Examples of IO, Interrupts, and Exceptions

Size: px
Start display at page:

Download "Examples of IO, Interrupts, and Exceptions"

Transcription

1 Examples of IO, Interrupts, and Exceptions Andy Wright, Thomas Bourgeat, Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology L15-1

2 Keyboard Input Hardware: n Box with buttons on it, with 32 wires coming out of it. Wires encode what button is pushed in ASCII. Wires transmit -1 if nothing is pushed. Interface: n When we perform a load from address 0x , we don t load from memory, we return the value from the keyboard s wires. n li t0, 0x ; lw t0, 0(t0) n We say that the keyboard is memorymapped IO L15-2

3 Problems with Keyboard It is software s responsibility to keep checking if a key has been pressed Its possible to miss characters if you don t poll fast enough If you see the same character twice in a row, was it pressed once or twice? What if you cache the keyboard s address? n Check if address is MMIO before looking in cache L15-3

4 Bufferized Keyboard I/O Whenever a key is pressed, add it to a hardware FIFO buffer of size N When the software wants a key from the keyboard, it dequeues from the FIFO buffer n Loading from 0x will return the first element from the FIFO and dequeue from the FIFO. If the FIFO is empty, the load will return -1. L15-4

5 Bufferized Keyboard I/O Hardware Implementation if (dinst.itype == Load) begin if (einst.addr == 0x ) begin if (keyboardfifo.notempty) begin einst.data = keyboardfifo.first; keyboardfifo.deq; end else begin einst.data = -1; end state <= Fetch; end else begin mem.req( ); // actual memory req state <= LoadWait; end end L15-5

6 Bufferized Keyboard I/O Problems Some problems solved n Pressing key twice easily detected Other problems remain n Can miss characters if buffer fills up before polling Can we switch to a SW buffer which is capable of increasing its size dynamically? L15-6

7 SW Bufferized I/O Can t rely on polling the keyboard s address n Need a way for the keyboard to interrupt the program ( ring the doorbell ) We split reading keyboard characters into two parts: n KeyPress: When the key is pressed, the keyboard generates an interrupt, and the handler reads from keyboard and enqueues into software buffer n ReadChar: When the program wants to read a character, it reads from the software buffer L15-7

8 Interrupt (aka Trap) altering the normal flow of control I i-1 HI 1 program I i HI 2 interrupt handler I i+1 HI n An external or internal event that needs to be processed by another (system) program. The event is usually unexpected or rare from program s point of view. L15-8

9 KeyPress Hardware n n I/O Device: w New wire from keyboard: InterruptReq (high when key is pressed) Processor: w An interrupt is taken when the Keyboard s InterruptReq is high w Interrupt stops current program and jumps to an interrupt handler to deal with it Software: n n Interrupt handler adds the pressed key to the software buffer Returns to the original program with original register values intact w Program can t tell interrupt happened L15-9

10 KeyPress Hardware Part of Implementation if (keyboard.interruptreq == 1) begin // take an interrupt // store current pc as epc mepc <= pc; // cause = external interrupt mcause <= 32 h ; // jump to trap vector pc <= mtvec; state <= Fetch; end L15-10

11 KeyPress Software Part of Implementation get_keypress: li t0, 0x lw a0, 0(t0) ret mtvec: // store all registers to the stack jal get_keypress jal add_to_kb_buffer // restore all registers from the stack mret L15-11

12 KeyPress Software Part of Implementation std::list<int> kb_buffer; void add_to_kb_buffer(int key) { if (key!= -1) { // enqueue into kb_buffer kb_buffer.push_back(key); } } L15-12

13 ReadChar Software: n Reads the oldest character in the software keyboard buffer L15-13

14 ReadChar Software Implementation std::list<int> kb_buffer; int get_from_kb_buffer() { int key = -1; if (kb_buffer.size()!= 0) { // dequeue from kb_buffer key = kb_buffer.front(); kb_buffer.pop_front(); } return key; } L15-14

15 Other Use of Keyboard Interrupt Interrupt triggers even when software doesn t want keyboard input n This allows for the ctrl-c keyboard combination to kill busy programs L15-15

16 Ctrl-C Software Implementation std::list<int> kb_buffer; void add_to_kb_buffer(int key) { if (key == CTRL_C) { abort(); } if (key!= -1) { // enqueue into kb_buffer kb_buffer.push_back(key); } } L15-16

17 Exceptions Exceptions are caused by executing instructions n n n Unimplemented instruction Instructions that cause an error w Misaligned load/store w Illegal address w Insufficient permissions Exceptions are handled similarly to Interrupts n n n mcause gets code corresponding to exception type mepc gets pc of the faulting instruction pc changes to mtvec L15-17

18 Illegal Instruction Exception Hardware Implementation If (dinst.itype == Unsupported) begin mcause <= 2; // code for illegal instruction end mepc <= pc; pc <= mtvec; state <= Fetch; L15-18

19 Implementing Mul Instruction in SW Our RISC-V subset doesn t have the mul rd, rs1, rs2 instruction n Executing it will result in an Illegal Instruction exception (mcause = 2) n The exception handler can emulate the instruction and return to the program at mepc+4 w Requires incrementing mepc by 4 before mret n To the program, it will look like the mul instruction worked L15-19

20 Common Interrupt Handler Assembly Code // This replaces old mtvec from keyboard example mtvec: // store all registers to the stack csrr a0, mcause csrr a1, mepc mv a2, sp // where registers are saved jal ih_dispatcher // ih_dispatcher returns next address to execute csrw mepc, a0 // restore all registers from the stack mret L15-20

21 Common Interrupt Handler C Code int ih_dispatcher(int cause, int epc, int *regs) { if (cause == 2) { } return illegal_inst_ih(epc, regs); } if (cause == 0x ) { return keyboard_ih(epc, regs); } else { abort(); } L15-21

22 Interrupt Handler Keyboard Interrupt int keyboard_ih(int cause, int epc) { } int key = get_keypress(); add_to_kb_buffer(key); return epc; L15-22

23 Interrupt Handler Illegal Instruction int illegal_inst_ih(int epc, int *regs) { int inst = load_mem(epc); // load_mem fetches inst // check opcode & function codes if((inst & MASK_MUL) == MATCH_MUL) { // is MUL, extract rd, rs1, rs2 from inst int rd = (inst >> 7) & 0x01F; int rs1 =...; int rs2 =...; // emulate regs[rd] = regs[rs1] * regs[rs2] multiply(rd, rs1, rs2, regs); return epc + 4; // done, resume at epc+4 } else abort(); } L15-23

Operating Systems and Interrupts/Exceptions

Operating Systems and Interrupts/Exceptions Operating Systems and Interrupts/Exceptions Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology Code for the lecture is available on the course website under the

More information

Operating Systems: Virtual Machines & Exceptions

Operating Systems: Virtual Machines & Exceptions Operating Systems: Machines & Exceptions Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L19-1 6.004 So Far: Single-User Machines Program Hardware ISA (e.g., RISC-V) Processor Memory

More information

1 /20 2 /18 3 /20 4 /18 5 /24

1 /20 2 /18 3 /20 4 /18 5 /24 M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 6.S084 Computation Structures Spring 2018 1 /20 2 /18 3 /20 4 /18 5 /24 Practice

More information

1 /20 2 /18 3 /20 4 /18 5 /24

1 /20 2 /18 3 /20 4 /18 5 /24 M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 6.S084 Computation Structures Spring 2018 1 /20 2 /18 3 /20 4 /18 5 /24 Practice

More information

1 /18 2 /16 3 /18 4 /26 5 /22

1 /18 2 /16 3 /18 4 /26 5 /22 M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 6.004 Computation Structures Fall 2018 Quiz #2 1 /18 2 /16 3 /18 4 /26 5 /22

More information

1 /18 2 /16 3 /18 4 /26 5 /22

1 /18 2 /16 3 /18 4 /26 5 /22 M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 6.004 Computation Structures Fall 2018 Quiz #2 1 /18 2 /16 3 /18 4 /26 5 /22

More information

1 /15 2 /20 3 /20 4 /25 5 /20

1 /15 2 /20 3 /20 4 /25 5 /20 M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 6.S084 Computation Structures Spring 2018 1 /15 2 /20 3 /20 4 /25 5 /20 Quiz

More information

Fast Interrupts. Krste Asanovic, UC Berkeley / SiFive Inc. (Chair) Kevin Chen, Andes (Vice-Chair)

Fast Interrupts. Krste Asanovic, UC Berkeley / SiFive Inc. (Chair) Kevin Chen, Andes (Vice-Chair) Fast Interrupts Krste Asanovic, UC Berkeley / SiFive Inc. (Chair) Kevin Chen, Andes (Vice-Chair) 8 th RISC-V Workshop Barcelona Supercomputer Center, Barcelona, Spain May 9, 2018 RISC-V for Embedded Embedded

More information

POLITECNICO DI MILANO. Exception handling. Donatella Sciuto:

POLITECNICO DI MILANO. Exception handling. Donatella Sciuto: POLITECNICO DI MILANO Exception handling Donatella Sciuto: donatella.sciuto@polimi.it Interrupts: altering the normal flow of control I i-1 HI 1 program I i HI 2 interrupt handler I i+1 HI n An external

More information

Lecture 11: Interrupt and Exception. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 11: Interrupt and Exception. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 11: Interrupt and Exception James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L11 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Your goal today Housekeeping first peek outside

More information

EE 457 Unit 8. Exceptions What Happens When Things Go Wrong

EE 457 Unit 8. Exceptions What Happens When Things Go Wrong 1 EE 457 Unit 8 Exceptions What Happens When Things Go Wrong 2 What are Exceptions? Exceptions are rare events triggered by the hardware and forcing the processor to execute a software handler HW Interrupts

More information

What are Exceptions? EE 457 Unit 8. Exception Processing. Exception Examples 1. Exceptions What Happens When Things Go Wrong

What are Exceptions? EE 457 Unit 8. Exception Processing. Exception Examples 1. Exceptions What Happens When Things Go Wrong 8. 8.2 What are Exceptions? EE 457 Unit 8 Exceptions What Happens When Things Go Wrong Exceptions are rare events triggered by the hardware and forcing the processor to execute a software handler Similar

More information

Virtual Machines & the OS Kernel

Virtual Machines & the OS Kernel Virtual Machines & the OS Kernel Not in the book! L24 Virtual Machines & the OS Kernel 1 Power of Contexts: Sharing a CPU Virtual Memory 1 Physical Memory Virtual Memory 2 Every application can be written

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture Single-cycle ISA Implementation Prof. Michel A. Kinsy Computer System View Processor Applications Compiler Firmware ISA Memory organization Digital Design Circuit Design Operating

More information

Virtual Machines & the OS Kernel

Virtual Machines & the OS Kernel Virtual Machines & the OS Kernel Not in the book! L24 Virtual Machines & the OS Kernel 1 Power of Contexts: Sharing a CPU Virtual Memory 1 Physical Memory Virtual Memory 2 Every application can be written

More information

Virtual Machines & the OS Kernel

Virtual Machines & the OS Kernel Comp 120, Spring 05 4/21 Lecture page 1 Virtual Machines & the OS Kernel (not in the book) L23 Virtual Machines & the OS Kernel 1 Power of Contexts: Sharing a CPU Virtual Memory 1 Physical Memory Virtual

More information

zero-riscy: User Manual

zero-riscy: User Manual zero-riscy: User Manual June 2017 Revision 0.1 Pasquale Davide Schiavone (pschiavo@iis.ee.ethz.ch) Micrel Lab and Multitherman Lab University of Bologna, Italy Integrated Systems Lab ETH Zürich, Switzerland

More information

ECE 353 Lab 3. (A) To gain further practice in writing C programs, this time of a more advanced nature than seen before.

ECE 353 Lab 3. (A) To gain further practice in writing C programs, this time of a more advanced nature than seen before. ECE 353 Lab 3 Motivation: The purpose of this lab is threefold: (A) To gain further practice in writing C programs, this time of a more advanced nature than seen before. (B) To reinforce what you learned

More information

Notes Interrupts and Exceptions. The book uses exception as a general term for all interrupts...

Notes Interrupts and Exceptions. The book uses exception as a general term for all interrupts... 08 1 Interrupts and Exceptions 08 1 Notes The book uses exception as a general term for all interrupts...... in these notes interrupt is used as the general term...... and a narrower definition is used

More information

Branch Addressing. Jump Addressing. Target Addressing Example. The University of Adelaide, School of Computer Science 28 September 2015

Branch Addressing. Jump Addressing. Target Addressing Example. The University of Adelaide, School of Computer Science 28 September 2015 Branch Addressing Branch instructions specify Opcode, two registers, target address Most branch targets are near branch Forward or backward op rs rt constant or address 6 bits 5 bits 5 bits 16 bits PC-relative

More information

Flow of Control -- Conditional branch instructions

Flow of Control -- Conditional branch instructions Flow of Control -- Conditional branch instructions You can compare directly Equality or inequality of two registers One register with 0 (>,

More information

Exceptions and Interrupts

Exceptions and Interrupts Exceptions and Interrupts Unexpected events (asynchronous interrupt) requiring change in flow of control (different ISAs use the terms differently) exception Arises within the CPU e.g., undefined opcode,

More information

ece4750-tinyrv-isa.txt

ece4750-tinyrv-isa.txt ========================================================================== Tiny RISC-V Instruction Set Architecture ========================================================================== # Author :

More information

Procedure Call Instructions

Procedure Call Instructions Procedure Calling Steps required 1. Place parameters in registers x10 to x17 2. Transfer control to procedure 3. Acquire storage for procedure 4. Perform procedure s operations 5. Place result in register

More information

MIPS Functions and Instruction Formats

MIPS Functions and Instruction Formats MIPS Functions and Instruction Formats 1 The Contract: The MIPS Calling Convention You write functions, your compiler writes functions, other compilers write functions And all your functions call other

More information

Examples of branch instructions

Examples of branch instructions Examples of branch instructions Beq rs,rt,target #go to target if rs = rt Beqz rs, target #go to target if rs = 0 Bne rs,rt,target #go to target if rs!= rt Bltz rs, target #go to target if rs < 0 etc.

More information

Virtual Memory and Interrupts

Virtual Memory and Interrupts Constructive Computer Architecture Virtual Memory and Interrupts Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 13, 2015 http://csg.csail.mit.edu/6.175

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Branch to a labeled instruction if a condition is true Otherwise, continue sequentially beq rs, rt, L1 if (rs == rt) branch to

More information

SPIM Procedure Calls

SPIM Procedure Calls SPIM Procedure Calls 22C:60 Jonathan Hall March 29, 2008 1 Motivation We would like to create procedures that are easy to use and easy to read. To this end we will discuss standard conventions as it relates

More information

Control Instructions. Computer Organization Architectures for Embedded Computing. Thursday, 26 September Summary

Control Instructions. Computer Organization Architectures for Embedded Computing. Thursday, 26 September Summary Control Instructions Computer Organization Architectures for Embedded Computing Thursday, 26 September 2013 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition,

More information

Control Instructions

Control Instructions Control Instructions Tuesday 22 September 15 Many slides adapted from: and Design, Patterson & Hennessy 5th Edition, 2014, MK and from Prof. Mary Jane Irwin, PSU Summary Previous Class Instruction Set

More information

Interrupts/Exceptions/Faults

Interrupts/Exceptions/Faults Constructive Computer Architecture Interrupts/Exceptions/Faults Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 6, 2013 http://csg.csail.mit.edu/6.s195

More information

Exception Handling. Precise Exception Handling. Exception Types. Exception Handling Terminology

Exception Handling. Precise Exception Handling. Exception Types. Exception Handling Terminology Precise Handling CprE 581 Computer Systems Architecture Reading: Textbook, Appendix A Handling I/O Internal s Arithmetic overflow Illegal Instruction Memory Address s Protection violation Data alignment

More information

EE 109 Unit 15 Subroutines and Stacks

EE 109 Unit 15 Subroutines and Stacks 1 EE 109 Unit 15 Subroutines and Stacks 2 Program Counter and GPRs (especially $sp, $ra, and $fp) REVIEW OF RELEVANT CONCEPTS 3 Review of Program Counter PC is used to fetch an instruction PC contains

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

Lecture 5. Announcements: Today: Finish up functions in MIPS

Lecture 5. Announcements: Today: Finish up functions in MIPS Lecture 5 Announcements: Today: Finish up functions in MIPS 1 Control flow in C Invoking a function changes the control flow of a program twice. 1. Calling the function 2. Returning from the function In

More information

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2014 Sources: Computer

More information

Reminder: tutorials start next week!

Reminder: tutorials start next week! Previous lecture recap! Metrics of computer architecture! Fundamental ways of improving performance: parallelism, locality, focus on the common case! Amdahl s Law: speedup proportional only to the affected

More information

CS3350B Computer Architecture Winter 2015

CS3350B Computer Architecture Winter 2015 CS3350B Computer Architecture Winter 2015 Lecture 5.5: Single-Cycle CPU Datapath Design Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design, Patterson

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

11/13/17. CS61C so far. Adding I/O C Programs. So How is a Laptop Any Different? It s a Real Computer! Raspberry Pi (Less than $40 on Amazon in 2017)

11/13/17. CS61C so far. Adding I/O C Programs. So How is a Laptop Any Different? It s a Real Computer! Raspberry Pi (Less than $40 on Amazon in 2017) 11/14/17 CS61C so far CS 61C: Great Ideas in Computer Architecture C Programs #include MIPS Assembly Project 2 int fib(int n) { return fib(n-1) + fib(n-2); }.foo lw $t0, 4($r0) addi $t1, $t0,

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count CPI and Cycle time Determined

More information

S3.0 : A multicore 32-bit Processor

S3.0 : A multicore 32-bit Processor S3.0 : A multicore 32-bit Processor S3.0 is a multicore version of S2.1 simple processor. This is a typical simple 32-bit processor. It has three-address instructions and 32 registers. Most operations

More information

Instruction Set Architecture

Instruction Set Architecture Computer Architecture Instruction Set Architecture Lynn Choi Korea University Machine Language Programming language High-level programming languages Procedural languages: C, PASCAL, FORTRAN Object-oriented

More information

MIPS Assembly (Functions)

MIPS Assembly (Functions) ECPE 170 Jeff Shafer University of the Pacific MIPS Assembly (Functions) 2 Lab Schedule This Week Activities Lab work time MIPS functions MIPS Random Number Generator Lab 11 Assignments Due Due by Apr

More information

There are different characteristics for exceptions. They are as follows:

There are different characteristics for exceptions. They are as follows: e-pg PATHSHALA- Computer Science Computer Architecture Module 15 Exception handling and floating point pipelines The objectives of this module are to discuss about exceptions and look at how the MIPS architecture

More information

Implementing the Control. Simple Questions

Implementing the Control. Simple Questions Simple Questions How many cycles will it take to execute this code? lw $t2, 0($t3) lw $t3, 4($t3) beq $t2, $t3, Label add $t5, $t2, $t3 sw $t5, 8($t3) Label:... #assume not What is going on during the

More information

CS 104 Computer Organization and Design

CS 104 Computer Organization and Design CS 104 Computer Organization and Design Exceptions and Interrupts CS104: Exceptions and Interrupts 1 Exceptions and Interrupts App App App System software Mem CPU I/O Interrupts: Notification of external

More information

Where Does The Cpu Store The Address Of The

Where Does The Cpu Store The Address Of The Where Does The Cpu Store The Address Of The Next Instruction To Be Fetched The three most important buses are the address, the data, and the control buses. The CPU always knows where to find the next instruction

More information

Very short answer questions. "True" and "False" are considered short answers.

Very short answer questions. True and False are considered short answers. Very short answer questions. "True" and "False" are considered short answers. (1) What is the biggest problem facing MIMD processors? (1) A program s locality behavior is constant over the run of an entire

More information

Lecture 5: Procedure Calls

Lecture 5: Procedure Calls Lecture 5: Procedure Calls Today s topics: Memory layout, numbers, control instructions Procedure calls 1 Memory Organization The space allocated on stack by a procedure is termed the activation record

More information

Programmable Machines

Programmable Machines Programmable Machines Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. Quiz 1: next week Covers L1-L8 Oct 11, 7:30-9:30PM Walker memorial 50-340 L09-1 6.004 So Far Using Combinational

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

Subroutines. int main() { int i, j; i = 5; j = celtokel(i); i = j; return 0;}

Subroutines. int main() { int i, j; i = 5; j = celtokel(i); i = j; return 0;} Subroutines Also called procedures or functions Example C code: int main() { int i, j; i = 5; j = celtokel(i); i = j; return 0;} // subroutine converts Celsius to kelvin int celtokel(int i) { return (i

More information

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands Stored Program Concept Instructions: Instructions are bits Programs are stored in memory to be read or written just like data Processor Memory memory for data, programs, compilers, editors, etc. Fetch

More information

Functions in MIPS. Functions in MIPS 1

Functions in MIPS. Functions in MIPS 1 Functions in MIPS We ll talk about the 3 steps in handling function calls: 1. The program s flow of control must be changed. 2. Arguments and return values are passed back and forth. 3. Local variables

More information

6.004 Tutorial Problems L3 Procedures and Stacks

6.004 Tutorial Problems L3 Procedures and Stacks 6.004 Tutorial Problems L3 Procedures and Stacks RISC-V Calling Conventions: Caller places arguments in registers a0-a7 Caller transfers control to callee using jal (jump-and-link) to capture the urn address

More information

Lecture 4: Instruction Set Architecture

Lecture 4: Instruction Set Architecture Lecture 4: Instruction Set Architecture ISA types, register usage, memory addressing, endian and alignment, quantitative evaluation Reading: Textbook (5 th edition) Appendix A Appendix B (4 th edition)

More information

Procedures and Stacks

Procedures and Stacks Procedures and Stacks Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. March 15, 2018 L10-1 Announcements Schedule has shifted due to snow day Quiz 2 is now on Thu 4/12 (one week later)

More information

Address spaces and memory management

Address spaces and memory management Address spaces and memory management Review of processes Process = one or more threads in an address space Thread = stream of executing instructions Address space = memory space used by threads Address

More information

2) Using the same instruction set for the TinyProc2, convert the following hex values to assembly language: x0f

2) Using the same instruction set for the TinyProc2, convert the following hex values to assembly language: x0f CS2 Fall 28 Exam 2 Name: ) The Logisim TinyProc2 has four instructions, each using 8 bits. The instruction format is DR SR SR2 OpCode with OpCodes of for add, for subtract, and for multiply. Load Immediate

More information

Chapter 10 And, Finally... The Stack. ACKNOWLEDGEMENT: This lecture uses slides prepared by Gregory T. Byrd, North Carolina State University

Chapter 10 And, Finally... The Stack. ACKNOWLEDGEMENT: This lecture uses slides prepared by Gregory T. Byrd, North Carolina State University Chapter 10 And, Finally... The Stack ACKNOWLEDGEMENT: This lecture uses slides prepared by Gregory T. Byrd, North Carolina State University 2 Stack: An Abstract Data Type An important abstraction that

More information

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda MIPS ISA and MIPS Assembly CS301 Prof. Szajda Administrative HW #2 due Wednesday (9/11) at 5pm Lab #2 due Friday (9/13) 1:30pm Read Appendix B5, B6, B.9 and Chapter 2.5-2.9 (if you have not already done

More information

EE 361 University of Hawaii Fall

EE 361 University of Hawaii Fall C functions Road Map Computation flow Implementation using MIPS instructions Useful new instructions Addressing modes Stack data structure 1 EE 361 University of Hawaii Implementation of C functions and

More information

Computer System Architecture Midterm Examination Spring 2002

Computer System Architecture Midterm Examination Spring 2002 Computer System Architecture 6.823 Midterm Examination Spring 2002 Name: This is an open book, open notes exam. 110 Minutes 1 Pages Notes: Not all questions are of equal difficulty, so look over the entire

More information

Lecture 4: Mechanism of process execution. Mythili Vutukuru IIT Bombay

Lecture 4: Mechanism of process execution. Mythili Vutukuru IIT Bombay Lecture 4: Mechanism of process execution Mythili Vutukuru IIT Bombay Low-level mechanisms How does the OS run a process? How does it handle a system call? How does it context switch from one process to

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 22: Operating Systems. Krste Asanović & Randy H. Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 22: Operating Systems. Krste Asanović & Randy H. Katz CS 61C: Great Ideas in Computer Architecture Lecture 22: Operating Systems Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 1 CPU Project 2 CS61C so far MIPS Assembly.foo lw $t0,

More information

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2)

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) ELEC 5200-001/6200-001 Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) Victor P. Nelson, Professor & Asst. Chair Vishwani D. Agrawal, James J. Danaher Professor Department

More information

Prof. Kavita Bala and Prof. Hakim Weatherspoon CS 3410, Spring 2014 Computer Science Cornell University. P&H Chapter 4.9, pages , appendix A.

Prof. Kavita Bala and Prof. Hakim Weatherspoon CS 3410, Spring 2014 Computer Science Cornell University. P&H Chapter 4.9, pages , appendix A. Prof. Kavita Bala and Prof. Hakim Weatherspoon CS 3410, Spring 2014 Computer Science Cornell University P&H Chapter 4.9, pages 445 452, appendix A.7 Heartbleed is a security bug in the open-source OpenSSL

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

EE 109 Unit 17 - Exceptions

EE 109 Unit 17 - Exceptions EE 109 Unit 17 - Exceptions 1 2 What are Exceptions? Any event that causes a break in normal execution Error Conditions Invalid address, Arithmetic/FP overflow/error Hardware Interrupts / Events Handling

More information

Lecture 5: Procedure Calls

Lecture 5: Procedure Calls Lecture 5: Procedure Calls Today s topics: Procedure calls and register saving conventions 1 Example Convert to assembly: while (save[i] == k) i += 1; i and k are in $s3 and $s5 and base of array save[]

More information

Lectures 5. Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS

Lectures 5. Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS Lectures 5 Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS 1 OOPS - What does this C code do? int foo(char *s) { int L = 0; while (*s++) { ++L; } return L; } 2

More information

MIPS R-format Instructions. Representing Instructions. Hexadecimal. R-format Example. MIPS I-format Example. MIPS I-format Instructions

MIPS R-format Instructions. Representing Instructions. Hexadecimal. R-format Example. MIPS I-format Example. MIPS I-format Instructions Representing Instructions Instructions are encoded in binary Called machine code MIPS instructions Encoded as 32-bit instruction words Small number of formats encoding operation code (opcode), register

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture MIPS Instruction Formats July 2, 2014 Review New registers: $a0-$a3, $v0-$v1, $ra, $sp New instructions: slt, la, li, jal, jr Saved registers: $s0-$s7, $sp, $ra Volatile registers: $t0-$t9, $v0-$v1, $a0-$a3

More information

LECTURE 3: THE PROCESSOR

LECTURE 3: THE PROCESSOR LECTURE 3: THE PROCESSOR Abridged version of Patterson & Hennessy (2013):Ch.4 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU

More information

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Overview Last Lecture s Review Execution Cycle Levels of Computer Languages Stored Program Computer/Instruction Execution Cycle SPIM, a

More information

Chapter 2. Instructions:

Chapter 2. Instructions: Chapter 2 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

Programmable Machines

Programmable Machines Programmable Machines Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. Quiz 1: next week Covers L1-L8 Oct 11, 7:30-9:30PM Walker memorial 50-340 L09-1 6.004 So Far Using Combinational

More information

Lecture 2: RISC V Instruction Set Architecture. Housekeeping

Lecture 2: RISC V Instruction Set Architecture. Housekeeping S 17 L2 1 18 447 Lecture 2: RISC V Instruction Set Architecture James C. Hoe Department of ECE Carnegie Mellon University Housekeeping S 17 L2 2 Your goal today get bootstrapped on RISC V RV32I to start

More information

Lecture 10 Exceptions and Interrupts. How are exceptions generated?

Lecture 10 Exceptions and Interrupts. How are exceptions generated? Lecture 10 Exceptions and Interrupts The ARM processor can work in one of many operating modes. So far we have only considered user mode, which is the "normal" mode of operation. The processor can also

More information

MIPS ISA. 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support

MIPS ISA. 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support Components of an ISA EE 357 Unit 11 MIPS ISA 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support SUBtract instruc. vs. NEGate + ADD instrucs. 3. Registers accessible

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

Non-Pipelined Processors - 2

Non-Pipelined Processors - 2 Constructive Computer Architecture: Non-Pipelined Processors - 2 Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology October 4, 2017 http://csg.csail.mit.edu/6.175

More information

Pipelining. Principles of pipelining. Simple pipelining. Structural Hazards. Data Hazards. Control Hazards. Interrupts. Multicycle operations

Pipelining. Principles of pipelining. Simple pipelining. Structural Hazards. Data Hazards. Control Hazards. Interrupts. Multicycle operations Principles of pipelining Pipelining Simple pipelining Structural Hazards Data Hazards Control Hazards Interrupts Multicycle operations Pipeline clocking ECE D52 Lecture Notes: Chapter 3 1 Sequential Execution

More information

CS 252 Graduate Computer Architecture. Lecture 4: Instruction-Level Parallelism

CS 252 Graduate Computer Architecture. Lecture 4: Instruction-Level Parallelism CS 252 Graduate Computer Architecture Lecture 4: Instruction-Level Parallelism Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://wwweecsberkeleyedu/~krste

More information

Processor. Han Wang CS3410, Spring 2012 Computer Science Cornell University. See P&H Chapter , 4.1 4

Processor. Han Wang CS3410, Spring 2012 Computer Science Cornell University. See P&H Chapter , 4.1 4 Processor Han Wang CS3410, Spring 2012 Computer Science Cornell University See P&H Chapter 2.16 20, 4.1 4 Announcements Project 1 Available Design Document due in one week. Final Design due in three weeks.

More information

A Model RISC Processor. DLX Architecture

A Model RISC Processor. DLX Architecture DLX Architecture A Model RISC Processor 1 General Features Flat memory model with 32-bit address Data types Integers (32-bit) Floating Point Single precision (32-bit) Double precision (64 bits) Register-register

More information

CS64 Week 5 Lecture 1. Kyle Dewey

CS64 Week 5 Lecture 1. Kyle Dewey CS64 Week 5 Lecture 1 Kyle Dewey Overview More branches in MIPS Memory in MIPS MIPS Calling Convention More Branches in MIPS else_if.asm nested_if.asm nested_else_if.asm Memory in MIPS Accessing Memory

More information

Mark Redekopp, All rights reserved. EE 357 Unit 11 MIPS ISA

Mark Redekopp, All rights reserved. EE 357 Unit 11 MIPS ISA EE 357 Unit 11 MIPS ISA Components of an ISA 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support SUBtract instruc. vs. NEGate + ADD instrucs. 3. Registers accessible

More information

Lecture 2: RISC V Instruction Set Architecture. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 2: RISC V Instruction Set Architecture. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 2: RISC V Instruction Set Architecture James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L02 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Your goal today Housekeeping get bootstrapped

More information

Hakim Weatherspoon CS 3410 Computer Science Cornell University

Hakim Weatherspoon CS 3410 Computer Science Cornell University Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Deniz Altinbuken, Professors Weatherspoon, Bala, Bracy, and Sirer. C practice

More information

CSE Lecture In Class Example Handout

CSE Lecture In Class Example Handout CSE 30321 Lecture 07-09 In Class Example Handout Part A: A Simple, MIPS-based Procedure: Swap Procedure Example: Let s write the MIPS code for the following statement (and function call): if (A[i] > A

More information

Course Administration

Course Administration Fall 2018 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture Introduction 4/4 Avinash Karanth Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701

More information

LC-3 Input and Output

LC-3 Input and Output LC-3 Input and Output I/O: Connecting to Outside World So far, we ve learned how to: compute with values in registers load data from memory to registers store data from registers to memory use the TRAP

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

MIPS%Assembly% E155%

MIPS%Assembly% E155% MIPS%Assembly% E155% Outline MIPS Architecture ISA Instruction types Machine codes Procedure call Stack 2 The MIPS Register Set Name Register Number Usage $0 0 the constant value 0 $at 1 assembler temporary

More information

Interrupts & System Calls

Interrupts & System Calls Interrupts & System Calls Nima Honarmand Previously on CSE306 Open file hw1.txt App Ok, here s handle App 4 App Libraries Libraries Libraries User System Call Table (350 1200) Supervisor Kernel Hardware

More information

Today. Putting it all together

Today. Putting it all together Today! One complete example To put together the snippets of assembly code we have seen! Functions in MIPS Slides adapted from Josep Torrellas, Craig Zilles, and Howard Huang Putting it all together! Count

More information

Past: Making physical memory pretty

Past: Making physical memory pretty Past: Making physical memory pretty Physical memory: no protection limited size almost forces contiguous allocation sharing visible to program easy to share data gcc gcc emacs Virtual memory each program

More information