From Hello World to Exascale

Size: px
Start display at page:

Download "From Hello World to Exascale"

Transcription

1 From Hello World to Exascale Rob Farber Chief Scien0st, BlackDog Endeavors, LLC Author, CUDA Applica0on Design and Development Research consultant: ICHEC and others Doctor Dobb s Journal CUDA & OpenACC tutorials OpenCL The Code Project tutorials Columnist

2 What is a co- processor? HOST Applica0on CUDA Libraries CUDA Thrust API CUDA Run0me API CUDA Driver API Device driver

3 Three rules for fast co- processor (GPU) codes 1. Get the data on the device (and keep it there!) PCIe x16 v2.0 bus: 8 GiB/s in a single direc0on 20- series GPUs: GiB/s 2. Give the device enough work to do Assume 10 µs latency and 1 TF device Can waste (10-6 * ) = 1M opera0ons 3. Reuse and locate data to avoid global memory bandwidth bo@lenecks flop hardware delivers flop when global memory limited Can cause a 100x slowdown! Corollary: Avoid malloc/free! 3

4 If you know C++, you are already programming //seqserial.cpp #include <iostream> #include <vector> using namespace std; GPUs! //seqcuda.cu #include <iostream> using namespace std; #include <thrust/reduce.h> #include <thrust/sequence.h> #include <thrust/host_vector.h> #include <thrust/device_vector.h> Will revisit these examples in the workshop. int main() const int N=50000; // task 1: create the array vector<int> a(n); // task 2: fill the array for(int i=0; i < N; i++) a[i]=i; // task 3: calculate the sum of the array int suma=0; for(int i=0; i < N; i++) suma += a[i]; // task 4: calculate the sum of 0.. N- 1 int sumcheck=0; for(int i=0; i < N; i++) sumcheck += i; // task 5: check the results agree if(suma == sumcheck) cout << "Test Succeeded!" << endl; else cerr << "Test FAILED!" << endl; return(1); return(0); int main() const int N=50000; // task 1: create the array thrust::device_vector<int> a(n); // task 2: fill the array thrust::sequence(a.begin(), a.end(), 0); // task 3: calculate the sum of the array int suma= thrust::reduce(a.begin(),a.end(), 0); // task 4: calculate the sum of 0.. N- 1 int sumcheck=0; for(int i=0; i < N; i++) sumcheck += i; // task 5: check the results agree if(suma == sumcheck) cout << "Test Succeeded!" << endl; else cerr << "Test FAILED!" << endl; return(1); return(0);

5 Thrust saves handling details int main() const int N=50000; // task 1: create the array thrust::device_vector<int> a(n); // task 2: fill the array using the run0me fill(thrust::raw_pointer_cast(&a[0]),n); // task 3: calculate the sum of the array int suma= thrust::reduce(a.begin(),a.end(), 0); // task 4: calculate the sum of 0.. N- 1 int sumcheck=0; for(int i=0; i < N; i++) sumcheck += i; // task 5: check the results agree if(suma == sumcheck) cout << "Test Succeeded!" << endl; else cerr << "Test FAILED!" << endl; return(1); return(0); //seqrun0me.cu #include <iostream> using namespace std; #include <thrust/reduce.h> #include <thrust/sequence.h> #include <thrust/host_vector.h> #include <thrust/device_vector.h> global void fillkernel(int *a, int n) int 0d = blockidx.x*blockdim.x + threadidx.x; if (0d < n) a[0d] = 0d; void fill(int* d_a, int n) int nthreadsperblock= 512; int nblocks= n/nthreadsperblock + ((n%nthreadsperblock)?1:0); fillkernel <<< nblocks, nthreadsperblock >>> (d_a, n);

6 CUDA is based on a 1D, 2D, or 3D Grid All parallel loops are broken into blocks Only threads in a block can communicate! //Parallel for loop for(int i=0; i < N; i++) fillkernel(a,n); //seqrun0me.cu #include <iostream> using namespace std; #include <thrust/reduce.h> #include <thrust/sequence.h> #include <thrust/host_vector.h> #include <thrust/device_vector.h> global void fillkernel(int *a, int n) int 0d = blockidx.x*blockdim.x + threadidx.x; if (0d < n) a[0d] = 0d; void fill(int* d_a, int n) int nthreadsperblock= 512; int nblocks= n/nthreadsperblock + ((n%nthreadsperblock)?1:0); fillkernel <<< nblocks, nthreadsperblock >>> (d_a, n);

7 Each thread needs to find it s loca0on Each thread calculates a different value for Gd. //seqrun0me.cu #include <iostream> using namespace std; #include <thrust/reduce.h> #include <thrust/sequence.h> #include <thrust/host_vector.h> #include <thrust/device_vector.h> global void fillkernel(int *a, int n) int Gd = blockidx.x*blockdim.x + threadidx.x; if (0d < n) a[0d] = 0d; void fill(int* d_a, int n) int nthreadsperblock= 512; int nblocks= n/nthreadsperblock + ((n%nthreadsperblock)?1:0); fillkernel <<< nblocks, nthreadsperblock >>> (d_a, n);

8 Scalability required to use all those cores (strong scaling execu0on model) Each thread running fillKernel() writes a[0d] =0d; a

9 Reduc0on Gack! // task 3: calculate the sum of the array int suma= thrust::reduce(a.begin(),a.end(), 0); #include <stdio.h> #ifndef REDUCE_H #define REDUCE_H //Define the number of blocks as a mul0ple of the number of SM // and the number of threads as the maximum resident on the SM #define N_BLOCKS (1*14) #define N_THREADS 1024 #define WARP_SIZE 32 template <class T, typename UnaryFunc0on, typename BinaryFunc0on> global void _func0onreduce(t *g_odata, unsigned int n, T initval, BinaryFunc0on fcn1) T myval = initval; // 1) Use fastest memory first. UnaryFunc0on fcn, const int gridsize = blockdim.x*griddim.x; //for(int i = blockidx.x * blockdim.x + threadidx.x; i < n; i += gridsize) //myval = fcn1(fcn(i), myval); for(int i = n- 1 - (blockidx.x * blockdim.x + threadidx.x); i >= 0; i - = gridsize) myval = fcn1(fcn(i), myval); // 2) Use the second fastest memory (shared memory) in a warp // synchronous fashion. // Create shared memory for per- block reduc0on. // Reuse the registers in the first warp. vola0le shared T smem[n_threads- WARP_SIZE]; // put all the register values into a shared memory if(threadidx.x >= WARP_SIZE) smem[threadidx.x - WARP_SIZE] = myval; syncthreads(); // wait for all threads in the block to complete. if(threadidx.x < WARP_SIZE) // now using just one warp. The SM can only run one warp at a 0me #pragma unroll for(int i=threadidx.x; i < (N_THREADS- WARP_SIZE); i += WARP_SIZE) myval = fcn1(myval,(t)smem[i]); smem[threadidx.x] = myval; // save myval in this warp to the start of smem // reduce shared memory. if (threadidx.x < 16) smem[threadidx.x] = fcn1((t)smem[threadidx.x],(t)smem[threadidx.x + 16]); if (threadidx.x < 8) smem[threadidx.x] = fcn1((t)smem[threadidx.x],(t)smem[threadidx.x + 8]); if (threadidx.x < 4) smem[threadidx.x] = fcn1((t)smem[threadidx.x],(t)smem[threadidx.x + 4]); if (threadidx.x < 2) smem[threadidx.x] = fcn1((t)smem[threadidx.x],(t)smem[threadidx.x + 2]); if (threadidx.x < 1) smem[threadidx.x] = fcn1((t)smem[threadidx.x],(t)smem[threadidx.x + 1]); // 3) Use global memory as a last resort to transfer results to the host // write result for each block to global mem if (threadidx.x == 0) g_odata[blockidx.x] = smem[0]; // Can put the final reduc0on across SM here if desired. template<typename T, typename UnaryFunc0on, typename BinaryFunc0on> inline void par0alreduce(const int n, T** d_par0alvals, T initval, BinaryFunc0on const& fcn1) if(*d_par0alvals == NULL) cudamalloc(d_par0alvals, (N_BLOCKS+1) * sizeof(t)); UnaryFunc0on const& fcn, #endif _func0onreduce<t><<< N_BLOCKS, N_THREADS>>>(*d_par0alVals, n, fcn1); template<typename T, typename UnaryFunc0on, typename BinaryFunc0on> inline T func0onreduce(const int n, T** d_par0alvals, T initval, BinaryFunc0on const& fcn1) par0alreduce(n, d_par0alvals, initval, fcn, fcn1); //Get the values onto the host //Note: uses the default stream in the current context T h_par0alvals[n_blocks]; if(cudamemcpy(h_par0alvals, *d_par0alvals, sizeof(t)*n_blocks, cudamemcpydevicetohost)!= cudasuccess) cerr << "_func0onreduce copy failed!" << endl; exit(1); // Perform the final reduc0on T val = h_par0alvals[0]; for(int i=1; i < N_BLOCKS; i++) val = fcn1(h_par0alvals[i],val); return(val); initval, fcn, UnaryFunc0on const& fcn,

10 The NVIDIA Visual Profiler is your friend! Move matrices a,b, and c to the coprocessor (GPU) Perform the matrix mul0ply (line 24 in main) Move matrix c to the host Farber, Pragma0c Parallelism Part 1: Introducing OpenACC

11 Only touched the CUDA ecosystem

12 Congrats on your first CUDA program! Thrust::transform_reduce() Uses a functor to operate on (transform) data Applies the reduc0on Surprise, you are now petascale to exascale capable!

Working with Real Code

Working with Real Code Working with Real Code Rob Farber Chief Scien0st, BlackDog Endeavors, LLC Author, CUDA Applica0on Design and Development Research consultant: ICHEC and others Doctor Dobb s Journal CUDA & OpenACC tutorials

More information

CUDA Application Design and Development

CUDA Application Design and Development CUDA Application Design and Development CUDA Application Design and Development Rob Farber AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Morgan

More information

GPU programming: CUDA basics. Sylvain Collange Inria Rennes Bretagne Atlantique

GPU programming: CUDA basics. Sylvain Collange Inria Rennes Bretagne Atlantique GPU programming: CUDA basics Sylvain Collange Inria Rennes Bretagne Atlantique sylvain.collange@inria.fr This lecture: CUDA programming We have seen some GPU architecture Now how to program it? 2 Outline

More information

Optimizing Parallel Reduction in CUDA

Optimizing Parallel Reduction in CUDA Optimizing Parallel Reduction in CUDA Mark Harris NVIDIA Developer Technology http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf Parallel Reduction Tree-based approach used within each

More information

Optimizing Parallel Reduction in CUDA. Mark Harris NVIDIA Developer Technology

Optimizing Parallel Reduction in CUDA. Mark Harris NVIDIA Developer Technology Optimizing Parallel Reduction in CUDA Mark Harris NVIDIA Developer Technology Parallel Reduction Common and important data parallel primitive Easy to implement in CUDA Harder to get it right Serves as

More information

Greg Scantlen, CEO. GTC 2012 May 15

Greg Scantlen, CEO. GTC 2012 May 15 Greg Scantlen, CEO GTC 2012 May 15 Contents Stelletto cluster features in portable package CAPS-Enterprise, Francois Bodin, CTO Black Dog Endeavors, Rob Farber, CEO GTC 2012 May 15 Supercomputing 2008

More information

Optimizing Parallel Reduction in CUDA. Mark Harris NVIDIA Developer Technology

Optimizing Parallel Reduction in CUDA. Mark Harris NVIDIA Developer Technology Optimizing Parallel Reduction in CUDA Mark Harris NVIDIA Developer Technology Parallel Reduction Common and important data parallel primitive Easy to implement in CUDA Harder to get it right Serves as

More information

CUDA. Sathish Vadhiyar High Performance Computing

CUDA. Sathish Vadhiyar High Performance Computing CUDA Sathish Vadhiyar High Performance Computing Hierarchical Parallelism Parallel computations arranged as grids One grid executes after another Grid consists of blocks Blocks assigned to SM. A single

More information

CUDA Programming. Week 1. Basic Programming Concepts Materials are copied from the reference list

CUDA Programming. Week 1. Basic Programming Concepts Materials are copied from the reference list CUDA Programming Week 1. Basic Programming Concepts Materials are copied from the reference list G80/G92 Device SP: Streaming Processor (Thread Processors) SM: Streaming Multiprocessor 128 SP grouped into

More information

GPU Computing Workshop CSU Getting Started. Garland Durham Quantos Analytics

GPU Computing Workshop CSU Getting Started. Garland Durham Quantos Analytics 1 GPU Computing Workshop CSU 2013 Getting Started Garland Durham Quantos Analytics nvidia-smi 2 At command line, run command nvidia-smi to get/set GPU properties. nvidia-smi Options: -q query -L list attached

More information

Lecture 8: GPU Programming. CSE599G1: Spring 2017

Lecture 8: GPU Programming. CSE599G1: Spring 2017 Lecture 8: GPU Programming CSE599G1: Spring 2017 Announcements Project proposal due on Thursday (4/28) 5pm. Assignment 2 will be out today, due in two weeks. Implement GPU kernels and use cublas library

More information

GPU programming: CUDA. Sylvain Collange Inria Rennes Bretagne Atlantique

GPU programming: CUDA. Sylvain Collange Inria Rennes Bretagne Atlantique GPU programming: CUDA Sylvain Collange Inria Rennes Bretagne Atlantique sylvain.collange@inria.fr This lecture: CUDA programming We have seen some GPU architecture Now how to program it? 2 Outline GPU

More information

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Introduction to CUDA programming

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Introduction to CUDA programming KFUPM HPC Workshop April 29-30 2015 Mohamed Mekias HPC Solutions Consultant Introduction to CUDA programming 1 Agenda GPU Architecture Overview Tools of the Trade Introduction to CUDA C Patterns of Parallel

More information

PERFORMANCE ANALYSIS AND DEBUGGING FOR VOLTA. Felix Schmitt 11 th Parallel Tools Workshop September 11-12, 2017

PERFORMANCE ANALYSIS AND DEBUGGING FOR VOLTA. Felix Schmitt 11 th Parallel Tools Workshop September 11-12, 2017 PERFORMANCE ANALYSIS AND DEBUGGING FOR VOLTA Felix Schmitt 11 th Parallel Tools Workshop September 11-12, 2017 INTRODUCING TESLA V100 Volta Architecture Improved NVLink & HBM2 Volta MPS Improved SIMT Model

More information

Introduction to GPGPU and GPU-architectures

Introduction to GPGPU and GPU-architectures Introduction to GPGPU and GPU-architectures Henk Corporaal Gert-Jan van den Braak http://www.es.ele.tue.nl/ Contents 1. What is a GPU 2. Programming a GPU 3. GPU thread scheduling 4. GPU performance bottlenecks

More information

PPAR: CUDA basics. Sylvain Collange Inria Rennes Bretagne Atlantique PPAR

PPAR: CUDA basics. Sylvain Collange Inria Rennes Bretagne Atlantique PPAR PPAR: CUDA basics Sylvain Collange Inria Rennes Bretagne Atlantique sylvain.collange@inria.fr http://www.irisa.fr/alf/collange/ PPAR - 2018 This lecture: CUDA programming We have seen some GPU architecture

More information

University of Bielefeld

University of Bielefeld Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach Introduction to GPU Programming using CUDA Olaf Kaczmarek University of Bielefeld STRONGnet Summerschool 2011 ZIF Bielefeld

More information

Fundamental Optimizations in CUDA Peng Wang, Developer Technology, NVIDIA

Fundamental Optimizations in CUDA Peng Wang, Developer Technology, NVIDIA Fundamental Optimizations in CUDA Peng Wang, Developer Technology, NVIDIA Optimization Overview GPU architecture Kernel optimization Memory optimization Latency optimization Instruction optimization CPU-GPU

More information

Programming in CUDA. Malik M Khan

Programming in CUDA. Malik M Khan Programming in CUDA October 21, 2010 Malik M Khan Outline Reminder of CUDA Architecture Execution Model - Brief mention of control flow Heterogeneous Memory Hierarchy - Locality through data placement

More information

High Performance Linear Algebra on Data Parallel Co-Processors I

High Performance Linear Algebra on Data Parallel Co-Processors I 926535897932384626433832795028841971693993754918980183 592653589793238462643383279502884197169399375491898018 415926535897932384626433832795028841971693993754918980 592653589793238462643383279502884197169399375491898018

More information

CS377P Programming for Performance GPU Programming - I

CS377P Programming for Performance GPU Programming - I CS377P Programming for Performance GPU Programming - I Sreepathi Pai UTCS November 9, 2015 Outline 1 Introduction to CUDA 2 Basic Performance 3 Memory Performance Outline 1 Introduction to CUDA 2 Basic

More information

Introduction to GPU Computing Junjie Lai, NVIDIA Corporation

Introduction to GPU Computing Junjie Lai, NVIDIA Corporation Introduction to GPU Computing Junjie Lai, NVIDIA Corporation Outline Evolution of GPU Computing Heterogeneous Computing CUDA Execution Model & Walkthrough of Hello World Walkthrough : 1D Stencil Once upon

More information

Lecture 5. Performance Programming with CUDA

Lecture 5. Performance Programming with CUDA Lecture 5 Performance Programming with CUDA Announcements 2011 Scott B. Baden / CSE 262 / Spring 2011 2 Today s lecture Matrix multiplication 2011 Scott B. Baden / CSE 262 / Spring 2011 3 Memory Hierarchy

More information

ECE/ME/EMA/CS 759 High Performance Computing for Engineering Applications

ECE/ME/EMA/CS 759 High Performance Computing for Engineering Applications ECE/ME/EMA/CS 759 High Performance Computing for Engineering Applications The NVIDIA GPU Memory Ecosystem Atomic operations in CUDA The thrust library October 7, 2015 Dan Negrut, 2015 ECE/ME/EMA/CS 759

More information

CUDA. More on threads, shared memory, synchronization. cuprintf

CUDA. More on threads, shared memory, synchronization. cuprintf CUDA More on threads, shared memory, synchronization cuprintf Library function for CUDA Developers Copy the files from /opt/cuprintf into your source code folder #include cuprintf.cu global void testkernel(int

More information

Warps and Reduction Algorithms

Warps and Reduction Algorithms Warps and Reduction Algorithms 1 more on Thread Execution block partitioning into warps single-instruction, multiple-thread, and divergence 2 Parallel Reduction Algorithms computing the sum or the maximum

More information

GPU Programming. Rupesh Nasre.

GPU Programming. Rupesh Nasre. GPU Programming Rupesh Nasre. http://www.cse.iitm.ac.in/~rupesh IIT Madras July 2017 CUDA Function Declarations device float DeviceFunc() global void KernelFunc() Executed on the: device device Callable

More information

Introduction to Parallel Programming

Introduction to Parallel Programming Introduction to Parallel Programming Pablo Brubeck Department of Physics Tecnologico de Monterrey October 14, 2016 Student Chapter Tecnológico de Monterrey Tecnológico de Monterrey Student Chapter Outline

More information

Hardware/Software Co-Design

Hardware/Software Co-Design 1 / 13 Hardware/Software Co-Design Review so far Miaoqing Huang University of Arkansas Fall 2011 2 / 13 Problem I A student mentioned that he was able to multiply two 1,024 1,024 matrices using a tiled

More information

Introduction to CUDA CME343 / ME May James Balfour [ NVIDIA Research

Introduction to CUDA CME343 / ME May James Balfour [ NVIDIA Research Introduction to CUDA CME343 / ME339 18 May 2011 James Balfour [ jbalfour@nvidia.com] NVIDIA Research CUDA Programing system for machines with GPUs Programming Language Compilers Runtime Environments Drivers

More information

Unrolling parallel loops

Unrolling parallel loops Unrolling parallel loops Vasily Volkov UC Berkeley November 14, 2011 1 Today Very simple optimization technique Closely resembles loop unrolling Widely used in high performance codes 2 Mapping to GPU:

More information

Advanced CUDA Optimizations

Advanced CUDA Optimizations Advanced CUDA Optimizations General Audience Assumptions General working knowledge of CUDA Want kernels to perform better Profiling Before optimizing, make sure you are spending effort in correct location

More information

GPU Programming Using CUDA

GPU Programming Using CUDA GPU Programming Using CUDA Michael J. Schnieders Depts. of Biomedical Engineering & Biochemistry The University of Iowa & Gregory G. Howes Department of Physics and Astronomy The University of Iowa Iowa

More information

Blocks, Grids, and Shared Memory

Blocks, Grids, and Shared Memory Blocks, Grids, and Shared Memory GPU Course, Fall 2012 Last week: ax+b Homework Threads, Blocks, Grids CUDA threads are organized into blocks Threads operate in SIMD(ish) manner -- each executing same

More information

GPGPUGPGPU: Multi-GPU Programming

GPGPUGPGPU: Multi-GPU Programming GPGPUGPGPU: Multi-GPU Programming Fall 2012 HW4 global void cuda_transpose(const float *ad, const int n, float *atd) { } int i = threadidx.y + blockidx.y*blockdim.y; int j = threadidx.x + blockidx.x*blockdim.x;

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms http://sudalab.is.s.u-tokyo.ac.jp/~reiji/pna14/ [ 10 ] GPU and CUDA Parallel Numerical Algorithms / IST / UTokyo 1 PNA16 Lecture Plan General Topics 1. Architecture and Performance

More information

Don t reinvent the wheel. BLAS LAPACK Intel Math Kernel Library

Don t reinvent the wheel. BLAS LAPACK Intel Math Kernel Library Libraries Don t reinvent the wheel. Specialized math libraries are likely faster. BLAS: Basic Linear Algebra Subprograms LAPACK: Linear Algebra Package (uses BLAS) http://www.netlib.org/lapack/ to download

More information

CUDA Memory Model. N. Cardoso & P. Bicudo. Física Computacional (FC5)

CUDA Memory Model. N. Cardoso & P. Bicudo. Física Computacional (FC5) CUDA Memory Model N. Cardoso & P. Bicudo Física Computacional (FC5) N. Cardoso & P. Bicudo CUDA Memory Model 1/32 Outline 1 Memory System Global Memory Shared Memory L2/L1 Cache Constant Memory Texture

More information

π = 4 N in_circle N total ... // includes # define N 1000000 float uniform_rand(unsigned* seed, float lower, float upper) {... int main () { int num_in_circ = 0; float x, y, dist; #pragma omp parallel

More information

Learn CUDA in an Afternoon. Alan Gray EPCC The University of Edinburgh

Learn CUDA in an Afternoon. Alan Gray EPCC The University of Edinburgh Learn CUDA in an Afternoon Alan Gray EPCC The University of Edinburgh Overview Introduction to CUDA Practical Exercise 1: Getting started with CUDA GPU Optimisation Practical Exercise 2: Optimising a CUDA

More information

CS671 Parallel Programming in the Many-Core Era

CS671 Parallel Programming in the Many-Core Era CS671 Parallel Programming in the Many-Core Era Lecture 3: GPU Programming - Reduce, Scan & Sort Zheng Zhang Rutgers University Review: Programming with CUDA An Example in C Add vector A and vector B to

More information

Stanford University. NVIDIA Tesla M2090. NVIDIA GeForce GTX 690

Stanford University. NVIDIA Tesla M2090. NVIDIA GeForce GTX 690 Stanford University NVIDIA Tesla M2090 NVIDIA GeForce GTX 690 Moore s Law 2 Clock Speed 10000 Pentium 4 Prescott Core 2 Nehalem Sandy Bridge 1000 Pentium 4 Williamette Clock Speed (MHz) 100 80486 Pentium

More information

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec PROGRAMOVÁNÍ V C++ CVIČENÍ Michal Brabec PARALLELISM CATEGORIES CPU? SSE Multiprocessor SIMT - GPU 2 / 17 PARALLELISM V C++ Weak support in the language itself, powerful libraries Many different parallelization

More information

INTRODUCTION TO GPU COMPUTING WITH CUDA. Topi Siro

INTRODUCTION TO GPU COMPUTING WITH CUDA. Topi Siro INTRODUCTION TO GPU COMPUTING WITH CUDA Topi Siro 19.10.2015 OUTLINE PART I - Tue 20.10 10-12 What is GPU computing? What is CUDA? Running GPU jobs on Triton PART II - Thu 22.10 10-12 Using libraries Different

More information

Introduction to CUDA C/C++ Mark Ebersole, NVIDIA CUDA Educator

Introduction to CUDA C/C++ Mark Ebersole, NVIDIA CUDA Educator Introduction to CUDA C/C++ Mark Ebersole, NVIDIA CUDA Educator What is CUDA? Programming language? Compiler? Classic car? Beer? Coffee? CUDA Parallel Computing Platform www.nvidia.com/getcuda Programming

More information

GPU programming basics. Prof. Marco Bertini

GPU programming basics. Prof. Marco Bertini GPU programming basics Prof. Marco Bertini CUDA: atomic operations, privatization, algorithms Atomic operations The basics atomic operation in hardware is something like a read-modify-write operation performed

More information

Register file. A single large register file (ex. 16K registers) is partitioned among the threads of the dispatched blocks.

Register file. A single large register file (ex. 16K registers) is partitioned among the threads of the dispatched blocks. Sharing the resources of an SM Warp 0 Warp 1 Warp 47 Register file A single large register file (ex. 16K registers) is partitioned among the threads of the dispatched blocks Shared A single SRAM (ex. 16KB)

More information

CUDA Programming (Basics, Cuda Threads, Atomics) Ezio Bartocci

CUDA Programming (Basics, Cuda Threads, Atomics) Ezio Bartocci TECHNISCHE UNIVERSITÄT WIEN Fakultät für Informatik Cyber-Physical Systems Group CUDA Programming (Basics, Cuda Threads, Atomics) Ezio Bartocci Outline of CUDA Basics Basic Kernels and Execution on GPU

More information

CS 179: GPU Computing. Recitation 2: Synchronization, Shared memory, Matrix Transpose

CS 179: GPU Computing. Recitation 2: Synchronization, Shared memory, Matrix Transpose CS 179: GPU Computing Recitation 2: Synchronization, Shared memory, Matrix Transpose Synchronization Ideal case for parallelism: no resources shared between threads no communication between threads Many

More information

EEM528 GPU COMPUTING

EEM528 GPU COMPUTING EEM528 CS 193G GPU COMPUTING Lecture 2: GPU History & CUDA Programming Basics Slides Credit: Jared Hoberock & David Tarjan CS 193G History of GPUs Graphics in a Nutshell Make great images intricate shapes

More information

First: Shameless Adver2sing

First: Shameless Adver2sing Agenda A Shameless self promo2on Introduc2on to GPGPUs and Cuda Programming Model The Cuda Thread Hierarchy The Cuda Memory Hierarchy Mapping Cuda to Nvidia GPUs As much of the OpenCL informa2on as I can

More information

CUDA GPGPU Workshop CUDA/GPGPU Arch&Prog

CUDA GPGPU Workshop CUDA/GPGPU Arch&Prog CUDA GPGPU Workshop 2012 CUDA/GPGPU Arch&Prog Yip Wichita State University 7/11/2012 GPU-Hardware perspective GPU as PCI device Original PCI PCIe Inside GPU architecture GPU as PCI device Traditional PC

More information

CUDA Lecture 2. Manfred Liebmann. Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17

CUDA Lecture 2. Manfred Liebmann. Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 CUDA Lecture 2 Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 manfred.liebmann@tum.de December 15, 2015 CUDA Programming Fundamentals CUDA

More information

Lecture 2: CUDA Programming

Lecture 2: CUDA Programming CS 515 Programming Language and Compilers I Lecture 2: CUDA Programming Zheng (Eddy) Zhang Rutgers University Fall 2017, 9/12/2017 Review: Programming in CUDA Let s look at a sequential program in C first:

More information

GPU 1. CSCI 4850/5850 High-Performance Computing Spring 2018

GPU 1. CSCI 4850/5850 High-Performance Computing Spring 2018 GPU 1 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning Objectives

More information

Introduc)on to GPU Programming

Introduc)on to GPU Programming Introduc)on to GPU Programming Mubashir Adnan Qureshi h3p://www.ncsa.illinois.edu/people/kindr/projects/hpca/files/singapore_p1.pdf h3p://developer.download.nvidia.com/cuda/training/nvidia_gpu_compu)ng_webinars_cuda_memory_op)miza)on.pdf

More information

Josef Pelikán, Jan Horáček CGG MFF UK Praha

Josef Pelikán, Jan Horáček CGG MFF UK Praha GPGPU and CUDA 2012-2018 Josef Pelikán, Jan Horáček CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 41 Content advances in hardware multi-core vs. many-core general computing

More information

GPU MEMORY BOOTCAMP III

GPU MEMORY BOOTCAMP III April 4-7, 2016 Silicon Valley GPU MEMORY BOOTCAMP III COLLABORATIVE ACCESS PATTERNS Tony Scudiero NVIDIA Devtech Fanatical Bandwidth Evangelist The Axioms of Modern Performance #1. Parallelism is mandatory

More information

Parallel Hybrid Computing F. Bodin, CAPS Entreprise

Parallel Hybrid Computing F. Bodin, CAPS Entreprise Parallel Hybrid Computing F. Bodin, CAPS Entreprise Introduction Main stream applications will rely on new multicore / manycore architectures It is about performance not parallelism Various heterogeneous

More information

Reductions and Low-Level Performance Considerations CME343 / ME May David Tarjan NVIDIA Research

Reductions and Low-Level Performance Considerations CME343 / ME May David Tarjan NVIDIA Research Reductions and Low-Level Performance Considerations CME343 / ME339 27 May 2011 David Tarjan [dtarjan@nvidia.com] NVIDIA Research REDUCTIONS Reduction! Reduce vector to a single value! Via an associative

More information

HPCSE II. GPU programming and CUDA

HPCSE II. GPU programming and CUDA HPCSE II GPU programming and CUDA What is a GPU? Specialized for compute-intensive, highly-parallel computation, i.e. graphic output Evolution pushed by gaming industry CPU: large die area for control

More information

Programming with CUDA, WS09

Programming with CUDA, WS09 Programming with CUDA and Parallel Algorithms Waqar Saleem Jens Müller Lecture 3 Thursday, 29 Nov, 2009 Recap Motivational videos Example kernel Thread IDs Memory overhead CUDA hardware and programming

More information

CUDA PROGRAMMING MODEL. Carlo Nardone Sr. Solution Architect, NVIDIA EMEA

CUDA PROGRAMMING MODEL. Carlo Nardone Sr. Solution Architect, NVIDIA EMEA CUDA PROGRAMMING MODEL Carlo Nardone Sr. Solution Architect, NVIDIA EMEA CUDA: COMMON UNIFIED DEVICE ARCHITECTURE Parallel computing architecture and programming model GPU Computing Application Includes

More information

GPU CUDA Programming

GPU CUDA Programming GPU CUDA Programming 이정근 (Jeong-Gun Lee) 한림대학교컴퓨터공학과, 임베디드 SoC 연구실 www.onchip.net Email: Jeonggun.Lee@hallym.ac.kr ALTERA JOINT LAB Introduction 차례 Multicore/Manycore and GPU GPU on Medical Applications

More information

INTRODUCTION TO CUDA PROGRAMMING BHUPENDER THAKUR

INTRODUCTION TO CUDA PROGRAMMING BHUPENDER THAKUR INTRODUCTION TO CUDA PROGRAMMING BHUPENDER THAKUR Outline Outline of the talk GPU architecture CUDA programming model CUDA tools and applica>ons Benchmarks Growth in GPU compu?ng Kepler is the current

More information

Hands-on CUDA Optimization. CUDA Workshop

Hands-on CUDA Optimization. CUDA Workshop Hands-on CUDA Optimization CUDA Workshop Exercise Today we have a progressive exercise The exercise is broken into 5 steps If you get lost you can always catch up by grabbing the corresponding directory

More information

Multi-Processors and GPU

Multi-Processors and GPU Multi-Processors and GPU Philipp Koehn 7 December 2016 Predicted CPU Clock Speed 1 Clock speed 1971: 740 khz, 2016: 28.7 GHz Source: Horowitz "The Singularity is Near" (2005) Actual CPU Clock Speed 2 Clock

More information

More CUDA. Advanced programming

More CUDA. Advanced programming More CUDA 1 Advanced programming Synchronization and atomics Warps and Occupancy Memory coalescing Shared Memory Streams and Asynchronous Execution Bank conflicts Other features 2 Synchronization and Atomics

More information

B-Trees. nodes with many children a type node a class for B-trees. an elaborate example the insertion algorithm removing elements

B-Trees. nodes with many children a type node a class for B-trees. an elaborate example the insertion algorithm removing elements B-Trees 1 B-Trees nodes with many children a type node a class for B-trees 2 manipulating a B-tree an elaborate example the insertion algorithm removing elements MCS 360 Lecture 35 Introduction to Data

More information

HW4-2. float phi[size][size]={};!

HW4-2. float phi[size][size]={};! HW 4 #include #include //atoi #include #include #include #include //timing routines #include #include #define SIZE 256 using

More information

Getting the Most out of your GPU. Imre Palik Introduction to Data-Parallel Algorithms. Imre Palik.

Getting the Most out of your GPU. Imre Palik Introduction to Data-Parallel Algorithms. Imre Palik. to Data- to Data- Getting the Most out of your GPU imre.palik@morganstanley.com Naive Segmented The views expressed in this presentation are those of the author and, therefore, do not necessarily reflect

More information

CS377P Programming for Performance GPU Programming - II

CS377P Programming for Performance GPU Programming - II CS377P Programming for Performance GPU Programming - II Sreepathi Pai UTCS November 11, 2015 Outline 1 GPU Occupancy 2 Divergence 3 Costs 4 Cooperation to reduce costs 5 Scheduling Regular Work Outline

More information

Data Parallel Execution Model

Data Parallel Execution Model CS/EE 217 GPU Architecture and Parallel Programming Lecture 3: Kernel-Based Data Parallel Execution Model David Kirk/NVIDIA and Wen-mei Hwu, 2007-2013 Objective To understand the organization and scheduling

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages CS 314 Principles of Programming Languages Zheng Zhang Fall 2016 Dec 14 GPU Programming Rutgers University Programming with CUDA Compute Unified Device Architecture (CUDA) Mapping and managing computations

More information

CUDA programming model. N. Cardoso & P. Bicudo. Física Computacional (FC5)

CUDA programming model. N. Cardoso & P. Bicudo. Física Computacional (FC5) CUDA programming model N. Cardoso & P. Bicudo Física Computacional (FC5) N. Cardoso & P. Bicudo CUDA programming model 1/23 Outline 1 CUDA qualifiers 2 CUDA Kernel Thread hierarchy Kernel, configuration

More information

GPU Programming. Performance Considerations. Miaoqing Huang University of Arkansas Fall / 60

GPU Programming. Performance Considerations. Miaoqing Huang University of Arkansas Fall / 60 1 / 60 GPU Programming Performance Considerations Miaoqing Huang University of Arkansas Fall 2013 2 / 60 Outline Control Flow Divergence Memory Coalescing Shared Memory Bank Conflicts Occupancy Loop Unrolling

More information

Real-time Graphics 9. GPGPU

Real-time Graphics 9. GPGPU Real-time Graphics 9. GPGPU GPGPU GPU (Graphics Processing Unit) Flexible and powerful processor Programmability, precision, power Parallel processing CPU Increasing number of cores Parallel processing

More information

Sparse Linear Algebra in CUDA

Sparse Linear Algebra in CUDA Sparse Linear Algebra in CUDA HPC - Algorithms and Applications Alexander Pöppl Technical University of Munich Chair of Scientific Computing November 22 nd 2017 Table of Contents Homework - Worksheet 2

More information

Introduction to GPU Computing. Design and Analysis of Parallel Algorithms

Introduction to GPU Computing. Design and Analysis of Parallel Algorithms Introduction to GPU Computing Design and Analysis of Parallel Algorithms Sources CUDA Programming Guide (3.2) CUDA Best Practices Guide (3.2) CUDA Toolkit Reference Manual (3.2) CUDA SDK Examples Part

More information

CUDA Parallelism Model

CUDA Parallelism Model GPU Teaching Kit Accelerated Computing CUDA Parallelism Model Kernel-Based SPMD Parallel Programming Multidimensional Kernel Configuration Color-to-Grayscale Image Processing Example Image Blur Example

More information

CS 470 Spring Other Architectures. Mike Lam, Professor. (with an aside on linear algebra)

CS 470 Spring Other Architectures. Mike Lam, Professor. (with an aside on linear algebra) CS 470 Spring 2016 Mike Lam, Professor Other Architectures (with an aside on linear algebra) Parallel Systems Shared memory (uniform global address space) Primary story: make faster computers Programming

More information

GPU Programming. Lecture 2: CUDA C Basics. Miaoqing Huang University of Arkansas 1 / 34

GPU Programming. Lecture 2: CUDA C Basics. Miaoqing Huang University of Arkansas 1 / 34 1 / 34 GPU Programming Lecture 2: CUDA C Basics Miaoqing Huang University of Arkansas 2 / 34 Outline Evolvements of NVIDIA GPU CUDA Basic Detailed Steps Device Memories and Data Transfer Kernel Functions

More information

Massively Parallel Algorithms

Massively Parallel Algorithms Massively Parallel Algorithms Introduction to CUDA & Many Fundamental Concepts of Parallel Programming G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de Hybrid/Heterogeneous Computation/Architecture

More information

Lab 1 Part 1: Introduction to CUDA

Lab 1 Part 1: Introduction to CUDA Lab 1 Part 1: Introduction to CUDA Code tarball: lab1.tgz In this hands-on lab, you will learn to use CUDA to program a GPU. The lab can be conducted on the SSSU Fermi Blade (M2050) or NCSA Forge using

More information

GPU Programming. Alan Gray, James Perry EPCC The University of Edinburgh

GPU Programming. Alan Gray, James Perry EPCC The University of Edinburgh GPU Programming EPCC The University of Edinburgh Contents NVIDIA CUDA C Proprietary interface to NVIDIA architecture CUDA Fortran Provided by PGI OpenCL Cross platform API 2 NVIDIA CUDA CUDA allows NVIDIA

More information

Introduction to GPU programming. Introduction to GPU programming p. 1/17

Introduction to GPU programming. Introduction to GPU programming p. 1/17 Introduction to GPU programming Introduction to GPU programming p. 1/17 Introduction to GPU programming p. 2/17 Overview GPUs & computing Principles of CUDA programming One good reference: David B. Kirk

More information

Preparing seismic codes for GPUs and other

Preparing seismic codes for GPUs and other Preparing seismic codes for GPUs and other many-core architectures Paulius Micikevicius Developer Technology Engineer, NVIDIA 2010 SEG Post-convention Workshop (W-3) High Performance Implementations of

More information

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming Overview Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.

More information

CS/CoE 1541 Final exam (Fall 2017). This is the cumulative final exam given in the Fall of Question 1 (12 points): was on Chapter 4

CS/CoE 1541 Final exam (Fall 2017). This is the cumulative final exam given in the Fall of Question 1 (12 points): was on Chapter 4 CS/CoE 1541 Final exam (Fall 2017). Name: This is the cumulative final exam given in the Fall of 2017. Question 1 (12 points): was on Chapter 4 Question 2 (13 points): was on Chapter 4 For Exam 2, you

More information

Convolution Soup: A case study in CUDA optimization. The Fairmont San Jose 10:30 AM Friday October 2, 2009 Joe Stam

Convolution Soup: A case study in CUDA optimization. The Fairmont San Jose 10:30 AM Friday October 2, 2009 Joe Stam Convolution Soup: A case study in CUDA optimization The Fairmont San Jose 10:30 AM Friday October 2, 2009 Joe Stam Optimization GPUs are very fast BUT Naïve programming can result in disappointing performance

More information

Basic CUDA workshop. Outlines. Setting Up Your Machine Architecture Getting Started Programming CUDA. Fine-Tuning. Penporn Koanantakool

Basic CUDA workshop. Outlines. Setting Up Your Machine Architecture Getting Started Programming CUDA. Fine-Tuning. Penporn Koanantakool Basic CUDA workshop Penporn Koanantakool twitter: @kaewgb e-mail: kaewgb@gmail.com Outlines Setting Up Your Machine Architecture Getting Started Programming CUDA Debugging Fine-Tuning Setting Up Your Machine

More information

Atomic Operations. Atomic operations, fast reduction. GPU Programming. Szénási Sándor.

Atomic Operations. Atomic operations, fast reduction. GPU Programming.   Szénási Sándor. Atomic Operations Atomic operations, fast reduction GPU Programming http://cuda.nik.uni-obuda.hu Szénási Sándor szenasi.sandor@nik.uni-obuda.hu GPU Education Center of Óbuda University ATOMIC OPERATIONS

More information

CAAM 420 Fall 2012 Lecture 29. Duncan Eddy

CAAM 420 Fall 2012 Lecture 29. Duncan Eddy CAAM 420 Fall 2012 Lecture 29 Duncan Eddy November 7, 2012 Table of Contents 1 Templating in C++ 3 1.1 Motivation.............................................. 3 1.2 Templating Functions........................................

More information

AMS 148 Chapter 8: Optimization in CUDA, and Advanced Topics

AMS 148 Chapter 8: Optimization in CUDA, and Advanced Topics AMS 148 Chapter 8: Optimization in CUDA, and Advanced Topics Steven Reeves 1 Optimizing Data Transfers in CUDA C/C++ This section we will discuss code optimization with how to efficiently transfer data

More information

An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture

An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture Rafia Inam Mälardalen Real-Time Research Centre Mälardalen University, Västerås, Sweden http://www.mrtc.mdh.se rafia.inam@mdh.se CONTENTS

More information

Image convolution with CUDA

Image convolution with CUDA Image convolution with CUDA Lecture Alexey Abramov abramov _at_ physik3.gwdg.de Georg-August University, Bernstein Center for Computational Neuroscience, III Physikalisches Institut, Göttingen, Germany

More information

High Performance Matrix-matrix Multiplication of Very Small Matrices

High Performance Matrix-matrix Multiplication of Very Small Matrices High Performance Matrix-matrix Multiplication of Very Small Matrices Ian Masliah, Marc Baboulin, ICL people University Paris-Sud - LRI Sparse Days Cerfacs, Toulouse, 1/07/2016 Context Tensor Contractions

More information

CUDA C Programming Mark Harris NVIDIA Corporation

CUDA C Programming Mark Harris NVIDIA Corporation CUDA C Programming Mark Harris NVIDIA Corporation Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory Models Programming Environment

More information

Agenda. The main body and cout. Fundamental data types. Declarations and definitions. Control structures

Agenda. The main body and cout. Fundamental data types. Declarations and definitions. Control structures The main body and cout Agenda 1 Fundamental data types Declarations and definitions Control structures References, pass-by-value vs pass-by-references The main body and cout 2 C++ IS AN OO EXTENSION OF

More information

ECE/ME/EMA/CS 759 High Performance Computing for Engineering Applications

ECE/ME/EMA/CS 759 High Performance Computing for Engineering Applications ECE/ME/EMA/CS 759 High Performance Computing for Engineering Applications The thrust library Atomic operations in CUDA October 16, 2015 Dan Negrut, 2015 ECE/ME/EMA/CS 759 UW-Madison Quote of the Day The

More information