Fashion Analytics and Systems

Size: px
Start display at page:

Download "Fashion Analytics and Systems"

Transcription

1 Learning and Vision Group, NUS (NUS-LV) Fashion Analytics and Systems Shuicheng YAN National University of Singapore [ Special thanks to Luoqi LIU, Xiaodan LIANG, Si LIU, Jianshu LI]

2 Deep Learning Ecosystem in NUS-LV Lab Purine: General, bi-graph based DL framework Multi-PC Multi-CPU/GPU Linear speedup Model parallel, data parallel Brain-like + Baby-like: Brain-like network structures and baby-like self/endless learning process Algorithms Landing Visual Perception + Big Data Modeling/Learning Object/products/human analytics, and other non-visual big data Architecture 1. 4 winner awards in VOC 2. One 2nd prize in VOC 3. 2nd prize in ImageNet st prize in ImageNet 14 Best paper/demo awards: ACM MM13, ACM MM12, Licensed with M-scale users daily Fashion Analytics and Systems Applications LFW: 99.70% Best human parsing performance Cross-age synthesis Face analysis with occlusions

3 Fashion Analytics and Systems in NUS-LV Human Parsing Fashion Item Search Smart Advertisement Body Beauty e-experts Face

4 Task I: Human/Fashion Parsing (Pixel-to-Pixel Deep Prediction: 44.76%--> 85.36%) Time for Human+

5 Goal: Human Parsing Decompose a human photo into semantic fashion/body items Pixel-level semantic labeling Upper-clothes Sun-glass skirt scarf right-shoe right-leg right-arm pants left-shoe left-leg left-arm hat face dress belt bag hair null

6 Human Parsing = Engine for Applications

7 Stage-1: Pipeline Solutions Hand-designed pipelines --- Heavily rely on the performance of individual component --- Founded on hand-designed features and complex context models Parametric model [1] Segmentation hypotheses Extract handcrafted features Non-parametric model (retrieval) [2] Postprocessing (e.g. CRF) [1] Jian Dong, Qiang Chen, Wei Xia, ZhongYang Huang, and Shuicheng Yan. A deformable mixture parsing model with parselets. In ICCV, 2013 [2] K. Yamaguchi, M.H. Kiapour, and T.L. Berg. Paper doll parsing: Retrieving similar styles to parse clothing items. In ICCV, 2013

8 Exemplar Solution: Paper Doll Parsing

9 Stage II: Deep Regression for Components Hair Face Left-arm Sun-glasses Right-arm Bag Upper-clothes Left-leg Skirt Right-leg Left-shoe Right-shoe Assumption: pixel-to-pixel impossible! Deformable Human Items Model (similar to ASM): predict the normalized item masks, and their active shape/location parameters with two CNN networks

10 Normalized Item Mask The masks of different items often appear in various specific shapes The mask can be approximated as a linear combination of the learned templates

11 Superpixel Smoothness Our Framework Active Template Network for predicting item template coefficients Active Shape Network for predicting active shape/location parameters Combine the resulting structure outputs and then refine the parsing result Structure Labels Human detection Active Template Network Item Mask Reconstruction Item confidence Map Active Shape Network Item position, scale and visibility Background confidence Map

12 Active Template Network Learn 50 templates for each item by Non-negative Matrix Factorization (NMF) in an offline way Regress the output: 50*17 for 17 human items Image size 227 Filter size Template coefficients Stride 2 3x3 max pool stride Contrast 3x3 max pool norm stride Contrast norm x3 max pool stride units units 850 Input Image Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Output

13 Active Shape Network Predict x,y coordinates, width, height, visibility flag for each item Eliminate the max-pooling layer in CNN to keep the position sensitiveness Image size 227 Filter size Active Shape parameters Stride units 1024 units 85 3 Input Image 55 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Output Accuracy Foreground accuracy Average precision Average recall Average F-1 scores Original Structure Ours

14 Structure Output Combination Combine the structure outputs from two networks, and generate 17 confidence maps of the human items Hair Sunglasses Face Dress LeftArm Optional bounding-box refinement and super-pixel smoothening

15 Results Datasets: 7,700 images, 6,000 for training, 1,000 for testing and 700 for validation Training: Manually decrease the learning rate according to the validation error Training time: for 120 epochs, take 2-3 days on two NVIDIA GTX TITAN 6GB GPUs Testing time: process one image within about 0.5 second

16 Results Comparison of parsing performances with two state-of-the-art methods: Accuracy Foreground accuracy Average precision Average recall Average F-1 scores Yamaguchi [3] Paper-doll [2] ATR(noSPR) ATR ATR + BBox Regression [2] K. Yamaguchi, M.H. Kiapour, and T.L. Berg. Paper doll parsing: Retrieving similar styles to parse clothing items. In ICCV, 2013 [3] K. Yamaguchi, M.H. Kiapour, L.E. Ortiz, and T.L. Berg. Parsing clothing in fashion photographs. In CVPR 2012.

17 Parsing Results Test Paperdoll ATR (nospr) ATR Test Paperdoll ATR (nospr) ATR

18 Stage-III: Pixel-to-pixel Deep Prediction Contexts + Fully convolutional neural network Cross-layer context: : multi-level feature fusion Global image-level context: : coherence between pixel-wise labelling and image label prediction Local Super-pixel context: : within-superpixel consistency and cross-superpixel appearance consistency

19 Contextualized Network Cross-layer context Four feature map fusions Image 150* *100 75*50 37*25 18*12 37*25 37*25 75*50 75*50 150* * * *5 convolutions Hierarchically combine the low-level local details and high-level semantic information

20 Contextualized Network Global image-level context Incorporate global image label prediction

21 Contextualized Network Local Super-pixel context Integrate within-super-pixel smoothing and cross-super-pixel neighbourhood voting

22 Contextualized Network Global image-level context helps distinguish the ambiguous labels Skirt Dress Co-CNN w/o global label Global image label Co-CNN skirt dress upper-clothes

23 Contextualized Network Local super-pixel context retains with-superpixel and appearance consistency input Co-CNN w/o sp Co-CNN input Co-CNN w/o sp Co-CNN

24 Results Comparison of parsing performances with four state-of-the-art methods on ATR dataset: Accuracy Foreground accuracy Average precision Average recall Average F-1 scores Yamaguchi et al Paperdoll ATR Co-CNN

25 Results Analyses on architectural variants of our model Cross-layer context

26 Results Analyses on architectural variants of our model Global image label context

27 Results Analyses on architectural variants of our model Local super-pixel context

28 Results Adding 10,000 human pictures from chictopia.com Accuracy Foreground accuracy Average precision Average recall Average F-1 scores Paperdoll ATR Co-CNN Co-CNN(+Chictopia10k)

29 Multi-task with Semantic Edge Detection Semantic edge detection task Input Semantic Edge Motivations: Incorrect Edges within-item edge vs. cross-item edge

30 Multi-task with Semantic Edge Detection Semantic edge integrate the semantic edge into the Co-CNN Multi-resolution fusion

31 w/o edge w edge Results Human parsing results with semantic edge co-prediction Semantic edge accuracy: 92.31% Accuracy Foreground accuracy Average precision Average recall Average F-1 scores Paperdoll ATR Co-CNN Co-CNN(+Chictopia10k) Co-CNN(+Chictopia10k) (semanticedge)

32 Parsing Results Test Paperdoll ATR Co-CNN Test Paperdoll ATR Co-CNN

33 Online Human Parsing Engine (<0.15s) 44.76%--> 85.36%: nearly ready for many industry applications

34 Ongoing Work: Robust Snap&Buy

35 Task II: Face Beautification (Beauty e-experts)

36 Makeover (makeup+ hairstyle) Process The makeover process (2) Synthesis Before-makeup (1) Foundation (2) Lip (3) Eye shadow (4) Hairstyle (1) Recommendation color & shape

37 Database System Flowchart Recommendation Module Synthesis Module Image Feature s Beauty Attribut es Beauty Related Attributes Hair Synthesis Makeup Synthesis Try & Buy Testing Face (without makeover)

38 Recommendation Module Beauty Attributes Beautyrelated Attributes Visual Features

39 Beauty Attributes Hair length Hair color Hair shape Hair bangs Hair volume Spectral matting Eye shadow shape Spectral matting+ clustering Eye shadow color Clustering Foundation Clustering Lip gloss Totally, we define 9 kinds of beauty attributes(directly related with real cosmetic products). Clustering

40 Beauty-related Attributes Face shape long oval round Lip thickness thick normal Ocular distance wide normal narrow Race western eastern Totally, we define 21 kinds of beauty-related attributes: (1) Unchanged during makeover process (2) Strong correlations with beauty attributes

41 Visual Features Color Histograms Color Moments Histogram of Gradients Local Binary Patterns ASM Parameters Shape Context

42 Recommendation Model: Formulation Beautyrelated Attributes( a r ) Beauty Attributes (a b ) Visual Features (x) Z x = Gibbs Distribution p a b, a r x = 1 Z x exp E ab, a r, x a b,a r exp E a b, a r, x Super-graph [super-vertex and Maximum Spanning Tree] to define E

43 Synthesis Module Alignment Alpha blending Recommended beauty templates/attributes Synthesis result #3 #12 Short, straight side part #4 #3

44 Exemplar Synthesis Process Foundation Lip Gloss Eye Shadow Hair style

45 Recommendation and Synthesis Results

46 Recommendation and Synthesis Results

47 Beyond Makeover: Shape Beautification

48 Beyond Makeover: Shape Beautification

49 Fashion Analytics and Systems in NUS-LV Human Parsing Fashion Item Search Smart Advertisement Body Beauty e-experts Face

50

Human Parsing with Contextualized Convolutional Neural Network

Human Parsing with Contextualized Convolutional Neural Network Human Parsing with Contextualized Convolutional Neural Network Xiaodan Liang 1,2, Chunyan Xu 2, Xiaohui Shen 3, Jianchao Yang 5, Si Liu 6, Jinhui Tang 4 Liang Lin 1, Shuicheng Yan 2 1 Sun Yat-sen University

More information

Matching-CNN Meets KNN: Quasi-Parametric Human Parsing

Matching-CNN Meets KNN: Quasi-Parametric Human Parsing Matching-CNN Meets KNN: Quasi-Parametric Human Parsing Si Liu 1,2 Xiaodan Liang 2,4 Luoqi Liu 2 Xiaohui Shen 3 Jianchao Yang 3 Changsheng Xu Liang Lin 4 Xiaochun Cao 1 Shuicheng Yan 2 1 SKLOIS, IIE, Chinese

More information

PASCAL VOC Classification: Local Features vs. Deep Features. Shuicheng YAN, NUS

PASCAL VOC Classification: Local Features vs. Deep Features. Shuicheng YAN, NUS PASCAL VOC Classification: Local Features vs. Deep Features Shuicheng YAN, NUS PASCAL VOC Why valuable? Multi-label, Real Scenarios! Visual Object Recognition Object Classification Object Detection Object

More information

Deep condolence to Professor Mark Everingham

Deep condolence to Professor Mark Everingham Deep condolence to Professor Mark Everingham Towards VOC2012 Object Classification Challenge Generalized Hierarchical Matching for Sub-category Aware Object Classification National University of Singapore

More information

Semantic Object Parsing with Local-Global Long Short-Term Memory

Semantic Object Parsing with Local-Global Long Short-Term Memory Semantic Object Parsing with Local-Global Long Short-Term Memory Xiaodan Liang 1,3, Xiaohui Shen 4, Donglai Xiang 3, Jiashi Feng 3 Liang Lin 1, Shuicheng Yan 2,3 1 Sun Yat-sen University 2 360 AI Institute

More information

Fashion Parsing With Video Context

Fashion Parsing With Video Context IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 8, AUGUST 2015 1347 Fashion Parsing With Video Context Si Liu, Member, IEEE, Xiaodan Liang, Luoqi Liu, Ke Lu, Liang Lin, Xiaochun Cao, Member, IEEE, and Shuicheng

More information

Semantic Object Parsing with Graph LSTM

Semantic Object Parsing with Graph LSTM Semantic Object Parsing with Graph LSTM Xiaodan Liang 1 Xiaohui Shen 4 Jiashi Feng 3 Liang Lin 1 Shuicheng Yan 2,3 1 Sun Yat-sen University 2 360 AI Institue 3 National University of Singapore 4 Adobe

More information

Deep Learning for Virtual Shopping. Dr. Jürgen Sturm Group Leader RGB-D

Deep Learning for Virtual Shopping. Dr. Jürgen Sturm Group Leader RGB-D Deep Learning for Virtual Shopping Dr. Jürgen Sturm Group Leader RGB-D metaio GmbH Augmented Reality with the Metaio SDK: IKEA Catalogue App Metaio: Augmented Reality Metaio SDK for ios, Android and Windows

More information

Fashion Parsing with Video Context

Fashion Parsing with Video Context Fashion Parsing with Video Context Si Liu 1, Xiaodan Liang 2,1, Luoqi Liu 1, Ke Lu 3, Liang Lin 2, Shuicheng Yan 1 1 National University of Singapore 2 Sun Yat-Sen University 3 University of Chinese Academy

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Cost-alleviative Learning for Deep Convolutional Neural Network-based Facial Part Labeling

Cost-alleviative Learning for Deep Convolutional Neural Network-based Facial Part Labeling [DOI: 10.2197/ipsjtcva.7.99] Express Paper Cost-alleviative Learning for Deep Convolutional Neural Network-based Facial Part Labeling Takayoshi Yamashita 1,a) Takaya Nakamura 1 Hiroshi Fukui 1,b) Yuji

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA)

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA) Detecting and Parsing of Visual Objects: Humans and Animals Alan Yuille (UCLA) Summary This talk describes recent work on detection and parsing visual objects. The methods represent objects in terms of

More information

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601 Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network Nathan Sun CIS601 Introduction Face ID is complicated by alterations to an individual s appearance Beard,

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation BY; ROSS GIRSHICK, JEFF DONAHUE, TREVOR DARRELL AND JITENDRA MALIK PRESENTER; MUHAMMAD OSAMA Object detection vs. classification

More information

arxiv: v1 [cs.cv] 8 Mar 2017

arxiv: v1 [cs.cv] 8 Mar 2017 Interpretable Structure-Evolving LSTM Xiaodan Liang 1 Liang Lin 2 Xiaohui Shen 4 Jiashi Feng 3 Shuicheng Yan 3 Eric P. Xing 1 1 Carnegie Mellon University 2 Sun Yat-sen University 3 National University

More information

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University LSTM and its variants for visual recognition Xiaodan Liang xdliang328@gmail.com Sun Yat-sen University Outline Context Modelling with CNN LSTM and its Variants LSTM Architecture Variants Application in

More information

Speaker: Ming-Ming Cheng Nankai University 15-Sep-17 Towards Weakly Supervised Image Understanding

Speaker: Ming-Ming Cheng Nankai University   15-Sep-17 Towards Weakly Supervised Image Understanding Towards Weakly Supervised Image Understanding (WSIU) Speaker: Ming-Ming Cheng Nankai University http://mmcheng.net/ 1/50 Understanding Visual Information Image by kirkh.deviantart.com 2/50 Dataset Annotation

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Classification of objects from Video Data (Group 30)

Classification of objects from Video Data (Group 30) Classification of objects from Video Data (Group 30) Sheallika Singh 12665 Vibhuti Mahajan 12792 Aahitagni Mukherjee 12001 M Arvind 12385 1 Motivation Video surveillance has been employed for a long time

More information

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS Zhao Chen Machine Learning Intern, NVIDIA ABOUT ME 5th year PhD student in physics @ Stanford by day, deep learning computer vision scientist

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

CSE255 Assignment 1 Improved image-based recommendations for what not to wear dataset

CSE255 Assignment 1 Improved image-based recommendations for what not to wear dataset CSE255 Assignment 1 Improved image-based recommendations for what not to wear dataset Prabhav Agrawal and Soham Shah 23 February 2015 1 Introduction We are interested in modeling the human perception of

More information

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN Background Related Work Architecture Experiment Mask R-CNN Background Related Work Architecture Experiment Background From left

More information

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab.

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab. [ICIP 2017] Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab., POSTECH Pedestrian Detection Goal To draw bounding boxes that

More information

Proposal-free Network for Instance-level Object Segmentation

Proposal-free Network for Instance-level Object Segmentation IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, X 20XX 1 Proposal-free Network for Instance-level Object Segmentation Xiaodan Liang, Yunchao Wei, Xiaohui Shen, Jianchao

More information

Attributes and More Crowdsourcing

Attributes and More Crowdsourcing Attributes and More Crowdsourcing Computer Vision CS 143, Brown James Hays Many slides from Derek Hoiem Recap: Human Computation Active Learning: Let the classifier tell you where more annotation is needed.

More information

Part Localization by Exploiting Deep Convolutional Networks

Part Localization by Exploiting Deep Convolutional Networks Part Localization by Exploiting Deep Convolutional Networks Marcel Simon, Erik Rodner, and Joachim Denzler Computer Vision Group, Friedrich Schiller University of Jena, Germany www.inf-cv.uni-jena.de Abstract.

More information

When Big Datasets are Not Enough: The need for visual virtual worlds.

When Big Datasets are Not Enough: The need for visual virtual worlds. When Big Datasets are Not Enough: The need for visual virtual worlds. Alan Yuille Bloomberg Distinguished Professor Departments of Cognitive Science and Computer Science Johns Hopkins University Computational

More information

ACM MM Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang

ACM MM Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang ACM MM 2010 Dong Liu, Shuicheng Yan, Yong Rui and Hong-Jiang Zhang Harbin Institute of Technology National University of Singapore Microsoft Corporation Proliferation of images and videos on the Internet

More information

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang SSD: Single Shot MultiBox Detector Author: Wei Liu et al. Presenter: Siyu Jiang Outline 1. Motivations 2. Contributions 3. Methodology 4. Experiments 5. Conclusions 6. Extensions Motivation Motivation

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

arxiv: v2 [cs.cv] 15 Mar 2018

arxiv: v2 [cs.cv] 15 Mar 2018 Multi-Human Parsing in the Wild arxiv:1705.07206v2 [cs.cv] 15 Mar 2018 Jianshu Li 1 Jian Zhao 1 Yunchao Wei 1 Congyan Lang 2 Yidong Li 2 Terence Sim 1 Shuicheng Yan 1 Jiashi Feng 1 1 National University

More information

FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK TRANSFERRED FROM A HETEROGENEOUS TASK

FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK TRANSFERRED FROM A HETEROGENEOUS TASK FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK TRANSFERRED FROM A HETEROGENEOUS TASK Takayoshi Yamashita* Taro Watasue** Yuji Yamauchi* Hironobu Fujiyoshi* *Chubu University, **Tome R&D 1200,

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Digital Makeup Face Generation

Digital Makeup Face Generation Digital Makeup Face Generation Wut Yee Oo Mechanical Engineering Stanford University wutyee@stanford.edu Abstract Make up applications offer photoshop tools to get users inputs in generating a make up

More information

Learning Semantic Environment Perception for Cognitive Robots

Learning Semantic Environment Perception for Cognitive Robots Learning Semantic Environment Perception for Cognitive Robots Sven Behnke University of Bonn, Germany Computer Science Institute VI Autonomous Intelligent Systems Some of Our Cognitive Robots Equipped

More information

Deep Face Recognition. Nathan Sun

Deep Face Recognition. Nathan Sun Deep Face Recognition Nathan Sun Why Facial Recognition? Picture ID or video tracking Higher Security for Facial Recognition Software Immensely useful to police in tracking suspects Your face will be an

More information

Efficient Segmentation-Aided Text Detection For Intelligent Robots

Efficient Segmentation-Aided Text Detection For Intelligent Robots Efficient Segmentation-Aided Text Detection For Intelligent Robots Junting Zhang, Yuewei Na, Siyang Li, C.-C. Jay Kuo University of Southern California Outline Problem Definition and Motivation Related

More information

DEEP BLIND IMAGE QUALITY ASSESSMENT

DEEP BLIND IMAGE QUALITY ASSESSMENT DEEP BLIND IMAGE QUALITY ASSESSMENT BY LEARNING SENSITIVITY MAP Jongyoo Kim, Woojae Kim and Sanghoon Lee ICASSP 2018 Deep Learning and Convolutional Neural Networks (CNNs) SOTA in computer vision & image

More information

Semantic Segmentation without Annotating Segments

Semantic Segmentation without Annotating Segments Chapter 3 Semantic Segmentation without Annotating Segments Numerous existing object segmentation frameworks commonly utilize the object bounding box as a prior. In this chapter, we address semantic segmentation

More information

arxiv: v1 [cs.cv] 15 Oct 2018

arxiv: v1 [cs.cv] 15 Oct 2018 Instance Segmentation and Object Detection with Bounding Shape Masks Ha Young Kim 1,2,*, Ba Rom Kang 2 1 Department of Financial Engineering, Ajou University Worldcupro 206, Yeongtong-gu, Suwon, 16499,

More information

Paper Doll Parsing: Retrieving Similar Styles to Parse Clothing Items

Paper Doll Parsing: Retrieving Similar Styles to Parse Clothing Items 2013 IEEE International Conference on Computer Vision Paper Doll Parsing: Retrieving Similar Styles to Parse Clothing Items Kota Yamaguchi Stony Brook University Stony Brook, NY, USA kyamagu@cs.stonybrook.edu

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

Direct Matrix Factorization and Alignment Refinement: Application to Defect Detection

Direct Matrix Factorization and Alignment Refinement: Application to Defect Detection Direct Matrix Factorization and Alignment Refinement: Application to Defect Detection Zhen Qin (University of California, Riverside) Peter van Beek & Xu Chen (SHARP Labs of America, Camas, WA) 2015/8/30

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

Color Naming for Multi-Color Fashion Items

Color Naming for Multi-Color Fashion Items Color Naming for Multi-Color Fashion Items Vacit Oguz Yazici 1,2, Joost van de Weijer 1, and Arnau Ramisa 2 1 Computer Vision Center, Universitat Autonoma de Barcelona, Building O Campus UAB, 08193 Bellaterra,

More information

Photo-realistic Renderings for Machines Seong-heum Kim

Photo-realistic Renderings for Machines Seong-heum Kim Photo-realistic Renderings for Machines 20105034 Seong-heum Kim CS580 Student Presentations 2016.04.28 Photo-realistic Renderings for Machines Scene radiances Model descriptions (Light, Shape, Material,

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

A Deep Learning Framework for Authorship Classification of Paintings

A Deep Learning Framework for Authorship Classification of Paintings A Deep Learning Framework for Authorship Classification of Paintings Kai-Lung Hua ( 花凱龍 ) Dept. of Computer Science and Information Engineering National Taiwan University of Science and Technology Taipei,

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Mask R-CNN By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Types of Computer Vision Tasks http://cs231n.stanford.edu/ Semantic vs Instance Segmentation Image

More information

FACIAL POINT DETECTION BASED ON A CONVOLUTIONAL NEURAL NETWORK WITH OPTIMAL MINI-BATCH PROCEDURE. Chubu University 1200, Matsumoto-cho, Kasugai, AICHI

FACIAL POINT DETECTION BASED ON A CONVOLUTIONAL NEURAL NETWORK WITH OPTIMAL MINI-BATCH PROCEDURE. Chubu University 1200, Matsumoto-cho, Kasugai, AICHI FACIAL POINT DETECTION BASED ON A CONVOLUTIONAL NEURAL NETWORK WITH OPTIMAL MINI-BATCH PROCEDURE Masatoshi Kimura Takayoshi Yamashita Yu Yamauchi Hironobu Fuyoshi* Chubu University 1200, Matsumoto-cho,

More information

Supplemental Document for Deep Photo Style Transfer

Supplemental Document for Deep Photo Style Transfer Supplemental Document for Deep Photo Style Transfer Fujun Luan Cornell University Sylvain Paris Adobe Eli Shechtman Adobe Kavita Bala Cornell University fujun@cs.cornell.edu sparis@adobe.com elishe@adobe.com

More information

An Associate-Predict Model for Face Recognition FIPA Seminar WS 2011/2012

An Associate-Predict Model for Face Recognition FIPA Seminar WS 2011/2012 An Associate-Predict Model for Face Recognition FIPA Seminar WS 2011/2012, 19.01.2012 INSTITUTE FOR ANTHROPOMATICS, FACIAL IMAGE PROCESSING AND ANALYSIS YIG University of the State of Baden-Wuerttemberg

More information

Separating Objects and Clutter in Indoor Scenes

Separating Objects and Clutter in Indoor Scenes Separating Objects and Clutter in Indoor Scenes Salman H. Khan School of Computer Science & Software Engineering, The University of Western Australia Co-authors: Xuming He, Mohammed Bennamoun, Ferdous

More information

Semantic RGB-D Perception for Cognitive Robots

Semantic RGB-D Perception for Cognitive Robots Semantic RGB-D Perception for Cognitive Robots Sven Behnke Computer Science Institute VI Autonomous Intelligent Systems Our Domestic Service Robots Dynamaid Cosero Size: 100-180 cm, weight: 30-35 kg 36

More information

Learning Visual Semantics: Models, Massive Computation, and Innovative Applications

Learning Visual Semantics: Models, Massive Computation, and Innovative Applications Learning Visual Semantics: Models, Massive Computation, and Innovative Applications Part II: Visual Features and Representations Liangliang Cao, IBM Watson Research Center Evolvement of Visual Features

More information

Interactive Image Search with Attributes

Interactive Image Search with Attributes Interactive Image Search with Attributes Adriana Kovashka Department of Computer Science January 13, 2015 Joint work with Kristen Grauman and Devi Parikh We Need Search to Access Visual Data 144,000 hours

More information

[Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors

[Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors [Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors Junhyug Noh Soochan Lee Beomsu Kim Gunhee Kim Department of Computer Science and Engineering

More information

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs Zhipeng Yan, Moyuan Huang, Hao Jiang 5/1/2017 1 Outline Background semantic segmentation Objective,

More information

EXPLOITING TEXTURE CUES FOR CLOTHING PARSING IN FASHION IMAGES

EXPLOITING TEXTURE CUES FOR CLOTHING PARSING IN FASHION IMAGES EXPLOITING TEXTURE CUES FOR CLOTHING PARSING IN FASHION IMAGES Tarasha Khurana,1 Kushagra Mahajan,1 Chetan Arora 1 Atul Rai 2 1 IIIT Delhi 2 Staqu Technologies ABSTRACT We focus on the problem of parsing

More information

Interpretable Structure-Evolving LSTM

Interpretable Structure-Evolving LSTM Interpretable Structure-Evolving LSTM Xiaodan Liang 1,2 Liang Lin 2,5 Xiaohui Shen 4 Jiashi Feng 3 Shuicheng Yan 3 Eric P. Xing 1 1 Carnegie Mellon University 2 Sun Yat-sen University 3 National University

More information

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li Learning to Match Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li 1. Introduction The main tasks in many applications can be formalized as matching between heterogeneous objects, including search, recommendation,

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

arxiv: v1 [cs.cv] 23 Jan 2019

arxiv: v1 [cs.cv] 23 Jan 2019 DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmentation and Re-Identification of Clothing Images Yuying Ge 1, Ruimao Zhang 1, Lingyun Wu 2, Xiaogang Wang 1, Xiaoou Tang 1, and

More information

A Deformable Mixture Parsing Model with Parselets

A Deformable Mixture Parsing Model with Parselets 2013 IEEE International Conference on Computer Vision A Deformable Mixture Parsing Model with Parselets Jian Dong 1, Qiang Chen 1, Wei Xia 1, Zhongyang Huang 2, Shuicheng Yan 1 1 Department of Electrical

More information

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011 Multi-view Stereo Ivo Boyadzhiev CS7670: September 13, 2011 What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

More information

Shape Customisation of Human Subjects Based on Human Parsing Technology

Shape Customisation of Human Subjects Based on Human Parsing Technology Shape Customisation of Human Subjects Based on Human Parsing Technology Shuaiyin ZHU 2, Yanghong ZHOU 2, K.P. CHAU 2, P.Y. MOK* 1,2 1 The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen,

More information

Attributes. Computer Vision. James Hays. Many slides from Derek Hoiem

Attributes. Computer Vision. James Hays. Many slides from Derek Hoiem Many slides from Derek Hoiem Attributes Computer Vision James Hays Recap: Human Computation Active Learning: Let the classifier tell you where more annotation is needed. Human-in-the-loop recognition:

More information

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm Instructions This is an individual assignment. Individual means each student must hand in their

More information

Measuring Aristic Similarity of Paintings

Measuring Aristic Similarity of Paintings Measuring Aristic Similarity of Paintings Jay Whang Stanford SCPD jaywhang@stanford.edu Buhuang Liu Stanford SCPD buhuang@stanford.edu Yancheng Xiao Stanford SCPD ycxiao@stanford.edu Abstract In this project,

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia CVPR 2017 (Spotlight) Presented By: Jason Ku Overview Motivation Dataset Network Architecture

More information

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Object Detection CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Problem Description Arguably the most important part of perception Long term goals for object recognition: Generalization

More information

Deep Learning for Face Recognition. Xiaogang Wang Department of Electronic Engineering, The Chinese University of Hong Kong

Deep Learning for Face Recognition. Xiaogang Wang Department of Electronic Engineering, The Chinese University of Hong Kong Deep Learning for Face Recognition Xiaogang Wang Department of Electronic Engineering, The Chinese University of Hong Kong Deep Learning Results on LFW Method Accuracy (%) # points # training images Huang

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

Fashion Style in 128 Floats: Joint Ranking and Classification using Weak Data for Feature Extraction SUPPLEMENTAL MATERIAL

Fashion Style in 128 Floats: Joint Ranking and Classification using Weak Data for Feature Extraction SUPPLEMENTAL MATERIAL Fashion Style in 128 Floats: Joint Ranking and Classification using Weak Data for Feature Extraction SUPPLEMENTAL MATERIAL Edgar Simo-Serra Waseda University esimo@aoni.waseda.jp Hiroshi Ishikawa Waseda

More information

Transfer Learning. Style Transfer in Deep Learning

Transfer Learning. Style Transfer in Deep Learning Transfer Learning & Style Transfer in Deep Learning 4-DEC-2016 Gal Barzilai, Ram Machlev Deep Learning Seminar School of Electrical Engineering Tel Aviv University Part 1: Transfer Learning in Deep Learning

More information

CS 1674: Intro to Computer Vision. Attributes. Prof. Adriana Kovashka University of Pittsburgh November 2, 2016

CS 1674: Intro to Computer Vision. Attributes. Prof. Adriana Kovashka University of Pittsburgh November 2, 2016 CS 1674: Intro to Computer Vision Attributes Prof. Adriana Kovashka University of Pittsburgh November 2, 2016 Plan for today What are attributes and why are they useful? (paper 1) Attributes for zero-shot

More information

Convolutional Networks in Scene Labelling

Convolutional Networks in Scene Labelling Convolutional Networks in Scene Labelling Ashwin Paranjape Stanford ashwinpp@stanford.edu Ayesha Mudassir Stanford aysh@stanford.edu Abstract This project tries to address a well known problem of multi-class

More information

Content-Based Image Recovery

Content-Based Image Recovery Content-Based Image Recovery Hong-Yu Zhou and Jianxin Wu National Key Laboratory for Novel Software Technology Nanjing University, China zhouhy@lamda.nju.edu.cn wujx2001@nju.edu.cn Abstract. We propose

More information

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis 3D Shape Analysis with Multi-view Convolutional Networks Evangelos Kalogerakis 3D model repositories [3D Warehouse - video] 3D geometry acquisition [KinectFusion - video] 3D shapes come in various flavors

More information

Early Hierarchical Contexts Learned by Convolutional Networks for Image Segmentation

Early Hierarchical Contexts Learned by Convolutional Networks for Image Segmentation Early Hierarchical Contexts Learned by Convolutional Networks for Image Segmentation Zifeng Wu, Yongzhen Huang, Yinan Yu, Liang Wang and Tieniu Tan Center for Research on Intelligent Perception and Computing

More information

Supervised Hashing for Image Retrieval via Image Representation Learning

Supervised Hashing for Image Retrieval via Image Representation Learning Supervised Hashing for Image Retrieval via Image Representation Learning Rongkai Xia, Yan Pan, Cong Liu (Sun Yat-Sen University) Hanjiang Lai, Shuicheng Yan (National University of Singapore) Finding Similar

More information

An Exploration of Computer Vision Techniques for Bird Species Classification

An Exploration of Computer Vision Techniques for Bird Species Classification An Exploration of Computer Vision Techniques for Bird Species Classification Anne L. Alter, Karen M. Wang December 15, 2017 Abstract Bird classification, a fine-grained categorization task, is a complex

More information

Gradient of the lower bound

Gradient of the lower bound Weakly Supervised with Latent PhD advisor: Dr. Ambedkar Dukkipati Department of Computer Science and Automation gaurav.pandey@csa.iisc.ernet.in Objective Given a training set that comprises image and image-level

More information

MediaTek Video Face Beautify

MediaTek Video Face Beautify MediaTek Video Face Beautify November 2014 2014 MediaTek Inc. Table of Contents 1 Introduction... 3 2 The MediaTek Solution... 4 3 Overview of Video Face Beautify... 4 4 Face Detection... 6 5 Skin Detection...

More information

ShadowDraw Real-Time User Guidance for Freehand Drawing. Harshal Priyadarshi

ShadowDraw Real-Time User Guidance for Freehand Drawing. Harshal Priyadarshi ShadowDraw Real-Time User Guidance for Freehand Drawing Harshal Priyadarshi Demo Components of Shadow-Draw Inverted File Structure for indexing Database of images Corresponding Edge maps Query method Dynamically

More information

Bidirectional Recurrent Convolutional Networks for Video Super-Resolution

Bidirectional Recurrent Convolutional Networks for Video Super-Resolution Bidirectional Recurrent Convolutional Networks for Video Super-Resolution Qi Zhang & Yan Huang Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition

More information

Architectures for Scalable Media Object Search

Architectures for Scalable Media Object Search Architectures for Scalable Media Object Search Dennis Sng Deputy Director & Principal Scientist NVIDIA GPU Technology Workshop 10 July 2014 ROSE LAB OVERVIEW 2 Large Database of Media Objects Next- Generation

More information

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Presented by: Rex Ying and Charles Qi Input: A Single RGB Image Estimate

More information

CNN for Low Level Image Processing. Huanjing Yue

CNN for Low Level Image Processing. Huanjing Yue CNN for Low Level Image Processing Huanjing Yue 2017.11 1 Deep Learning for Image Restoration General formulation: min Θ L( x, x) s. t. x = F(y; Θ) Loss function Parameters to be learned Key issues The

More information

Advances in Face Recognition Research

Advances in Face Recognition Research The face recognition company Advances in Face Recognition Research Presentation for the 2 nd End User Group Meeting Juergen Richter Cognitec Systems GmbH For legal reasons some pictures shown on the presentation

More information

Su et al. Shape Descriptors - III

Su et al. Shape Descriptors - III Su et al. Shape Descriptors - III Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Funkhouser; Feng, Liu, Gong Recap Global A shape descriptor is a set of numbers that describes a shape in a way that

More information

Xiaowei Hu* Lei Zhu* Chi-Wing Fu Jing Qin Pheng-Ann Heng

Xiaowei Hu* Lei Zhu* Chi-Wing Fu Jing Qin Pheng-Ann Heng Direction-aware Spatial Context Features for Shadow Detection Xiaowei Hu* Lei Zhu* Chi-Wing Fu Jing Qin Pheng-Ann Heng The Chinese University of Hong Kong The Hong Kong Polytechnic University Shenzhen

More information