Tiva TM C Series TM4C123x MCUs

Size: px
Start display at page:

Download "Tiva TM C Series TM4C123x MCUs"

Transcription

1 Tiva TM C Series TM4C123x MCUs Floating-Point Performance, Analog Integration and Best-in-Class Low-Power Consumption Floating Point Unit Ashish Ahuja Acknowledgements: Alex Bestavros

2 Agenda IEEE 754 Standard ARM Cortex TM -M4F Floating Point Unit Modes of Operation & Registers Instruction Set CMSIS DSP Library Getting Started DSP Library Functions DSP Library Performance TivaWare TM for C Series Peripheral Driver Library Sensor Library 2

3 Agenda IEEE 754 Standard ARM Cortex TM -M4F Floating Point Unit Modes of Operation & Registers Instruction Set CMSIS DSP Library Getting Started DSP Library Functions DSP Library Performance TivaWare TM for C Series Peripheral Driver Library Sensor Library 3

4 Introduction Floating-Point Floating-point is a way to represent real ( ) numbers on computers IEEE floating-point formats: Half (16-bit) Single (32-bit) Double (64-bit) Quadruple (128-bit) 4

5 IEEE Standard 754 Bit X Symbol Sign (s) Exponent (e) Fraction (f) 1 bit 8 bits 23 bits Decimal Value = (-1) s (1+f) 2 e-bias where: f = [(b -i )2 -i ] i ϵ (1,23) bias = 127 for single precision floating-point Symbol s e f Example X sign = (-1) 0 exponent = [ ] 2 = [134] 10 fraction = [ ] 2 = [ ] 10 = [1] 10 Decimal Value = (-1) s x (1+f) x 2 e-bias = [1] 10 x ([1] 10 + [ ] 10 ) x [ ] 10 = [ ] 10 x 128 = [ ] 10 5

6 ARM Cortex -M4F What s new? ANSI/IEEE Std compliant, IEEE Standard for Binary Floating-Point Arithmetic compliant Hardware support for conversion, addition, subtraction, multiplication with optional accumulate, division, and square-root Advantages Higher precision in control loops (can save energy in motors) Faster signal processing, lower latency & faster response Easier to integrate with tools such as MATLAB and LabVIEW Cortex M4F Block Diagram Image: 6

7 Floating Point Unit Combined multiply and accumulate (MAC) functions for increased precision 32 x 32 multiply accumulate (MAC) with 64-bit result Example End Applications Data compression, sensor array processing, statistical signal processing, multi-band graphic equalizers Measure, filter, compress real-world analog signals Control systems such as motor control, solar inverters, lighting control Digital signal control applications that demand an efficient, easy-to-use blend of control and signal processing capabilities Multiband Equalizers HVAC, Pump, Inverter, Compressor Motor Automation and Motor Control Solar Inverters Lighting Control Example End Applications 7

8 Floating Point Unit Conversions between fixed-point and floating-point data formats, and floating-point constant instructions 32-bit instructions for single-precision data-processing operations Single instruction, multiple data (SIMD) for 16-bit data types Decoupled three-stage pipeline Hardware support for denormals and all IEEE rounding modes Supports saturation math FPU may be disabled to conserve power 8

9 ISA Compatibility 9

10 Agenda IEEE 754 Standard ARM Cortex TM -M4F Floating Point Unit Modes of Operation & Registers Instruction Set CMSIS DSP Library Getting Started DSP Library Functions DSP Library Performance TivaWare TM for C Series Peripheral Driver Library Sensor Library 10

11 Modes of Operation Three modes of operation are provided to accommodate a variety of applications Full Compliance Mode FPU processes all operations according to the IEEE 754 standard in hardware Flush-to-Zero (FZ) Mode A tiny result, where the destination precision is smaller in magnitude than the minimum normal value before rounding, is replaced with a zero Setting the FZ bit in the FPSC register enables this mode Default NaN (DN) Mode The result of any arithmetic data processing operation that involves an input NaN, or that generates a NaN result, returns the default NaN. Setting the DN bit in the FPSC register enables the default NaN mode Example of NaN being returned 0 / 0 = NaN 11

12 Register Bank The FPU provides an extension register file containing 32 single-precision registers. Sixteen 64-bit double-word registers, D0-D15 Thirty-two 32-bit single-word registers, S0-S31 A combination of registers from the above views Mapping between registers S<2n> maps to least significant half of D<n> S<2n+1> maps to most significant half of D<n> Compliers can use floating-point registers for floating-point or non-floating-point code. S0 S1 S2 S3 S4 S5 S30 S31 D0 D1 D2 D15 FPU Register Bank 12

13 Agenda IEEE 754 Standard ARM Cortex TM -M4F Floating Point Unit Modes of Operation & Registers Instruction Set CMSIS DSP Library Getting Started DSP Library Functions DSP Library Performance TivaWare TM for C Series Peripheral Driver Library Sensor Library 13

14 Instruction Set Operation Description Assembler Cycles Absolute Value of float VABS.F32 1 Addition floating point VADD.F32 1 Compare float with register or zero VCMP.F32 1 Convert between integer, fixed-point, half precision and float VCVT.F32 1 Divide floating-point VDIV.F32 14 Move immediate/ float to float-register VMOV 1 Multiply float VMUL.32 1 Negate float VNEG.F32 1 Pop float registers from stack VPOP.32 1+N Push float registers to stack VPUSH.32 1+N Square-root of float VSQRT.F32 14 Store single float register VSTR.32 2 Subtract float VSUB.F32 1 Note: Please refer ARM DDI 0439C ID Cortex M4 Technical Reference Manual for the complete instruction set. N = number of registers. 14

15 Agenda IEEE 754 Standard ARM Cortex TM -M4F Floating Point Unit Modes of Operation & Registers Instruction Set CMSIS DSP Library Getting Started DSP Library Functions DSP Library Performance TivaWare TM for C Series Peripheral Driver Library Sensor Library 15

16 HW CMSIS USER CMSIS DSP Library Cortex TM Microcontroller Software Interface Standard (CMSIS) TM Provides a single standard across all Cortex-M processor Enables code re-use across software projects Reduces time-to-market for new embedded applications CMSIS DSP Library A suite of common signal processing functions for use on Cortex-M processor based devices Includes separate functions for operating on 8-bit, 16-bit, 32-bit integer and 32-bit floating-point values. Developed & tested with MDK-ARM. Support for IAR, GCC & CCS coming soon Supports single public header file arm_math.h for Cortex- M4/M3/M0 with little endian and big endian Application Code CMSIS DSP Lib CMSIS Core Cortex MCU Core Source: CMSIS Documentation CMSIS\Documentation\DSP_Lib\html\index.html CMSIS DSP Library 16

17 Example CMSIS DSP Library Functions Filtering Transform & Controller Math Matrix & Interpolation Statistics Convolution Complex FFT & CIFFT Absolute Value Addition Mean Correlation Finite Impulse Response (FIR) Decimator Discrete Cosine Transform & IDCT Vector Addition Inverse Sum of Squares Real FFT & RIFFT Vector Multiplication Vector Multiplication Root Mean Square FIR Interpolator PID Control Dot Product Scalar Multiplication Standard Deviation FIR Lattice Sine & Cosine Negate Subtraction Variance FIR Sparse IIR Lattice Least Mean Square (LMS) Filter Normalized LMS Filter Vector Clark Transform (VCT) Vector Park Transform (VPT) IVCT & IVPT Square Root Vector & Scalar Multiplication Transpose Max Complex Conjugate Linear Interpolation Min Complex/ Real Multiplication Bilinear Interpolation Source: CMSIS Documentation CMSIS\Documentation\DSP_Lib\html\modules.html 17

18 CMSIS DSP Library Performance Cortex TM -M4 SIMD + FPU vs. Cortex M3 Fixed-point ~ 2x faster Floating-point ~ 10x faster DSP Library Benchmark: Cortex M3 v/s Cortex M4 Source: ARM CMSIS Partner Meeting Embedded World, Reinhard Keil 18

19 Using CMSIS Examples with CCS Examples Maximum, Minimum, Mean, Standard Deviation, Variance and Matrix functions Complex FFT, Complex-by-Complex Multiplication functions Multiply and Add functions to perform the dot product functions FIR lowpass filter function Complex FFT, Complex Magnitude, and Maximum functions Biquad cascade functions Matrix Transpose, Matrix Multiplication, and Matrix Inverse functions Normalized LMS Filter, Finite Impulse Response (FIR) Filter, and basic math functions Cosine, Sine, Vector Multiplication, and Vector Addition functions Source: CMSIS Documentation CMSIS\Documentation\DSP_Lib\html\examples.html Application Note click on Technical Docs tab 19

20 Agenda IEEE 754 Standard ARM Cortex TM -M4F Floating Point Unit Modes of Operation & Registers Instruction Set CMSIS DSP Library Getting Started DSP Library Functions DSP Library Performance TivaWare TM for C Series Peripheral Driver Library Sensor Library 20

21 TivaWare TM for C Series Over 250 APIs for graphical display support Over 175 APIs for USB device, USB host, or USB On-The-Go (OTG) applications Over 50 APIs for accel, gyro, and magnetometer sensor fusion. Provides open source Ethernet and RTOS options Provides an extensive array of third-party packages Graphics Library USB Library Sensor Library Peripheral Driver Library Open Source RTOS Boot Loader and In-System Programming Support Open Source Stacks TivaWare TM for C Series Software Utilities: Checksum Security Code Examples Third- Party Packages Over 700 APIs for peripheral initialization and control functions Provides in-field programmability Over 150 APIs providing optimized commonly used functions such as CRC checking and AES tables Over 50 apps providing an extensive array of source code samples 21

22 Peripheral Driver Library TivaWare TM for C Series FREE download from TI s website Visit Driver library (driverlib) APIs Function & Marco Declaration: fpu.h Function Definition: fpu.c C:\ti\TivaWare_C_Series-1.0\driverlib Code example(s) for FPU C:\ti\TivaWare_C_Series-1.0\examples List of FPU API s void FPUDisable (void) void FPUEnable (void) void FPUFlushToZeroModeSet (uint32_t ui32mode) void FPUHalfPrecisionModeSet (uint32_t ui32mode) void FPULazyStackingEnable (void) void FPUNaNModeSet (uint32_t ui32mode) void FPURoundingModeSet (uint32_t ui32mode) void FPUStackingDisable (void) void FPUStackingEnable (void) User guide C:\ti\TivaWare_C_Series-1.0\docs 22

23 Sensor Library USER MCU Sensor library is: A set of drivers for I 2 C connected sensors Three layers: Transport, Sensor and Processing Pre-complied on multiple tool chains Extendable to a variety of sensors Application Code All sensors provide a GetFloat() function Returns data in standard international units Reduces time-to-market for new embedded applications Utilizes the FPU capability of TM4C123x MCUs Keep math simple & true to textbook formulas TivaWare TM Sensor Lib Peripheral Driver Lib Sensors HW Example APIs: Initialize the I 2 C driver I2CMInit() Initialize the TMP006 TMP006Init() Read data from the TMP006 TMP006DataRead() CM4 Core with FPU How Sensor Library Fits in Your Application? 23

24 SensorHub Booster Pack Add sensor aggregation capabilities to your designs Motion tracking: gyro, accelerometer & compass Environmental monitoring: pressure, humidity, ambient temperature, ambient light & infrared sensor Designed for Tiva C Series LaunchPad Supports multiple tool chains CCS, Keil, IAR & Sourcery Code Bench Get started with Sensor Fusion technology in 10 minutes or less Air Mouse Example: USB Composite HID keyboard & mouse Viterbi-like gestures Wireless ready with RemoTI Tiva TM SensorHub Booster Pack Onboard temperature, pressure, motion, humidity, ambient light & IR sensors Tiva TM Launchpad EK-TM4C123GXL Low-Cost Versatile Evaluation Platform The Sensibility of Sensors 24

25 More Information Technical Documents : click on Technical Docs tab Order Samples : click on Products tab Tools & Software : click on Tools & Software tab Technical Support : click on Community & Support tab Tiva TM Launchpad EK-TM4C123GXL Low-Cost Versatile Evaluation Platform 25

Floating-Point Unit. Introduction. Agenda

Floating-Point Unit. Introduction. Agenda Floating-Point Unit Introduction This chapter will introduce you to the Floating-Point Unit (FPU) on the LM4F series devices. In the lab we will implement a floating-point sine wave calculator and profile

More information

STM32F4 Core, DSP, FPU & Library

STM32F4 Core, DSP, FPU & Library STM32F4 Core, DSP, FPU & Library A practical introduction to fixed / floating point A practical introduction of the floating point unit Tips & comments on floating points usage 2 Content A practical introduction

More information

Designing with STM32F2x & STM32F4

Designing with STM32F2x & STM32F4 Designing with STM32F2x & STM32F4 Course Description Designing with STM32F2x & STM32F4 is a 3 days ST official course. The course provides all necessary theoretical and practical know-how for start developing

More information

Implementing Biquad IIR filters with the ASN Filter Designer and the ARM CMSIS DSP software framework

Implementing Biquad IIR filters with the ASN Filter Designer and the ARM CMSIS DSP software framework Implementing Biquad IIR filters with the ASN Filter Designer and the ARM CMSIS DSP software framework Application note (ASN-AN05) November 07 (Rev 4) SYNOPSIS Infinite impulse response (IIR) filters are

More information

LABORATORIO DI ARCHITETTURE E PROGRAMMAZIONE DEI SISTEMI ELETTRONICI INDUSTRIALI

LABORATORIO DI ARCHITETTURE E PROGRAMMAZIONE DEI SISTEMI ELETTRONICI INDUSTRIALI LABORATORIO DI ARCHITETTURE E PROGRAMMAZIONE DEI SISTEMI ELETTRONICI INDUSTRIALI Laboratory Lesson 10: CMSIS DSP Library and Functions Final Assignment Prof. Luca Benini Prof Davide

More information

ARM Cortex core microcontrollers 3. Cortex-M0, M4, M7

ARM Cortex core microcontrollers 3. Cortex-M0, M4, M7 ARM Cortex core microcontrollers 3. Cortex-M0, M4, M7 Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2018 Trends of 32-bit microcontrollers

More information

MLIB User's Guide. ARM Cortex M4F

MLIB User's Guide. ARM Cortex M4F MLIB User's Guide ARM Cortex M4F Document Number: CM4FMLIBUG Rev. 1, 08/2016 2 NXP Semiconductors Contents Section number Title Page Chapter 1 Library 1.1 Introduction... 7 1.2 Library integration into

More information

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

More information

xcore-200 DSP Library

xcore-200 DSP Library xcore-200 DSP Library This API reference manual describes the XMOS fixed-point digital signal processing software library. The library implements of a suite of common signal processing functions for use

More information

Kinetis Software Optimization

Kinetis Software Optimization Kinetis Software Optimization Course Description This course provides all necessary theoretical and practical know-how to enhance performance with the Kinetis family. The course provides an in-depth overview

More information

MPLAB Harmony Help - Math Libraries

MPLAB Harmony Help - Math Libraries MPLAB Harmony Help - Math Libraries MPLAB Harmony Integrated Software Framework v1.11 2013-2017 Microchip Technology Inc. All rights reserved. Math Libraries Help Math Libraries Help This section provides

More information

Embedded Target for TI C6000 DSP 2.0 Release Notes

Embedded Target for TI C6000 DSP 2.0 Release Notes 1 Embedded Target for TI C6000 DSP 2.0 Release Notes New Features................... 1-2 Two Virtual Targets Added.............. 1-2 Added C62x DSP Library............... 1-2 Fixed-Point Code Generation

More information

An introduction to DSP s. Examples of DSP applications Why a DSP? Characteristics of a DSP Architectures

An introduction to DSP s. Examples of DSP applications Why a DSP? Characteristics of a DSP Architectures An introduction to DSP s Examples of DSP applications Why a DSP? Characteristics of a DSP Architectures DSP example: mobile phone DSP example: mobile phone with video camera DSP: applications Why a DSP?

More information

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop. Version 1.05

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop. Version 1.05 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop Version 1.05 Agenda Introduction to ARM Cortex Cortex -M4F M4F and Peripherals Code Composer Studio Introduction to StellarisWare, I iti

More information

Introduction to C. Why C? Difference between Python and C C compiler stages Basic syntax in C

Introduction to C. Why C? Difference between Python and C C compiler stages Basic syntax in C Final Review CS304 Introduction to C Why C? Difference between Python and C C compiler stages Basic syntax in C Pointers What is a pointer? declaration, &, dereference... Pointer & dynamic memory allocation

More information

Cortex-M3/M4 Software Development

Cortex-M3/M4 Software Development Cortex-M3/M4 Software Development Course Description Cortex-M3/M4 software development is a 3 days ARM official course. The course goes into great depth and provides all necessary know-how to develop software

More information

GDFLIB User's Guide. ARM Cortex M0+

GDFLIB User's Guide. ARM Cortex M0+ GDFLIB User's Guide ARM Cortex M0+ Document Number: CM0GDFLIBUG Rev. 4, 11/2016 2 NXP Semiconductors Contents Section number Title Page Chapter 1 Library 1.1 Introduction... 5 1.2 Library integration into

More information

MLIB User's Guide. ARM Cortex M4

MLIB User's Guide. ARM Cortex M4 MLIB User's Guide ARM Cortex M4 Document Number: CM4MLIBUG Rev. 3, 08/2016 2 NXP Semiconductors Contents Section number Title Page Chapter 1 Library 1.1 Introduction... 7 1.2 Library integration into project

More information

C55x Digital Signal Processors Software Overview

C55x Digital Signal Processors Software Overview C55x Digital Signal Processors Software Overview Agenda C55x Chip Support Library (CSL) Introduction Benefits Structure Example C55x DSP Library (DSPLIB) Introduction Structure Programmer Reference Guide

More information

D. Richard Brown III Associate Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department

D. Richard Brown III Associate Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department D. Richard Brown III Associate Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department drb@ece.wpi.edu 3-November-2008 Analog To Digital Conversion analog signal ADC digital

More information

Storage I/O Summary. Lecture 16: Multimedia and DSP Architectures

Storage I/O Summary. Lecture 16: Multimedia and DSP Architectures Storage I/O Summary Storage devices Storage I/O Performance Measures» Throughput» Response time I/O Benchmarks» Scaling to track technological change» Throughput with restricted response time is normal

More information

AVR32765: AVR32 DSPLib Reference Manual. 32-bit Microcontrollers. Application Note. 1 Introduction. 2 Reference

AVR32765: AVR32 DSPLib Reference Manual. 32-bit Microcontrollers. Application Note. 1 Introduction. 2 Reference AVR32765: AVR32 DSPLib Reference Manual 1 Introduction The AVR 32 DSP Library is a compilation of digital signal processing functions. All function availables in the DSP Library, from the AVR32 Software

More information

CONTACT: ,

CONTACT: , S.N0 Project Title Year of publication of IEEE base paper 1 Design of a high security Sha-3 keccak algorithm 2012 2 Error correcting unordered codes for asynchronous communication 2012 3 Low power multipliers

More information

Application Note: AN00209 xcore-200 DSP Elements Library

Application Note: AN00209 xcore-200 DSP Elements Library Application Note: AN00209 xcore-200 DSP Elements Library The application note gives an overview of using the xcore-200 DSP Elements Library. Required tools and libraries xtimecomposer Tools - Version 14.0.0

More information

REAL TIME DIGITAL SIGNAL PROCESSING

REAL TIME DIGITAL SIGNAL PROCESSING REAL TIME DIGITAL SIGNAL PROCESSING UTN - FRBA 2011 www.electron.frba.utn.edu.ar/dplab Introduction Why Digital? A brief comparison with analog. Advantages Flexibility. Easily modifiable and upgradeable.

More information

Design of Embedded DSP Processors Unit 2: Design basics. 9/11/2017 Unit 2 of TSEA H1 1

Design of Embedded DSP Processors Unit 2: Design basics. 9/11/2017 Unit 2 of TSEA H1 1 Design of Embedded DSP Processors Unit 2: Design basics 9/11/2017 Unit 2 of TSEA26-2017 H1 1 ASIP/ASIC design flow We need to have the flow in mind, so that we will know what we are talking about in later

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

Digital Signal Processing with Field Programmable Gate Arrays

Digital Signal Processing with Field Programmable Gate Arrays Uwe Meyer-Baese Digital Signal Processing with Field Programmable Gate Arrays Third Edition With 359 Figures and 98 Tables Book with CD-ROM ei Springer Contents Preface Preface to Second Edition Preface

More information

REAL TIME DIGITAL SIGNAL PROCESSING

REAL TIME DIGITAL SIGNAL PROCESSING REAL TIME DIGITAL SIGNAL PROCESSING UTN-FRBA 2011 www.electron.frba.utn.edu.ar/dplab Architecture Introduction to the Blackfin Processor Introduction to MSA Micro Signal Architecture (MSA) core was jointly

More information

Implementation of IEEE754 Floating Point Multiplier

Implementation of IEEE754 Floating Point Multiplier Implementation of IEEE754 Floating Point Multiplier A Kumutha 1 Shobha. P 2 1 MVJ College of Engineering, Near ITPB, Channasandra, Bangalore-67. 2 MVJ College of Engineering, Near ITPB, Channasandra, Bangalore-67.

More information

(Type your answer in radians. Round to the nearest hundredth as needed.)

(Type your answer in radians. Round to the nearest hundredth as needed.) 1. Find the exact value of the following expression within the interval (Simplify your answer. Type an exact answer, using as needed. Use integers or fractions for any numbers in the expression. Type N

More information

Floating Point Representation in Computers

Floating Point Representation in Computers Floating Point Representation in Computers Floating Point Numbers - What are they? Floating Point Representation Floating Point Operations Where Things can go wrong What are Floating Point Numbers? Any

More information

Chapter 3: Arithmetic for Computers

Chapter 3: Arithmetic for Computers Chapter 3: Arithmetic for Computers Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point Computer Architecture CS 35101-002 2 The Binary Numbering

More information

REAL TIME DIGITAL SIGNAL PROCESSING

REAL TIME DIGITAL SIGNAL PROCESSING REAL TIME DIGITAL SIGNAL PROCESSING UTN-FRBA 2010 Introduction Why Digital? A brief comparison with analog. Advantages Flexibility. Easily modifiable and upgradeable. Reproducibility. Don t depend on components

More information

GFLIB User's Guide. ARM Cortex M0+

GFLIB User's Guide. ARM Cortex M0+ GFLIB User's Guide ARM Cortex M0+ Document Number: CM0GFLIBUG Rev. 4, 11/2016 2 NXP Semiconductors Contents Section number Title Page Chapter 1 Library 1.1 Introduction... 5 1.2 Library integration into

More information

Component-based Software Development for Microcontrollers. Zhang Zheng FAE, ARM China

Component-based Software Development for Microcontrollers. Zhang Zheng FAE, ARM China Component-based Software Development for Microcontrollers Zhang Zheng FAE, ARM China 1 1 Agenda The Challenge in embedded software creation The Software Pack concept Implementation in MDK Version 5 Consistent

More information

RM3 - Cortex-M4 / Cortex-M4F implementation

RM3 - Cortex-M4 / Cortex-M4F implementation Formation Cortex-M4 / Cortex-M4F implementation: This course covers both Cortex-M4 and Cortex-M4F (with FPU) ARM core - Processeurs ARM: ARM Cores RM3 - Cortex-M4 / Cortex-M4F implementation This course

More information

Divide: Paper & Pencil

Divide: Paper & Pencil Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend -1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or

More information

Method We follow- How to Get Entry Pass in SEMICODUCTOR Industries for 3rd year engineering. Winter/Summer Training

Method We follow- How to Get Entry Pass in SEMICODUCTOR Industries for 3rd year engineering. Winter/Summer Training Method We follow- How to Get Entry Pass in SEMICODUCTOR Industries for 3rd year engineering Winter/Summer Training Level 2 continues. 3 rd Year 4 th Year FIG-3 Level 1 (Basic & Mandatory) & Level 1.1 and

More information

D. Richard Brown III Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department

D. Richard Brown III Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department D. Richard Brown III Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department drb@ece.wpi.edu Lecture 2 Some Challenges of Real-Time DSP Analog to digital conversion Are

More information

How to validate your FPGA design using realworld

How to validate your FPGA design using realworld How to validate your FPGA design using realworld stimuli Daniel Clapham National Instruments ni.com Agenda Typical FPGA Design NIs approach to FPGA Brief intro into platform based approach RIO architecture

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Hands-On Workshop: ARM mbed

Hands-On Workshop: ARM mbed Hands-On Workshop: ARM mbed FTF-DES-F1302 Sam Grove - ARM Michael Norman Freescale J U N. 2 0 1 5 External Use Agenda What is mbed mbed Hardware mbed Software mbed Tools mbed Support and Community Hands-On

More information

C55x Digital Signal Processors Software Overview

C55x Digital Signal Processors Software Overview C55x Digital Signal Processors C55x Digital Signal Processors Software Overview Agenda C55x Chip Support Library (CSL) Introduction Benefits Structure Example C55x DSP Library (DSPLIB) Introduction Structure

More information

Head, Dept of Electronics & Communication National Institute of Technology Karnataka, Surathkal, India

Head, Dept of Electronics & Communication National Institute of Technology Karnataka, Surathkal, India Mapping Signal Processing Algorithms to Architecture Sumam David S Head, Dept of Electronics & Communication National Institute of Technology Karnataka, Surathkal, India sumam@ieee.org Objectives At the

More information

Heterogeneous multi-processing with Linux and the CMSIS-DSP library

Heterogeneous multi-processing with Linux and the CMSIS-DSP library Heterogeneous multi-processing with Linux and the CMSIS-DSP library DS-MDK Tutorial AN290, September 2016, V 1.1 Abstract This Application note shows how to use DS-MDK to debug a typical application running

More information

Some Basic Concepts EL6483. Spring EL6483 Some Basic Concepts Spring / 22

Some Basic Concepts EL6483. Spring EL6483 Some Basic Concepts Spring / 22 Some Basic Concepts EL6483 Spring 2016 EL6483 Some Basic Concepts Spring 2016 1 / 22 Embedded systems Embedded systems are rather ubiquitous these days (and increasing rapidly). By some estimates, there

More information

Arithmetic and Logic Blocks

Arithmetic and Logic Blocks Arithmetic and Logic Blocks The Addition Block The block performs addition and subtractions on its inputs. This block can add or subtract scalar, vector, or matrix inputs. We can specify the operation

More information

NFC Framework and NT3H1201 Device Driver v1.1

NFC Framework and NT3H1201 Device Driver v1.1 NFC Framework and NT3H1201 Device Driver v1.1 Quickstart Guide for ARIS board All information contained in these materials, including products and product specifications, represents information on the

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers VO

More information

Quick Start Guide. Sound terminal expansion board based on STA350BW for STM32 NUCLEO (X-NUCLEO-CCA01M1) Version 1.1.

Quick Start Guide. Sound terminal expansion board based on STA350BW for STM32 NUCLEO (X-NUCLEO-CCA01M1) Version 1.1. Quick Start Guide Sound terminal expansion board based on STA350BW for STM32 NUCLEO (X-NUCLEO-CCA01M1) Version 1.1.0 (May 31, 2016) Quick Start Guide Contents 2 X-NUCLEO-CCA01M1: Sound terminal expansion

More information

Computer Architecture and IC Design Lab. Chapter 3 Part 2 Arithmetic for Computers Floating Point

Computer Architecture and IC Design Lab. Chapter 3 Part 2 Arithmetic for Computers Floating Point Chapter 3 Part 2 Arithmetic for Computers Floating Point Floating Point Representation for non integral numbers Including very small and very large numbers 4,600,000,000 or 4.6 x 10 9 0.0000000000000000000000000166

More information

02 - Numerical Representation and Introduction to Junior

02 - Numerical Representation and Introduction to Junior 02 - Numerical Representation and Introduction to Junior September 10, 2013 Todays lecture Finite length effects, continued from Lecture 1 How to handle overflow Introduction to the Junior processor Demonstration

More information

02 - Numerical Representations

02 - Numerical Representations September 3, 2014 Todays lecture Finite length effects, continued from Lecture 1 Floating point (continued from Lecture 1) Rounding Overflow handling Example: Floating Point Audio Processing Example: MPEG-1

More information

COSC 243. Data Representation 3. Lecture 3 - Data Representation 3 1. COSC 243 (Computer Architecture)

COSC 243. Data Representation 3. Lecture 3 - Data Representation 3 1. COSC 243 (Computer Architecture) COSC 243 Data Representation 3 Lecture 3 - Data Representation 3 1 Data Representation Test Material Lectures 1, 2, and 3 Tutorials 1b, 2a, and 2b During Tutorial a Next Week 12 th and 13 th March If you

More information

Techniques for Optimizing Performance and Energy Consumption: Results of a Case Study on an ARM9 Platform

Techniques for Optimizing Performance and Energy Consumption: Results of a Case Study on an ARM9 Platform Techniques for Optimizing Performance and Energy Consumption: Results of a Case Study on an ARM9 Platform BL Standard IC s, PL Microcontrollers October 2007 Outline LPC3180 Description What makes this

More information

Quick Start Guide. Bluetooth Low Energy expansion board based on SPBTLE-RF module for STM32 Nucleo (X-NUCLEO-IDB05A1) Version 1.

Quick Start Guide. Bluetooth Low Energy expansion board based on SPBTLE-RF module for STM32 Nucleo (X-NUCLEO-IDB05A1) Version 1. Quick Start Guide Bluetooth Low Energy expansion board based on SPBTLE-RF module for STM32 Nucleo (X-NUCLEO-IDB05A1) Version 1.5 (Feb 1, 2017) Quick Start Guide Contents 2 STM32 Nucleo Bluetooth Low Energy

More information

Quick Start Guide. Dual-channel high side driver expansion board based on VPS2535H for STM32 Nucleo (X-NUCLEO-IPS02A1) Version 1.0 (Sept.

Quick Start Guide. Dual-channel high side driver expansion board based on VPS2535H for STM32 Nucleo (X-NUCLEO-IPS02A1) Version 1.0 (Sept. Quick Start Guide Dual-channel high side driver expansion board based on VPS2535H for STM32 Nucleo (X-NUCLEO-IPS02A1) Version 1.0 (Sept. 2016) Quick Start Guide Contents 2 X-NUCLEO-IPS02A1: Dual-channel

More information

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions CHAPTER 4 Operations On Data (Solutions to Odd-Numbered Problems) Review Questions 1. Arithmetic operations interpret bit patterns as numbers. Logical operations interpret each bit as a logical values

More information

systems such as Linux (real time application interface Linux included). The unified 32-

systems such as Linux (real time application interface Linux included). The unified 32- 1.0 INTRODUCTION The TC1130 is a highly integrated controller combining a Memory Management Unit (MMU) and a Floating Point Unit (FPU) on one chip. Thanks to the MMU, this member of the 32-bit TriCoreTM

More information

A Guide. DSP Library

A Guide. DSP Library DSP A Guide To The DSP Library SystemView by ELANIX Copyright 1994-2005, Eagleware Corporation All rights reserved. Eagleware-Elanix Corporation 3585 Engineering Drive, Suite 150 Norcross, GA 30092 USA

More information

AN10913 DSP library for LPC1700 and LPC1300

AN10913 DSP library for LPC1700 and LPC1300 Rev. 3 11 June 2010 Application note Document information Info Content Keywords LPC1700, LPC1300, DSP library Abstract This application note describes how to use the DSP library with the LPC1700 and LPC1300

More information

mith College Computer Science Fixed-Point & Floating-Point Number Formats CSC231 Dominique Thiébaut

mith College Computer Science Fixed-Point & Floating-Point Number Formats CSC231 Dominique Thiébaut mith College Computer Science Fixed-Point & Floating-Point Number Formats CSC231 Dominique Thiébaut dthiebaut@smith.edu Reference http://cs.smith.edu/dftwiki/index.php/ CSC231_An_Introduction_to_Fixed-_and_Floating-

More information

System Energy Efficiency Lab seelab.ucsd.edu

System Energy Efficiency Lab seelab.ucsd.edu Motivation Embedded systems operate in, interact with, and react to an analog, real-time world Interfacing with this world is not easy or monolithic Sensors: provide measurements of the outside world Actuators:

More information

NXP Unveils Its First ARM Cortex -M4 Based Controller Family

NXP Unveils Its First ARM Cortex -M4 Based Controller Family NXP s LPC4300 MCU with Coprocessor: NXP Unveils Its First ARM Cortex -M4 Based Controller Family By Frank Riemenschneider, Editor, Electronik Magazine At the Electronica trade show last fall in Munich,

More information

S2CBench : Synthesizable SystemC Benchmark Suite for High-Level Synthesis

S2CBench : Synthesizable SystemC Benchmark Suite for High-Level Synthesis S2CBench : Synthesizable SystemC Benchmark Suite for High-Level Synthesis Benjamin Carrion Schafer 1, Ansuhree Mahapatra 2 The Hong Kong Polytechnic University Department of Electronic and Information

More information

Quick Start Guide. Long distance ranging ToF sensor expansion board based on VL53L1X for STM32 Nucleo (X-NUCLEO-53L1A1) Version (February 20, 2018)

Quick Start Guide. Long distance ranging ToF sensor expansion board based on VL53L1X for STM32 Nucleo (X-NUCLEO-53L1A1) Version (February 20, 2018) Quick Start Guide Long distance ranging ToF sensor expansion board based on VL53L1X for STM32 Nucleo (X-NUCLEO-53L1A1) Version (February 20, 2018) Quick Start Guide Contents 2 X-NUCLEO-53L1A1: Long distance

More information

Floating-point representations

Floating-point representations Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

More information

Floating-point representations

Floating-point representations Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

More information

Quick Start Guide. Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1.

Quick Start Guide. Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1. Quick Start Guide Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1.1 (July 07, 2015) Overview 2 1 Introduction to the STM32 Open Development Environment

More information

Model-Based Design for effective HW/SW Co-Design Alexander Schreiber Senior Application Engineer MathWorks, Germany

Model-Based Design for effective HW/SW Co-Design Alexander Schreiber Senior Application Engineer MathWorks, Germany Model-Based Design for effective HW/SW Co-Design Alexander Schreiber Senior Application Engineer MathWorks, Germany 2013 The MathWorks, Inc. 1 Agenda Model-Based Design of embedded Systems Software Implementation

More information

STM32 Open Development Environment

STM32 Open Development Environment STM32 Open Development Environment Fast, affordable Development and prototyping The STM32 Open Development Environment is a fast and affordable way to develop and prototype innovative devices and applications

More information

REAL-TIME DIGITAL SIGNAL PROCESSING

REAL-TIME DIGITAL SIGNAL PROCESSING REAL-TIME DIGITAL SIGNAL PROCESSING FUNDAMENTALS, IMPLEMENTATIONS AND APPLICATIONS Third Edition Sen M. Kuo Northern Illinois University, USA Bob H. Lee Ittiam Systems, Inc., USA Wenshun Tian Sonus Networks,

More information

An introduction to Digital Signal Processors (DSP) Using the C55xx family

An introduction to Digital Signal Processors (DSP) Using the C55xx family An introduction to Digital Signal Processors (DSP) Using the C55xx family Group status (~2 minutes each) 5 groups stand up What processor(s) you are using Wireless? If so, what technologies/chips are you

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

1.2 Round-off Errors and Computer Arithmetic

1.2 Round-off Errors and Computer Arithmetic 1.2 Round-off Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set

More information

Si7013 Temperature Humidity Driver v1.2

Si7013 Temperature Humidity Driver v1.2 Si7013 Temperature Humidity Driver v1.2 Quickstart Guide for ARIS board All information contained in these materials, including products and product specifications, represents information on the product

More information

Quick Start Guide. Bluetooth Low Energy expansion board based on BlueNRG for STM32 Nucleo (X-NUCLEO-IDB04A1) Version 1.

Quick Start Guide. Bluetooth Low Energy expansion board based on BlueNRG for STM32 Nucleo (X-NUCLEO-IDB04A1) Version 1. Quick Start Guide Bluetooth Low Energy expansion board based on BlueNRG for STM32 Nucleo (X-NUCLEO-IDB04A1) Version 1.6 (Feb 1, 2017) Quick Start Guide Contents 2 STM32 Nucleo Bluetooth Low Energy expansion

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 MATLAB 의 C 코드생성 워크플로우및최적화요령 정승혁과장 2015 The MathWorks, Inc. 2 MATLAB Coder User Story Using MATLAB Try a new idea quickly Evaluation of the system by testing and analysis High

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

Hands-On Workshop: ARM mbed : From Rapid Prototyping to Production

Hands-On Workshop: ARM mbed : From Rapid Prototyping to Production Hands-On Workshop: ARM mbed : From Rapid Prototyping to Production FTF-SDS-F0107 Michael Norman, Martin Kojtal A P R. 2 0 1 4 TM External Use Agenda What is mbed? mbed Hardware mbed Software mbed Tools

More information

How to Use Low-Energy Accelerator on MSP MCUs. Cash Hao Sept 2016

How to Use Low-Energy Accelerator on MSP MCUs. Cash Hao Sept 2016 How to Use Low-Energy Accelerator on MSP MCUs Cash Hao Sept 2016 1 Agenda 1. The Overview of Low-Energy Accelerator (LEA) 2. Getting Started Firmware on CCS and IAR 3. Finite Impulse Response (FIR) Example

More information

Implementing Secure Software Systems on ARMv8-M Microcontrollers

Implementing Secure Software Systems on ARMv8-M Microcontrollers Implementing Secure Software Systems on ARMv8-M Microcontrollers Chris Shore, ARM TrustZone: A comprehensive security foundation Non-trusted Trusted Security separation with TrustZone Isolate trusted resources

More information

ARROW ARIS Board Software User s Guide 27/07/2016

ARROW ARIS Board Software User s Guide 27/07/2016 ARROW ARIS Board Software User s Guide All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and

More information

Vector Floating-point Coprocessor VFP11. Technical Reference Manual. for ARM1136JF-S processor r1p5

Vector Floating-point Coprocessor VFP11. Technical Reference Manual. for ARM1136JF-S processor r1p5 VFP11 Vector Floating-point Coprocessor for ARM1136JF-S processor r1p5 Technical Reference Manual Copyright 2002, 2003, 2005-2007 ARM Limited. All rights reserved. ARM DDI 0274H VFP11 Vector Floating-point

More information

CS61c Midterm Review (fa06) Number representation and Floating points From your friendly reader

CS61c Midterm Review (fa06) Number representation and Floating points From your friendly reader CS61c Midterm Review (fa06) Number representation and Floating points From your friendly reader Number representation (See: Lecture 2, Lab 1, HW#1) KNOW: Kibi (2 10 ), Mebi(2 20 ), Gibi(2 30 ), Tebi(2

More information

Use of ISP1880 Accelero-Magnetometer, Temperature and Barometer Sensor

Use of ISP1880 Accelero-Magnetometer, Temperature and Barometer Sensor Use of Accelero-Magnetometer, Temperature and Barometer Sensor Application Note AN181105 Introduction Scope This application note describes how to set up a Sensor demonstration with Sensors Board that

More information

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right. Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

More information

EEMBC FPMARK THE EMBEDDED INDUSTRY S FIRST STANDARDIZED FLOATING-POINT BENCHMARK SUITE

EEMBC FPMARK THE EMBEDDED INDUSTRY S FIRST STANDARDIZED FLOATING-POINT BENCHMARK SUITE EEMBC FPMARK THE EMBEDDED INDUSTRY S FIRST STANDARDIZED FLOATING-POINT BENCHMARK SUITE Supporting Both Single- and Double-Precision Floating-Point Performance Quick Background: Industry-Standard Benchmarks

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Summer 8 Fractional numbers Fractional numbers fixed point Floating point numbers the IEEE 7 floating point standard Floating point operations Rounding modes CMPE Summer 8 Slides

More information

Quick Start Guide. High power stepper motor driver expansion board based on powerstep01 for STM32 Nucleo (X-NUCLEO-IHM03A1)

Quick Start Guide. High power stepper motor driver expansion board based on powerstep01 for STM32 Nucleo (X-NUCLEO-IHM03A1) Quick Start Guide High power stepper motor driver expansion board based on powerstep01 for STM32 Nucleo (X-NUCLEO-IHM03A1) Version 1.1.0 (May 16, 2016) Quick Start Guide Contents 2 X-NUCLEO-IHM03A1: high

More information

Analytical Approach for Numerical Accuracy Estimation of Fixed-Point Systems Based on Smooth Operations

Analytical Approach for Numerical Accuracy Estimation of Fixed-Point Systems Based on Smooth Operations 2326 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL 59, NO 10, OCTOBER 2012 Analytical Approach for Numerical Accuracy Estimation of Fixed-Point Systems Based on Smooth Operations Romuald

More information

Converting Firmware Projects to CoIde and IAR Embedded Workbench for ARM

Converting Firmware Projects to CoIde and IAR Embedded Workbench for ARM APPLICATION NOTE Converting Firmware Projects to CoIde and IAR Embedded Workbench for ARM TM Marc Sousa Senior Manager, Systems and Firmware www.active-semi.com Copyright 2015 Active-Semi, Inc. TABLE OF

More information

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK Computer (Literacy Skills Number representations and memory Lubomír Bulej KDSS MFF UK Number representations? What for? Recall: computer works with binary numbers Groups of zeroes and ones 8 bits (byte,

More information

Getting Started with Renesas Development Tools

Getting Started with Renesas Development Tools Getting Started with Renesas Development Tools Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Microcontroller and Microprocessor Line-up 2010 2013 32-bit 8/16-bit 1200 DMIPS,

More information

VIII. DSP Processors. Digital Signal Processing 8 December 24, 2009

VIII. DSP Processors. Digital Signal Processing 8 December 24, 2009 Digital Signal Processing 8 December 24, 2009 VIII. DSP Processors 2007 Syllabus: Introduction to programmable DSPs: Multiplier and Multiplier-Accumulator (MAC), Modified bus structures and memory access

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic Clark N. Taylor Department of Electrical and Computer Engineering Brigham Young University clark.taylor@byu.edu 1 Introduction Numerical operations are something at which digital

More information

Quick Start Guide. Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1.2.

Quick Start Guide. Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1.2. Quick Start Guide Stepper motor driver expansion board based on L6474 for STM32 Nucleo (X-NUCLEO-IHM01A1) Version 1.2.0 (May 16, 2016) Quick Start Guide Contents 2 X-NUCLEO-IHM01A1: Stepper motor driver

More information

Numeric Encodings Prof. James L. Frankel Harvard University

Numeric Encodings Prof. James L. Frankel Harvard University Numeric Encodings Prof. James L. Frankel Harvard University Version of 10:19 PM 12-Sep-2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. Representation of Positive & Negative Integral and

More information

The Changing Face of Edge Compute

The Changing Face of Edge Compute The Changing Face of Edge Compute 2018 Arm Limited Alvin Yang Nov 2018 Market trends acceleration of technology deployment 26 years 4 years 100 billion chips shipped 100 billion chips shipped 1 Trillion

More information