Lecture 1, August 12, Reading:

Size: px
Start display at page:

Download "Lecture 1, August 12, Reading:"

Transcription

1 Machine Learning Introduction & Nonparametric Classifiers Eric Xing Lecture 1, August 12, 2010 Reading: Eric CMU,

2 Machine Learning Where does it come from: Eric CMU,

3 Logistics Text book Chris Bishop, Pattern Recognition and Machine Learning (required) Tom Mitchell, Machine Learning David Mackay, Information Theory, Inference, and Learning Algorithms Daphnie Koller and Nir Friedman, Probabilistic Graphical Models Class resource cn/ds/ Host: Lu Baoliang, Shanghai JiaoTong University Xue Xiangyang, Fudan University Instructors: Eric CMU,

4 Local Hosts and co-instructors Eric CMU,

5 Logistics Class mailing list Home work Exam Project Eric CMU,

6 What is Learning Learning is about seeking a predictive and/or executable understanding of natural/artificial subjects, phenomena, or activities from Apoptosis + Medicine Grammatical rules Manufacturing gprocedures Natural laws Inference Eric CMU,

7 Machine Learning Eric CMU,

8 Fetching a stapler from inside an office --- the Stanford STAIR robot Eric CMU,

9 What is Machine Learning? Machine Learning seeks to develop theories and computer systems for representing; classifying, clustering and recognizing; reasoning under uncertainty; t predicting; and reacting to complex, real world data, based on the system's own experience with data, and (hopefully) under a unified model or mathematical framework, that can be formally characterized and analyzed can take into account human prior knowledge can generalize and adapt across data and domains can operate automatically and autonomously and can be interpreted and perceived by human. Eric CMU,

10 Where Machine Learning is being used or can be useful? Information retrieval Speech recognition Computer vision Games Robotic control Pedigree Evolution Eric CMU, Planning

11 Natural language processing and speech recognition Now most pocket Speech Recognizers or Translators are running on some sort of learning device --- the more you play/use them, the smarter they become! Eric CMU,

12 Object Recognition Behind a security camera, most likely there is a computer that is learning and/or checking! Eric CMU,

13 Robotic Control I The best helicopter pilot is now a computer! it runs a program that learns how to fly and make acrobatic maneuvers by itself! no taped instructions, joysticks, or things like A. Ng 2005 Eric CMU,

14 Text Mining We want: Reading, digesting, and categorizing a vast text database is too much for human! Eric CMU,

15 g g g g ggg g ggg g g g gg g g g g g g gg g g gg g gg g gg g cacatcgctgcgtttcggcagctaattgccttttagaaattattttcccatttcgagaaactcgtgtgggatgccggatgcggctttcaatcacttctggcccgggatcggattgggtcacattgtctgcgggctctattgtctcgatccgc ggcgcagttcgcgtgcttagcggtcagaaaggcagagattcggttcggattgatgcgctggcagcagggcacaaagatctaatgactggcaaatcgctacaaataaattaaagtccggcggctaattaatgagcggactgaagccactttgg attaaccaaaaaacagcagataaacaaaaacggcaaagaaaattgccacagagttgtcacgctttgttgcacaaacatttgtgcagaaaagtgaaaagcttttagccattattaagtttttcctcagctcgctggcagcacttgcgaatgta ctgatgttcctcataaatgaaaattaatgtttgctctacgctccaccgaactcgcttgtttgggggattggctggctaatcgcggctagatcccaggcggtataaccttttcgcttcatcagttgtgaaaccagatggctggtgttttggca cagcggactcccctcgaacgctctcgaaatcaagtggctttccagccggcccgctgggccgctcgcccactggaccggtattcccaggccaggccacactgtaccgcaccgcataatcctcgccagactcggcgctgataaggcccaatgtc actccgcaggcgtctatttatgccaaggaccgttcttcttcagctttcggctcgagtatttgttgtgccatgttggttacgatgccaatcgcggtacagttatgcaaatgagcagcgaataccgctcactgacaatgaacggcgtcttgtca Bioinformatics tattcatgctgacattcatattcattcctttggttttttgtcttcgacggactgaaaagtgcggagagaaacccaaaaacagaagcgcgcaaagcgccgttaatatgcgaactcagcgaactcattgaagttatcacaacaccatatccata catatccatatcaatatcaatatcgctattattaacgatcatgctctgctgatcaagtattcagcgctgcgctagattcgacagattgaatcgagctcaatagactcaacagactccactcgacagatgcgcaatgccaaggacaattgccg g g g g g g g g g g g g g g g g g g g g g g gg g g tggagtaaacgaggcgtatgcgcaacctgcacctggcggacgcggcgtatgcgcaatgtgcaattcgcttaccttctcgttgcgggtcaggaactcccagatgggaatggccgatgacgagctgatctgaatgtggaaggcgcccagcaggc aagattactttcgccgcagtcgtcatggtgtcgttgctgcttttatgttgcgtactccgcactacacggagagttcaggggattcgtgctccgtgatctgtgatccgtgttccgtgggtcaattgcacggttcggttgtgtaaccttcgtgt tctttttttttagggcccaataaaagcgcttttgtggcggcttgatagattatcacttggtttcggtggctagccaagtggctttcttctgtccgacgcacttaattgaattaaccaaacaacgagcgtggccaattcgtattatcgctgtt tacgtgtgtctcagcttgaaacgcaaaagcttgtttcacacatcggtttctcggcaagatgggggagtcagtcggtctagggagaggggcgcccaccagtcgatcacgaaaacggcgaattccaagcgaaacggaaacggagcgagcactat agtactatgtcgaacaaccgatcgcggcgatgtcagtgagtcgtcttcggacagcgctggcgctccacacgtatttaagctctgagatcggctttgggagagcgcagagagcgccatcgcacggcagagcgaaagcggcagtgagcgaaagc gagcggcagcgggtgggggatcgggagccccccgaaaaaaacagaggcgcacgtcgatgccatcggggaattggaacctcaatgtgtgggaatgtttaaatattctgtgttaggtagtgtagtttcatagactatagattctcatacagatt gagtccttcgagccgattatacacgacagcaaaatatttcagtcgcgcttgggcaaaaggcttaagcacgactcccagtccccccttacatttgtcttcctaagcccctggagccactatcaaacttgttctacgcttgcactgaaaataga accaaagtaaacaatcaaaaagaccaaaaacaataacaaccagcaccgagtcgaacatcagtgaggcattgcaaaaatttcaaagtcaagtttgcgtcgtcatcgcgtctgagtccgatcaagccgggcttgtaattgaagttgttgatgag ttactggattgtggcgaattctggtcagcatacttaacagcagcccgctaattaagcaaaataaacatatcaaattccagaatgcgacggcgccatcatcctgtttgggaattcaattcgcgggcagatcgtttaattcaattaaaaggtag aaaagggagcagaagaatgcgatcgctggaatttcctaacatcacggaccccataaatttgataagcccgagctcgctgcgttgagtcagccaccccacatccccaaatccccgccaaaagaagacagctgggttgttgactcgccagattg attgcagtggagtggacctggtcaaagaagcaccgttaatgtgctgattccattcgattccatccgggaatgcgataaagaaaggctctgatccaagcaactgcaatccggatttcgattttctctttccatttggttttgtatttacgtac aagcattctaatgaagacttggagaagacttacgttatattcagaccatcgtgcgatagaggatgagtcatttccatatggccgaaatttattatgtttactatcgtttttagaggtgttttttggacttaccaaaagaggcatttgttttc ttcaactgaaaagatatttaaattttttcttggaccattttcaaggttccggatatatttgaaacacactagctagcagtgttggtaagttacatgtatttctataatgtcatattcctttgtccgtattcaaatcgaatactccacatctc ttgtacttgaggaattggcgatcgtagcgatttcccccgccgtaaagttcctgatcctcgttgtttttgtacatcataaagtccggattctgctcgtcgccgaagatgggaacgaagctgccaaagctgagagtctgcttgaggtgctggtc gtcccagctggataaccttgctgtacagatcggcatctgcctggagggcacgatcgaaatccttccagtggacgaacttcacctgctcgctgggaatagcgttgttgtcaagcagctcaaggagcgtattcgagttgacgggctgcaccacg ctgctccttcgctggggattcccctgcgggtaagcgccgcttgcttggactcgtttccaaatcccatagccacgccagcagaggagtaacagagctcwhereisthegenetgattaaaaatatcctttaagaaagcccatgggtataactt actgcgtcctatgcgaggaatggtctttaggttctttatggcaaagttctcgcctcgcttgcccagccgcggtacgttcttggtgatctttaggaagaatcctggactactgtcgtctgcctggcttatggccacaagacccaccaagagcg aggactgttatgattctcatgctgatgcgactgaagcttcacctgactcctgctccacaattggtggcctttatatagcgagatccacccgcatcttgcgtggaatagaaatgcgggtgactccaggaattagcattatcgatcggaaagtg ataaaactgaactaacctgacctaaatgcctggccataattaagtgcatacatacacattacattacttacatttgtataagaactaaattttatagtacataccacttgcgtatgtaaatgcttgtcttttctcttatatacgttttataa cccagcatattttacgtaaaaacaaaacggtaatgcgaacataacttatttattggggcccggaccgcaaaccggccaaacgcgtttgcacccataaaaacataagggcaacaaaaaaattgttaagctgttgtttatttttgcaatcgaaa cgctcaaatagctgcgatcactcgggagcagggtaaagtcgcctcgaaacaggaagctgaagcatcttctataaatacactcaaagcgatcattccgaggcgagtctggttagaaatttacatggactgcaaaaaggtatagccccacaaac cacatcgctgcgtttcggcagctaattgccttttagaaattattttcccatttcgagaaactcgtgtgggatgccggatgcggctttcaatcacttctggcccgggatcggattgggtcacattgtctgcgggctctattgtctcgatccgc ggcgcagttcgcgtgcttagcggtcagaaaggcagagattcggttcggattgatgcgctggcagcagggcacaaagatctaatgactggcaaatcgctacaaataaattaaagtccggcggctaattaatgagcggactgaagccactttgg attaaccaaaaaacagcagataaacaaaaacggcaaagaaaattgccacagagttgtcacgctttgttgcacaaacatttgtgcagaaaagtgaaaagcttttagccattattaagtttttcctcagctcgctggcagcacttgcgaatgta ctgatgttcctcataaatgaaaattaatgtttgctctacgctccaccgaactcgcttgtttgggggattggctggctaatcgcggctagatcccaggcggtataaccttttcgcttcatcagttgtgaaaccagatggctggtgttttggca cagcggactcccctcgaacgctctcgaaatcaagtggctttccagccggcccgctgggccgctcgcccactggaccggtattcccaggccaggccacactgtaccgcaccgcataatcctcgccagactcggcgctgataaggcccaatgtc actccgcaggcgtctatttatgccaaggaccgttcttcttcagctttcggctcgagtatttgttgtgccatgttggttacgatgccaatcgcggtacagttatgcaaatgagcagcgaataccgctcactgacaatgaacggcgtcttgtca tattcatgctgacattcatattcattcctttggttttttgtcttcgacggactgaaaagtgcggagagaaacccaaaaacagaagcgcgcaaagcgccgttaatatgcgaactcagcgaactcattgaagttatcacaacaccatatccata catatccatatcaatatcaatatcgctattattaacgatcatgctctgctgatcaagtattcagcgctgcgctagattcgacagattgaatcgagctcaatagactcaacagactccactcgacagatgcgcaatgccaaggacaattgccg tggagtaaacgaggcgtatgcgcaacctgcacctggcggacgcggcgtatgcgcaatgtgcaattcgcttaccttctcgttgcgggtcaggaactcccagatgggaatggccgatgacgagctgatctgaatgtggaaggcgcccagcaggc aagattactttcgccgcagtcgtcatggtgtcgttgctgcttttatgttgcgtactccgcactacacggagagttcaggggattcgtgctccgtgatctgtgatccgtgttccgtgggtcaattgcacggttcggttgtgtaaccttcgtgt tctttttttttagggcccaataaaagcgcttttgtggcggcttgatagattatcacttggtttcggtggctagccaagtggctttcttctgtccgacgcacttaattgaattaaccaaacaacgagcgtggccaattcgtattatcgctgtt Where is the gene? tacgtgtgtctcagcttgaaacgcaaaagcttgtttcacacatcggtttctcggcaagatgggggagtcagtcggtctagggagaggggcgcccaccagtcgatcacgaaaacggcgaattccaagcgaaacggaaacggagcgagcactat agtactatgtcgaacaaccgatcgcggcgatgtcagtgagtcgtcttcggacagcgctggcgctccacacgtatttaagctctgagatcggctttgggagagcgcagagagcgccatcgcacggcagagcgaaagcggcagtgagcgaaagc gagcggcagcgggtgggggatcgggagccccccgaaaaaaacagaggcgcacgtcgatgccatcggggaattggaacctcaatgtgtgggaatgtttaaatattctgtgttaggtagtgtagtttcatagactatagattctcatacagatt gagtccttcgagccgattatacacgacagcaaaatatttcagtcgcgcttgggcaaaaggcttaagcacgactcccagtccccccttacatttgtcttcctaagcccctggagccactatcaaacttgttctacgcttgcactgaaaataga accaaagtaaacaatcaaaaagaccaaaaacaataacaaccagcaccgagtcgaacatcagtgaggcattgcaaaaatttcaaagtcaagtttgcgtcgtcatcgcgtctgagtccgatcaagccgggcttgtaattgaagttgttgatgag ttactggattgtggcgaattctggtcagcatacttaacagcagcccgctaattaagcaaaataaacatatcaaattccagaatgcgacggcgccatcatcctgtttgggaattcaattcgcgggcagatcgtttaattcaattaaaaggtag aaaagggagcagaagaatgcgatcgctggaatttcctaacatcacggaccccataaatttgataagcccgagctcgctgcgttgagtcagccaccccacatccccaaatccccgccaaaagaagacagctgggttgttgactcgccagattg attgcagtggagtggacctggtcaaagaagcaccgttaatgtgctgattccattcgattccatccgggaatgcgataaagaaaggctctgatccaagcaactgcaatccggatttcgattttctctttccatttggttttgtatttacgtac aagcattctaatgaagacttggagaagacttacgttatattcagaccatcgtgcgatagaggatgagtcatttccatatggccgaaatttattatgtttactatcgtttttagaggtgttttttggacttaccaaaagaggcatttgttttc ttcaactgaaaagatatttaaattttttcttggaccattttcaaggttccggatatatttgaaacacactagctagcagtgttggtaagttacatgtatttctataatgtcatattcctttgtccgtattcaaatcgaatactccacatctc ttgtacttgaggaattggcgatcgtagcgatttcccccgccgtaaagttcctgatcctcgttgtttttgtacatcataaagtccggattctgctcgtcgccgaagatgggaacgaagctgccaaagctgagagtctgcttgaggtgctggtc gtcccagctggataaccttgctgtacagatcggcatctgcctggagggcacgatcgaaatccttccagtggacgaacttcacctgctcgctgggaatagcgttgttgtcaagcagctcaaggagcgtattcgagttgacgggctgcaccacg ctgctccttcgctggggattcccctgcgggtaagcgccgcttgcttggactcgtttccaaatcccatagccacgccagcagaggagtaacagagctctgaaaacagttcatggtttaaaaatatcctttaagaaagcccatgggtataactt actgcgtcctatgcgaggaatggtctttaggttctttatggcaaagttctcgcctcgcttgcccagccgcggtacgttcttggtgatctttaggaagaatcctggactactgtcgtctgcctggcttatggccacaagacccaccaagagcg aggactgttatgattctcatgctgatgcgactgaagcttcacctgactcctgctccacaattggtggcctttatatagcgagatccacccgcatcttgcgtggaatagaaatgcgggtgactccaggaattagcattatcgatcggaaagtg ataaaactgaactaacctgacctaaatgcctggccataattaagtgcatacatacacattacattacttacatttgtataagaactaaattttatagtacataccacttgcgtatgtaaatgcttgtcttttctcttatatacgttttataa Eric CMU,

16 Paradigms of Machine Learning Supervised Learning D X, Y f( ) : Y f Given, learn, s.t. i i i X i Unsupervised Learning f( ) : Y f Given D X i, learn i X i, s.t. new D X Y new D X Y Reinforcement Learning Given D env, actions, rewards, simulator/trace/real game j j j j policy :ee, r a learn, s.t. utility : a, e r env,new real game a, a, 1 2 a 3 Active Learning new Given ~ G( ), learn D ~ G'( ) and f( ), s.t. all D G'( ), policy, D Y j Eric CMU,

17 Elements of Learning Here are some important elements to consider before you start: Task: Embedding? Classification? Clustering? Topic extraction? Data and other info: Input and output (e.g., continuous, binary, counts, ) Supervised or unsupervised, of a blend of everything? Prior knowledge? Bias? Models and paradigms: BN? MRF? Regression? SVM? Bayesian/Frequents? Parametric/Nonparametric? Objective/Loss function: MLE? MCLE? Max margin? Log loss, hinge loss, square loss? Tractability and exactness trade off: Exact inference? MCMC? Variational? Gradient? Greedy search? Online? Batch? Distributed? Evaluation: Visualization? Human interpretability? Perperlexity? Predictive accuracy? It is better to consider one element at a time! Eric CMU,

18 Theories of Learning For the learned F(; ) Consistency (value, pattern, ) Bias versus variance Sample complexity Learning rate Convergence Error bound Confidence Stability Eric CMU,

19 Classification Representing data: Hypothesis (classifier) Eric CMU,

20 Decision-making as dividing a high-dimensional space Classification-specific Dist.: P(X Y) p( X Y 1) p ( X ;, 1( 1 1 ) p( X Y 2) p ( X ;, ) Class prior (i.e., "weight"): P(Y) Eric CMU,

21 The Bayes Rule What we have just did leads to the following general expression: P( Y X ) P ( X Y ) p ( Y ) P( X ) This is Bayes Rule Eric CMU,

22 The Bayes Decision Rule for Minimum Error Minimum Error The a posteriori probability of a sample p p y p ) ( ) ( ) ( ) ( ) ( ) ( ) ( X q i Y X p i Y X p X p i Y P i Y X p X i Y P i i i i i i Bayes Test: Likelihood Ratio: (X ) Discriminant function: (X ) Eric CMU, h(x )

23 Example of Decision Rules When each class is a normal We can write the decision boundary analytically in some cases homework!! Eric CMU,

24 Bayes Error We must calculate the probability of error the probability that a sample is assigned to the wrong class Given a datum X, what is the risk? The Bayes error (the expected risk): Eric CMU,

25 More on Bayes Error Bayes error is the lower bound of probability of classification error Bayes classifier is the theoretically best classifier that minimize probability of classification error Computing Bayes error is in general a very complex problem. Why? Density estimation: Integrating density function: Eric CMU,

26 Learning Classifier The decision rule: Learning strategies Generative Learning Discriminative Learning Instance-based Learning (Store all past experience in memory) A special case of nonparametric classifier Eric CMU,

27 Supervised Learning K-Nearest-Neighbor Classifier: where the h(x) is represented by all the data, and by an algorithm Eric CMU,

28 Recall: Vector Space Representation Each document is a vector, one component for each term (= word). Doc 1 Doc 2 Doc 3... Word Word Word Normalize to unit length. High-dimensional vector space: Terms are axes, 10,000+ dimensions, or even 100,000+ Docs are vectors in this space Eric CMU,

29 Test Document =? Sports Science Arts Eric CMU,

30 1-Nearest Neighbor (knn) classifier Sports Science Arts Eric CMU,

31 2-Nearest Neighbor (knn) classifier Sports Science Arts Eric CMU,

32 3-Nearest Neighbor (knn) classifier Sports Science Arts Eric CMU,

33 K-Nearest Neighbor (knn) classifier Voting knn Sports Science Arts Eric CMU,

34 Classes in a Vector Space Sports Science Arts Eric CMU,

35 knn Is Close to Optimal Cover and Hart 1967 Asymptotically, the error rate of 1-nearest-neighbor classification is less than twice the Bayes rate [error rate of classifier knowing model that generated data] In particular, asymptotic error rate is 0 if Bayes rate is 0. Where does knn come from? Nonparametric density estimation Eric CMU,

36 Nearest-Neighbor Learning Algorithm Learning is just storing the representations of the training examples in D. Testing instance x: Compute similarity between x and all examples in D. Assign x the category of the most similar example in D. Does not explicitly compute a generalization or category prototypes. Also called: Case-based learning Memory-based learning Lazy learning Eric CMU,

37 knn is an instance of Instance-Based Learning What makes an Instance-Based Learner? A distance metric How many nearby neighbors to look at? A weighting function (optional) How to relate to the local points? Eric CMU,

38 Euclidean Distance Metric Or equivalently, D ( x, x ') ( x i 2 i i x i ') 2 Other metrics: T D( x, x') ( x x') ( x x') L 1 norm: x-x' L norm: max x-x' (elementwise ) Mahalanobis: where is full, and symmetric Correlation Angle Hamming distance, Manhattan distance Eric CMU,

39 Case Study: knn for Web Classification Dataset 20 News Groups (20 classes) Download :( 61, words, 18,774 documents Class labels descriptions Eric Eric Xing CMU, CMU,

40 Results: Binary Classes Accuracy alt.atheism vs. comp.graphics rec.autos vs. rec.sport.baseball comp.windows.x vs. rec.motorcycles k Eric CMU,

41 Results: Multiple Classes Accuracy Random select 5-out-of-20 classes, repeat 10 runs and average All 20 classes Eric CMU, k

42 Is knn ideal? Eric CMU,

43 Is knn ideal? more later Eric CMU,

44 Effect of Parameters Sample size The more the better Need efficient search algorithm for NN Dimensionality Curse of dimensionality Density How smooth? Metric The relative scalings in the distance metric affect region shapes. Weight K Spurious or less relevant points need to be downweighted Eric CMU,

45 Summary Machine Learning is Cool and Useful!! Paradigms of Machine Learning. Design elements learning Theories on learning Fundamental theory of classification Bayes optimal classifier Instance-based learning: knn a Nonparametric classifier A nonparametric method does not rely on any assumption concerning the structure of the underlying density function. Very little learning is involved in these methods Good news: Simple and powerful methods; Flexible and easy to apply to many problems. knn classifier asymptotically approaches the Bayes classifier, which is theoretically the best classifier that minimizes the probability of classification error. Bad news: High memory requirements Very dependant on the scale factor for a specific problem. Eric CMU,

46 Learning Based Approaches for Visual Recognition L. Fei Fei Computer Science Dept. Stanford University

47 As legend goes 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 47

48 CVPR: August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 48

49 What is vision? Real world understanding di pictures pixel world forming pictures L. Fei-Fei, Dragon Star 2010, 8 August Stanford

50 What is vision? Real world edges intensity texture understanding di pictures pixel world Low Level Level Vision L. Fei-Fei, Dragon Star 2010, 8 August Stanford

51 What is vision? Real world groupings of similar pixels geometry understanding di pictures pixel world Mid Level Vision Low Level Level Vision L. Fei-Fei, Dragon Star 2010, 8 August Stanford

52 What is vision? Real world This is a story of love and friendship among three young hamsters. On a sunny day in the garden understanding di pictures pixel world High Level lvi Vision i Mid Level Vision Low Level Level Vision L. Fei-Fei, Dragon Star 2010, 8 August Stanford

53 Humans are extremely good at highlevel semantic understanding time 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford Fei Fei et al. JoV

54 Humans are extremely good at highlevel semantic understanding 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford Fei Fei et al. JoV

55 PT = 27ms This was a picture with some dark sploches in it. Yeah...that's t' about tit it. (Subject: KM) PT = 40ms I think I saw two people p on a field. (Subject: RW) PT = 67ms Outdoor scene. There were some kind of animals, maybe dogs or horses, in the middle of the picture. It looked like they were running in PT = 500ms the middle of a grassy field. (Subject: IV) Some kind of game or fight. Two groups of two men? The foregound pair looked like one was getting a fist in the face. Outdoors seemed like PT = 107ms because i have an impression of grass and maybe lines on the grass? That would be why I think two people, whose profile was toward me. perhaps a game, rough game though, more like looked like they were on a field of some sort and rugby than football because they pairs weren't in engaged in some sort of sport (their attire pads and helmets, though I did get the suggested soccer, but it looked like there was too impression i of similar il clothing. maybe some much contact for that). (Subject: AI) trees? in the background. (Subject: SM) 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford Fei Fei et al. JoV

56 Visual recognition High level presentatio on ion tasks Level of image re an nd recogniti Low level social roles situation roles and functions functionality (human-object interaction) 3D geometry recognition parts and attributes segmentation shape Object texture scene understanding geometric layout basic-level classification segmentation features and descriptors Scene goals and intentions causality activity understanding action classification tracking Event/activity 1 sec me in ystem ocessing tim man visual sy Pro hum 150 msec 90 msec L. Fei-Fei, Dragon Star 2010, 8 August Stanford

57 High level presentatio on ion tasks Level of image re an nd recogniti Low level social roles Visual recognition 1990 early 2000 situation roles and functions functionality (human-object interaction) 3D geometry recognition parts and attributes segmentation shape Object texture scene understanding geometric layout basic-level classification segmentation features and descriptors Scene goals and intentions causality activity understanding action classification tracking Event/activity 1 sec me in ystem ocessing tim man visual sy Pro hum 150 msec 90 msec L. Fei-Fei, Dragon Star 2010, 8 August Stanford

58 High level presentatio on ion tasks Level of image re an nd recogniti Low level social roles Visual recognition early 2000 now situation roles and functions functionality (human-object interaction) 3D geometry recognition parts and attributes segmentation shape Object texture scene understanding geometric layout basic-level classification segmentation features and descriptors Scene goals and intentions causality activity understanding action classification tracking Event/activity 1 sec me in ystem ocessing tim man visual sy Pro hum 150 msec 90 msec L. Fei-Fei, Dragon Star 2010, 8 August Stanford

59 Why machine learning? 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 59

60 Why machine learning? 80,000,000,000+ images 5,000,000,000+ images 120,000,000 videos (upload: 13hours/min) 20Gb of images Mymom s hard drive: drive: 220+Gb ofimages 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 60

61 Why machine learning? Today: Lots of data, complex tasks Internet images, personal photo albums Movies, news, sports 8 August 2010 L. Fei-Fei, Dragon Star 2010, Surveillance and security Medical and scientific images 61 Stanford

62 Machine learning in computer vision Aug 12, Lecture 1: Nearest Neighbor Large scale image classification Scene completion Aug 12, Lecture 3: Neural Network Convolutional Nets for object recognition Unsupervised feature learning via Deep Belief Net Aug 13, Lecture 7: Dimensionality reduction, Manifold learning Eigen and Fisher faces Applications to object representation Aug 15, Lecture 13: Conditional Random Field Image segmentation, object recognition & image annotation Aug 15 & 16, Lecture : Topic models Object recognition Scene classification, image annotation, large scale image clustering Total scene understanding 8 August L. Fei-Fei, Dragon Star 2010, Stanford

63 Nearest Neighbor approaches: two case study L. Fei Fei Computer Science Dept. Stanford University

64 Machine learning in computer vision Aug 12, Lecture 1: Nearest Neighbor Large scale image classification Scene completion 8 August L. Fei-Fei, Dragon Star 2010, Stanford

65 Machine learning in computer vision Aug 12, Lecture 1: Nearest Neighbor Large scale image classification Scene completion 8 August L. Fei-Fei, Dragon Star 2010, Stanford

66 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 66

67 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 67

68 Large-scale image classification and retrieval ti lis an unaddressed dproblem in vision i?? 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 68

69 ) Humans category (log_10) clean ima ages per PASCAL 1 LabelMe 3 MRSC Caltech101/256 Tiny Images 2 # of # of visual concept categories (log_ 10) 1. Excluding the Caltech101 datasets from PASCAL 2. Image in this dataset are not human annotated. The # of clean images per category is a rough estimation 3. Categories of more than 100 images are considered only

70 knn for image classification: basic set up Antelope? Trombone Jllfih Jellyfish German Shepherd Kangaroo

71 knn for image classification: basic set up 5 NN?

72 Classification 5 NN? Kangaroo Count Antelope Jellyfish German Shepherd Kangaroo Trombone

73 10K classes, 4.5M Queries, 4.5M training images images? Background image courtesy: Antonioo Torralba

74 KNN on 10K classes 10K classes 4.5M queries 4.5M training Features BOW GIST Deng, Berg, Li & Fei Fei, ECCV August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 74

75 How fast is knn? Brute force linear scan E.g. scanning 4.5M images! Can we be faster? Yes if feature dimensionality is low ( e.g. <= 16 ) K D tree spring/ta/manuals/cgal/ref manual2/searchstructures/kdtree.gif L. Fei-Fei, Dragon Star 2010, 8 August Stanford

76 Curse of dimensionality For high dimensionality, in both theory and practice, little improvement over brute force linear scan. E.g. KD tree on 128 dimension SIFT is not much faster than linear scan spring/ta/manuals/cgal/ref manual2/searchstructures/kdtree.gif L. Fei-Fei, Dragon Star 2010, 8 August Stanford

77 Locality sensitive hashing Approximate knn Good enough in practice Can get around curse of dimensionality Locality sensitive hashing Near feature points (likely) same hash values Hash table 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 77

78 Example: Random projection h(x) = sgn (x r), r is a random unit vector h(x) gives 1 bit. Repeat and concatenate. Prob[h(x) = h(y)] = 1 θ(x,y) / π θ y y y r x x x h(x) = 0, h(y) = 0 h(x) = 0, h(y) = 1 x h(x) = 0, h(y) = 1 hyperplane y 8 August L. Fei-Fei, Dragon Star 2010, Stanford Hash table 78

79 Example: Random projection x h(x) = sgn (x r), r is a random unit vector h(x) gives 1 bit. Repeat and concatenate. Prob[h(x) = h(y)] = 1 θ(x,y) / π y x θ r h(x) = 0, h(y) = 0 y hyperplane x y h(x) = 0, h(y) = 0 h(x) = 0, h(y) = 0 x y 8 August L. Fei-Fei, Dragon Star 2010, Stanford Hash table 79

80 Locality sensitive hashing Retrieved NNs Hash table? 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 80

81 Locality sensitive hashing 1000X speed up with 50% recall of top 10 NN 1.2M images dimensions rieved p 10 exact NN ret Prod at top rcentage of e ecall of L1P Per Re L1Prod LSH + L1Prod ranking RandHP LSH + L1Prod ranking Scan cost Percentage of points scanned x August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 81

82 10K classes, 4.5M Queries, 4.5M training images images?

83 Machine learning in computer vision Aug 12, Lecture 1: Nearest Neighbor Large scale image classification Scene completion (slides courtesy: Alyosha Efros (CMU)) 8 August L. Fei-Fei, Dragon Star 2010, Stanford

84 [Hays and Efros. Scene Completion Using Millions of Photographs. L. Fei-Fei, Dragon Star 2010, 8 August SIGGRAPH 2007 and CACM October Stanford 2008.]

85 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 85

86 8 August 2010 Diffusion Result L. Fei-Fei, Dragon Star 2010, Stanford 86

87 8 August 2010 Efros and Leung result L. Fei-Fei, Dragon Star 2010, Stanford 87

88 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 88

89 Scene Matching for Image Completion 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 89

90 8 August 2010 Scene L. Fei-Fei, Completion Dragon Star 2010, Result 90 Stanford

91 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 91

92 Scene Matching 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 92

93 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 200 total 93

94 Context Matching 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 94

95 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 95

96 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 96

97 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 97

98 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 98

99 The Internet is the world s largest library. 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 99

100 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 100

101 8 August 2010 Nearest neighbors from a L. Fei-Fei, Dragon Star 2010, collection of 20 thousand images 101 Stanford

102 8 August 2010 Nearest neighbors from a L. Fei-Fei, Dragon Star 2010, collection of 2 million images 102 Stanford

103 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 103 Hays and Efros, SIGGRAPH 2007

104 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 104 Hays and Efros, SIGGRAPH 2007

105 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 105 Hays and Efros, SIGGRAPH 2007

106 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 106 Hays and Efros, SIGGRAPH 2007

107 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 107 Hays and Efros, SIGGRAPH 2007

108 8 August 2010 L. Fei-Fei, Dragon Star 2010, Stanford 108 Hays and Efros, SIGGRAPH 2007

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016 Machine Learning 10-701, Fall 2016 Nonparametric methods for Classification Eric Xing Lecture 2, September 12, 2016 Reading: 1 Classification Representing data: Hypothesis (classifier) 2 Clustering 3 Supervised

More information

Notes and Announcements

Notes and Announcements Notes and Announcements Midterm exam: Oct 20, Wednesday, In Class Late Homeworks Turn in hardcopies to Michelle. DO NOT ask Michelle for extensions. Note down the date and time of submission. If submitting

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2015 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows K-Nearest

More information

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing Object Recognition Lecture 11, April 21 st, 2008 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ 1 Announcements 2 HW#5 due today HW#6 last HW of the semester Due May

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Requesting changes to the grades, please write to me in an with descriptions. Move my office hours to the morning. 11am - 12:30pm Thursdays

Requesting changes to the grades, please write to me in an  with descriptions. Move my office hours to the morning. 11am - 12:30pm Thursdays Lab1 graded. Requesting changes to the grades, please write to me in an email with descriptions. Move my office hours to the morning. 11am - 12:30pm Thursdays Internet-scale texture synthesis With slides

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat K Nearest Neighbor Wrap Up K- Means Clustering Slides adapted from Prof. Carpuat K Nearest Neighbor classification Classification is based on Test instance with Training Data K: number of neighbors that

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Piyush Rai CS5350/6350: Machine Learning November 8, 2011 Semi-supervised Learning Supervised Learning models require labeled data Learning a reliable model usually requires plenty

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

Classifiers and Detection. D.A. Forsyth

Classifiers and Detection. D.A. Forsyth Classifiers and Detection D.A. Forsyth Classifiers Take a measurement x, predict a bit (yes/no; 1/-1; 1/0; etc) Detection with a classifier Search all windows at relevant scales Prepare features Classify

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 K-Nearest Neighbors Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Check out review materials Probability Linear algebra Python and NumPy Start your HW 0 On your Local machine:

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017 3/0/207 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/0/207 Perceptron as a neural

More information

PATTERN CLASSIFICATION AND SCENE ANALYSIS

PATTERN CLASSIFICATION AND SCENE ANALYSIS PATTERN CLASSIFICATION AND SCENE ANALYSIS RICHARD O. DUDA PETER E. HART Stanford Research Institute, Menlo Park, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS New York Chichester Brisbane

More information

Supervised Learning for Image Segmentation

Supervised Learning for Image Segmentation Supervised Learning for Image Segmentation Raphael Meier 06.10.2016 Raphael Meier MIA 2016 06.10.2016 1 / 52 References A. Ng, Machine Learning lecture, Stanford University. A. Criminisi, J. Shotton, E.

More information

Day 3 Lecture 1. Unsupervised Learning

Day 3 Lecture 1. Unsupervised Learning Day 3 Lecture 1 Unsupervised Learning Semi-supervised and transfer learning Myth: you can t do deep learning unless you have a million labelled examples for your problem. Reality You can learn useful representations

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

VECTOR SPACE CLASSIFICATION

VECTOR SPACE CLASSIFICATION VECTOR SPACE CLASSIFICATION Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. Chapter 14 Wei Wei wwei@idi.ntnu.no Lecture

More information

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision Object Recognition Using Pictorial Structures Daniel Huttenlocher Computer Science Department Joint work with Pedro Felzenszwalb, MIT AI Lab In This Talk Object recognition in computer vision Brief definition

More information

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14 Announcements Computer Vision I CSE 152 Lecture 14 Homework 3 is due May 18, 11:59 PM Reading: Chapter 15: Learning to Classify Chapter 16: Classifying Images Chapter 17: Detecting Objects in Images Given

More information

Understanding Faces. Detection, Recognition, and. Transformation of Faces 12/5/17

Understanding Faces. Detection, Recognition, and. Transformation of Faces 12/5/17 Understanding Faces Detection, Recognition, and 12/5/17 Transformation of Faces Lucas by Chuck Close Chuck Close, self portrait Some slides from Amin Sadeghi, Lana Lazebnik, Silvio Savarese, Fei-Fei Li

More information

Part-based and local feature models for generic object recognition

Part-based and local feature models for generic object recognition Part-based and local feature models for generic object recognition May 28 th, 2015 Yong Jae Lee UC Davis Announcements PS2 grades up on SmartSite PS2 stats: Mean: 80.15 Standard Dev: 22.77 Vote on piazza

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011 Previously Part-based and local feature models for generic object recognition Wed, April 20 UT-Austin Discriminative classifiers Boosting Nearest neighbors Support vector machines Useful for object recognition

More information

Nearest Neighbor Classification. Machine Learning Fall 2017

Nearest Neighbor Classification. Machine Learning Fall 2017 Nearest Neighbor Classification Machine Learning Fall 2017 1 This lecture K-nearest neighbor classification The basic algorithm Different distance measures Some practical aspects Voronoi Diagrams and Decision

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Class 5: Attributes and Semantic Features

Class 5: Attributes and Semantic Features Class 5: Attributes and Semantic Features Rogerio Feris, Feb 21, 2013 EECS 6890 Topics in Information Processing Spring 2013, Columbia University http://rogerioferis.com/visualrecognitionandsearch Project

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Opportunities of Scale

Opportunities of Scale Opportunities of Scale 11/07/17 Computational Photography Derek Hoiem, University of Illinois Most slides from Alyosha Efros Graphic from Antonio Torralba Today s class Opportunities of Scale: Data-driven

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Supervised Learning: Nearest Neighbors

Supervised Learning: Nearest Neighbors CS 2750: Machine Learning Supervised Learning: Nearest Neighbors Prof. Adriana Kovashka University of Pittsburgh February 1, 2016 Today: Supervised Learning Part I Basic formulation of the simplest classifier:

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2015 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

k-nearest Neighbors + Model Selection

k-nearest Neighbors + Model Selection 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University k-nearest Neighbors + Model Selection Matt Gormley Lecture 5 Jan. 30, 2019 1 Reminders

More information

Machine Learning: Think Big and Parallel

Machine Learning: Think Big and Parallel Day 1 Inderjit S. Dhillon Dept of Computer Science UT Austin CS395T: Topics in Multicore Programming Oct 1, 2013 Outline Scikit-learn: Machine Learning in Python Supervised Learning day1 Regression: Least

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Classification Advanced Reading: Chapter 8 & 9 Han, Chapters 4 & 5 Tan Anca Doloc-Mihu, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei. Data Mining.

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Lecture 3: Linear Classification

Lecture 3: Linear Classification Lecture 3: Linear Classification Roger Grosse 1 Introduction Last week, we saw an example of a learning task called regression. There, the goal was to predict a scalar-valued target from a set of features.

More information

Machine Learning. Classification

Machine Learning. Classification 10-701 Machine Learning Classification Inputs Inputs Inputs Where we are Density Estimator Probability Classifier Predict category Today Regressor Predict real no. Later Classification Assume we want to

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

CSC 411: Lecture 05: Nearest Neighbors

CSC 411: Lecture 05: Nearest Neighbors CSC 411: Lecture 05: Nearest Neighbors Raquel Urtasun & Rich Zemel University of Toronto Sep 28, 2015 Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 1 / 13 Today Non-parametric models

More information

Applied Statistics for Neuroscientists Part IIa: Machine Learning

Applied Statistics for Neuroscientists Part IIa: Machine Learning Applied Statistics for Neuroscientists Part IIa: Machine Learning Dr. Seyed-Ahmad Ahmadi 04.04.2017 16.11.2017 Outline Machine Learning Difference between statistics and machine learning Modeling the problem

More information

Lecture 12 Recognition. Davide Scaramuzza

Lecture 12 Recognition. Davide Scaramuzza Lecture 12 Recognition Davide Scaramuzza Oral exam dates UZH January 19-20 ETH 30.01 to 9.02 2017 (schedule handled by ETH) Exam location Davide Scaramuzza s office: Andreasstrasse 15, 2.10, 8050 Zurich

More information

CS4495/6495 Introduction to Computer Vision. 8C-L1 Classification: Discriminative models

CS4495/6495 Introduction to Computer Vision. 8C-L1 Classification: Discriminative models CS4495/6495 Introduction to Computer Vision 8C-L1 Classification: Discriminative models Remember: Supervised classification Given a collection of labeled examples, come up with a function that will predict

More information

CISC 4631 Data Mining

CISC 4631 Data Mining CISC 4631 Data Mining Lecture 03: Nearest Neighbor Learning Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Prof. R. Mooney (UT Austin) Prof E. Keogh (UCR), Prof. F.

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Spring 2018 http://vllab.ee.ntu.edu.tw/dlcv.html (primary) https://ceiba.ntu.edu.tw/1062dlcv (grade, etc.) FB: DLCV Spring 2018 Yu Chiang Frank Wang 王鈺強, Associate Professor

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

CS 231A Computer Vision (Fall 2011) Problem Set 4

CS 231A Computer Vision (Fall 2011) Problem Set 4 CS 231A Computer Vision (Fall 2011) Problem Set 4 Due: Nov. 30 th, 2011 (9:30am) 1 Part-based models for Object Recognition (50 points) One approach to object recognition is to use a deformable part-based

More information

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Emily Fox University of Washington February 3, 2017 Simplest approach: Nearest neighbor regression 1 Fit locally to each

More information

Naïve Bayes for text classification

Naïve Bayes for text classification Road Map Basic concepts Decision tree induction Evaluation of classifiers Rule induction Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Support

More information

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday.

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday. CS 188: Artificial Intelligence Spring 2011 Lecture 21: Perceptrons 4/13/2010 Announcements Project 4: due Friday. Final Contest: up and running! Project 5 out! Pieter Abbeel UC Berkeley Many slides adapted

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Classification and Detection in Images. D.A. Forsyth

Classification and Detection in Images. D.A. Forsyth Classification and Detection in Images D.A. Forsyth Classifying Images Motivating problems detecting explicit images classifying materials classifying scenes Strategy build appropriate image features train

More information

Image Classification pipeline. Lecture 2-1

Image Classification pipeline. Lecture 2-1 Lecture 2: Image Classification pipeline Lecture 2-1 Administrative: Piazza For questions about midterm, poster session, projects, etc, use Piazza! SCPD students: Use your @stanford.edu address to register

More information

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017 Lecture 27: Review Reading: All chapters in ISLR. STATS 202: Data mining and analysis December 6, 2017 1 / 16 Final exam: Announcements Tuesday, December 12, 8:30-11:30 am, in the following rooms: Last

More information

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Kernels + K-Means Matt Gormley Lecture 29 April 25, 2018 1 Reminders Homework 8:

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

CPSC 340: Machine Learning and Data Mining. Non-Parametric Models Fall 2016

CPSC 340: Machine Learning and Data Mining. Non-Parametric Models Fall 2016 CPSC 340: Machine Learning and Data Mining Non-Parametric Models Fall 2016 Assignment 0: Admin 1 late day to hand it in tonight, 2 late days for Wednesday. Assignment 1 is out: Due Friday of next week.

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2016 Lecturer: Trevor Cohn 20. PGM Representation Next Lectures Representation of joint distributions Conditional/marginal independence * Directed vs

More information

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric. CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley 1 1 Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning Robot Learning 1 General Pipeline 1. Data acquisition (e.g., from 3D sensors) 2. Feature extraction and representation construction 3. Robot learning: e.g., classification (recognition) or clustering (knowledge

More information

Storyline Reconstruction for Unordered Images

Storyline Reconstruction for Unordered Images Introduction: Storyline Reconstruction for Unordered Images Final Paper Sameedha Bairagi, Arpit Khandelwal, Venkatesh Raizaday Storyline reconstruction is a relatively new topic and has not been researched

More information

Challenges motivating deep learning. Sargur N. Srihari

Challenges motivating deep learning. Sargur N. Srihari Challenges motivating deep learning Sargur N. srihari@cedar.buffalo.edu 1 Topics In Machine Learning Basics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation

More information

Recognition Tools: Support Vector Machines

Recognition Tools: Support Vector Machines CS 2770: Computer Vision Recognition Tools: Support Vector Machines Prof. Adriana Kovashka University of Pittsburgh January 12, 2017 Announcement TA office hours: Tuesday 4pm-6pm Wednesday 10am-12pm Matlab

More information

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Adding spatial information Forming vocabularies from pairs of nearby features doublets

More information

CSE 158. Web Mining and Recommender Systems. Midterm recap

CSE 158. Web Mining and Recommender Systems. Midterm recap CSE 158 Web Mining and Recommender Systems Midterm recap Midterm on Wednesday! 5:10 pm 6:10 pm Closed book but I ll provide a similar level of basic info as in the last page of previous midterms CSE 158

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 6: k-nn Cross-validation Regularization LEARNING METHODS Lazy vs eager learning Eager learning generalizes training data before

More information

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation

Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Instance-Based Learning: Nearest neighbor and kernel regression and classificiation Emily Fox University of Washington February 3, 2017 Simplest approach: Nearest neighbor regression 1 Fit locally to each

More information

Image Classification pipeline. Lecture 2-1

Image Classification pipeline. Lecture 2-1 Lecture 2: Image Classification pipeline Lecture 2-1 Administrative: Piazza For questions about midterm, poster session, projects, etc, use Piazza! SCPD students: Use your @stanford.edu address to register

More information

Local Features and Bag of Words Models

Local Features and Bag of Words Models 10/14/11 Local Features and Bag of Words Models Computer Vision CS 143, Brown James Hays Slides from Svetlana Lazebnik, Derek Hoiem, Antonio Torralba, David Lowe, Fei Fei Li and others Computer Engineering

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods + CS78: Machine Learning and Data Mining Complexity & Nearest Neighbor Methods Prof. Erik Sudderth Some materials courtesy Alex Ihler & Sameer Singh Machine Learning Complexity and Overfitting Nearest

More information

Structured Models in. Dan Huttenlocher. June 2010

Structured Models in. Dan Huttenlocher. June 2010 Structured Models in Computer Vision i Dan Huttenlocher June 2010 Structured Models Problems where output variables are mutually dependent or constrained E.g., spatial or temporal relations Such dependencies

More information

CPSC 340: Machine Learning and Data Mining. Multi-Class Classification Fall 2017

CPSC 340: Machine Learning and Data Mining. Multi-Class Classification Fall 2017 CPSC 340: Machine Learning and Data Mining Multi-Class Classification Fall 2017 Assignment 3: Admin Check update thread on Piazza for correct definition of trainndx. This could make your cross-validation

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Adaptive Binary Quantization for Fast Nearest Neighbor Search

Adaptive Binary Quantization for Fast Nearest Neighbor Search IBM Research Adaptive Binary Quantization for Fast Nearest Neighbor Search Zhujin Li 1, Xianglong Liu 1*, Junjie Wu 1, and Hao Su 2 1 Beihang University, Beijing, China 2 Stanford University, Stanford,

More information

Computer Vision. Exercise Session 10 Image Categorization

Computer Vision. Exercise Session 10 Image Categorization Computer Vision Exercise Session 10 Image Categorization Object Categorization Task Description Given a small number of training images of a category, recognize a-priori unknown instances of that category

More information

An Exploration of Computer Vision Techniques for Bird Species Classification

An Exploration of Computer Vision Techniques for Bird Species Classification An Exploration of Computer Vision Techniques for Bird Species Classification Anne L. Alter, Karen M. Wang December 15, 2017 Abstract Bird classification, a fine-grained categorization task, is a complex

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 19 th, 2007 2005-2007 Carlos Guestrin 1 Why not just use Linear Regression? 2005-2007 Carlos Guestrin

More information

Supervised Sementation: Pixel Classification

Supervised Sementation: Pixel Classification Supervised Sementation: Pixel Classification Example: A Classification Problem Categorize images of fish say, Atlantic salmon vs. Pacific salmon Use features such as length, width, lightness, fin shape

More information

Beyond Bags of features Spatial information & Shape models

Beyond Bags of features Spatial information & Shape models Beyond Bags of features Spatial information & Shape models Jana Kosecka Many slides adapted from S. Lazebnik, FeiFei Li, Rob Fergus, and Antonio Torralba Detection, recognition (so far )! Bags of features

More information

Perception IV: Place Recognition, Line Extraction

Perception IV: Place Recognition, Line Extraction Perception IV: Place Recognition, Line Extraction Davide Scaramuzza University of Zurich Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Outline of Today s lecture Place recognition using

More information

Attributes and More Crowdsourcing

Attributes and More Crowdsourcing Attributes and More Crowdsourcing Computer Vision CS 143, Brown James Hays Many slides from Derek Hoiem Recap: Human Computation Active Learning: Let the classifier tell you where more annotation is needed.

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 16: Bag-of-words models Object Bag of words Announcements Project 3: Eigenfaces due Wednesday, November 11 at 11:59pm solo project Final project presentations:

More information

Part based models for recognition. Kristen Grauman

Part based models for recognition. Kristen Grauman Part based models for recognition Kristen Grauman UT Austin Limitations of window-based models Not all objects are box-shaped Assuming specific 2d view of object Local components themselves do not necessarily

More information

COURSE WEBPAGE. Peter Orbanz Applied Data Mining

COURSE WEBPAGE.   Peter Orbanz Applied Data Mining INTRODUCTION COURSE WEBPAGE http://stat.columbia.edu/~porbanz/un3106s18.html iii THIS CLASS What to expect This class is an introduction to machine learning. Topics: Classification; learning ; basic neural

More information

Part-Based Models for Object Class Recognition Part 3

Part-Based Models for Object Class Recognition Part 3 High Level Computer Vision! Part-Based Models for Object Class Recognition Part 3 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de! http://www.d2.mpi-inf.mpg.de/cv ! State-of-the-Art

More information

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017 Machine Learning in the Wild Dealing with Messy Data Rajmonda S. Caceres SDS 293 Smith College October 30, 2017 Analytical Chain: From Data to Actions Data Collection Data Cleaning/ Preparation Analysis

More information