More information

SAS Visual Analytics 8.2: Working with Report Content

SAS Visual Analytics 8.2: Working with Report Content SAS Visual Analytics 8.2: Working with Report Content About Objects After selecting your data source and data items, add one or more objects to display the results. SAS Visual Analytics provides objects

More information

Image Processing Fundamentals. Nicolas Vazquez Principal Software Engineer National Instruments

Image Processing Fundamentals. Nicolas Vazquez Principal Software Engineer National Instruments Image Processing Fundamentals Nicolas Vazquez Principal Software Engineer National Instruments Agenda Objectives and Motivations Enhancing Images Checking for Presence Locating Parts Measuring Features

More information