Lecture 2: RISC V Instruction Set Architecture. Housekeeping

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lecture 2: RISC V Instruction Set Architecture. Housekeeping"

Transcription

1 S 17 L Lecture 2: RISC V Instruction Set Architecture James C. Hoe Department of ECE Carnegie Mellon University Housekeeping S 17 L2 2 Your goal today get bootstrapped on RISC V RV32I to start Lab 1 (will revisit general ISA issues in L04) Notices Student survey on Blackboard, due 1/25 Lab 1, Part A, due week of 1/30 Lab 1, Part B, due week of 2/6 Readings RISC V Instruction Set Manual, Ch 1, 2, 20 P&H Ch 2 P&H 4.1~4.4 (next time)

2 How to specify what a computer does? Architectural Level A clock has a hour hand and a minute hand,... A computer does.????. You can read a clock without knowing how one works Implementation Level A particular clock design has a certain set of gears arranged in a certain configuration A particular computer design has a certain datapath and a certain control logic Realization Level Machined alloy gears versus stamped sheet metal gears CMOS versus ECL versus vacuum tubes S 17 L2 3 [Computer Architecture, Blaauw and Brooks, 1997] Stored Program Architecture a.k.a. von Neumann By far the most common architectural paradigm Memory holds both program and data instructions and data in a linear memory array instructions can be modified just like data Sequential instruction processing 1. program counter (PC) identifies the current instruction 2. instruction is fetched from memory 3. instruction execution causes some state (e.g. memory) to be updated as a specific function of current state 4. program counter is advanced (according to instruction) 5. repeat *atomic * sequential * inorder program counter S 17 L2 4

3 von Neumann vs Dataflow Consider a von Neumann program What is the significance of the program order? What is the significance of the storage locations? v := a+ b; w:= b*2; x := v w y := v +w z := x *y S 17 L2 5 + *2 Dataflow program instruction ordering implied by data dependence instruction specifies who receives the result + an instruction executes when all operands received no program counter, no intermediate state * a b Which one feels more natural to you? z [figure and example from Arvind] Parallel Random Access Memory S 17 L2 6 P 1 P 2 P 3 P n Memory Do you naturally think parallel or sequential?

4 S 17 L2 7 Instruction Set Architecture (ISA) ISA in a nut shell A stable programming target (typically 15~20 years) guarantees binary compatibility for SW investments permits adoption of foreseeable technology advances better to compromise immediate optimality for future scalability and compatibility Dominant paradigm has been von Neumann program visible state memory, registers, program counters, etc. instructions to modified state; each prescribes which state elements are read as operands which state elements are updated; and how to compute new values from current state where is the next instruction S 17 L2 8

5 S 17 L2 9 3 Instruction Classes (as convention) Arithmetic and logical operations fetch operands from specified locations (reg and/or mem) compute a result as a function of the operands store result to a specified location update PC to the next sequential instruction Data movement operations (no compute) fetch operands from specified locations store operand values to specified locations update PC to the next sequential instruction Control flow operations (affects only PC) fetch operands from specified locations compute a branch condition and a target address if branch condition is true then PC target address else PC next seq. instruction Complete ISA Picture S 17 L2 10 User level ISA program visible state and instructions available to user programs single user abstraction on top of HW/SW virtualization For this course and for now, RV32I of RISC V Virtual Environment Architecture state and instructions to control virtualization (e.g., caches, sharing) user level, but not used by your average user programs Operating Environment Architecture state and instructions to implement virtualization privileged/protected access reserved for OS

6 RV32I Program Visible State S 17 L2 11 Program Counter 32 bit byte address of the current instruction M[0] M[1] M[2] M[3] M[4] M[N 1] **Note** x0=0 x1 x2 General Purpose Register File bit words named x0...x31 Memory 2 32 by 8 bit locations (4 Giga Bytes) 32 bit address (there is some magic going on) Register Register ALU Instructions S 17 L2 12 Assembly (e.g., register register addition) ADD rd, rs1, rs2 Machine encoding rs2 rs bit rd Semantics GPR[rd] GPR[rs1] + GPR[rs2] PC PC + 4 Exceptions: none (ignore carry and overflow) Variations Arithmetic: {ADD, SUB} Compare: {signed, unsigned} x {Set if Less Than} Logical: {AND, OR, XOR} Shift: {Left, Right Logical, Right Arithmetic}

7 Reg Reg Instruction Encodings S 17 L bit R type ALU [from page 54, The RISC V Instruction Set Manual] Assembly Programming 101 S 17 L2 14 Break down high level program expressions into a sequence of elemental operations E.g. High level Code f = ( g + h ) ( i + j ) Assembly Code suppose f, g, h, i, j are in r f, r g, r h, r i, r j suppose r temp is a free register add r temp r g r h # r temp = g+h add r f r i r j # r f = i+j sub r f r temp r f # f = r temp r f

8 Reg Immediate ALU Instructions S 17 L2 15 Assembly (e.g., reg immediate additions) ADDI rd, rs1, imm 12 Machine encoding imm[11:0] 12 bit rs bit rd Semantics GPR[rd] GPR[rs1] + sign extend (imm) PC PC + 4 Exceptions: none (ignore carry and overflow) Variations Arithmetic: {ADDI, SUBI} Compare: {signed, unsigned} x {Set if Less Than Immediate} Logical: {ANDI, ORI, XORI} **Shifts by unsigned imm[4:0]: {SLLI, SRLI, SRAI} S 17 L2 16 Reg Immediate ALU Inst. Encodings sign extended immediate unsigned matches R type encoding 32 bit I type ALU Note: SLTIU does unsigned compare with sign extended immediate [from page 54, The RISC V Instruction Set Manual]

9 Load Store Architecture S 17 L2 17 RV32I ALU instructions operates only on register operands next PC always PC+4 A distinct set of load and store instructions dedicated to copying data between register and memory next PC always PC+4 Another set of control flow instructions dedicated to manipulating PC (branch, jump, etc.) does not effect memory or other registers Load Instructions S 17 L2 18 Assembly (e.g., load 4 byte word) LW rd, offset 12 (base) Machine encoding offset[11:0] 12 bit base bit rd rs Semantics byte_address 32 = sign extend(offset 12 ) + GPR[base] GPR[rd] MEM 32 [byte_address] PC PC + 4 Exceptions: none for now Variations: LW, LH, LHU, LB, LBU e.g., LB :: GPR[rd] sign extend(mem 8 [byte_address]) LBU :: GPR[rd] zero extend(mem 8 [byte_address]) Note: RV32I memory is byte addressable, little endian

10 Big Endian vs. Little Endian (Part I, Chapter 4, Gulliver s Travels) 32 bit signed or unsigned integer word is 4 bytes By convention we write MSB on left MSB (most significant) 8 bit 8 bit 8 bit 8 bit On a byte addressable machine Big Endian Little Endian MSB LSB byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8 byte 9 byte 10 byte 11 byte 12 byte 13 byte 14 byte 15 byte 16 byte 17 byte 18 byte 19 pointer points to the big end MSB byte 3 byte 7 byte 11 byte 15 byte 19 byte 2 byte 6 byte 10 byte 14 byte 18 byte 1 byte 5 byte 9 byte 13 byte 17 S 17 L2 19 LSB (least significant) LSB byte 0 byte 4 byte 8 byte 12 byte 16 pointer points to the little end What difference does it make? check out htonl(), ntohl() in in.h Load/Store Data Alignment S 17 L2 20 MSB byte 3 byte 2 byte 1 byte 0 byte 7 byte 6 byte 5 byte 4 LSB Common case is aligned loads and stores physical implementations of memory and memory interface optimize for natural alignment boundaries (i.e., return an aligned 4 byte word per access) unaligned loads or stores would require 2 separate accesses to memory Was common for RISC ISAs to disallow misaligned loads/stores; if necessary, use a code sequence of aligned loads/stores and shifts RV32I allows misaligned loads/stores but warns it could be very slow; if necessary,......

11 Store Instructions S 17 L2 21 Assembly (e.g., store 4 byte word) SW rs2, offset 12 (base) Machine encoding offset[11:5] rs2 base bit ofst[4:0] Semantics byte_address 32 = sign extend(offset 12 )+ GPR[base] MEM 32 [byte_address] GPR[rs2] PC PC + 4 Exceptions: none for now Variations: SW, SH, SB e.g., SB:: MEM 8 [byte_address] (GPR[rs2])[7:0] Assembly Programming 201 S 17 L2 22 E.g. High level Code A[ 8 ] = h + A[ 0 ] where A is an array of integers (4 bytes each) Assembly Code suppose &A, h are in r A, r h suppose r temp is a free register LW r temp 0(r A ) # r temp = A[0] add r temp r h r temp # r temp = h + A[0] SW r temp 32(r A ) # A[8] = r temp # note A[8] is 32 bytes # from A[0]

12 Load/Store Encodings S 17 L2 23 Both needs 2 register operands and 1 12 bit immediate [from page 54, The RISC V Instruction Set Manual] RV32I Instruction Formats S 17 L2 24 All instructions 4 byte long and 4 byte aligned in mem R type: 3 register operands I type: 2 register operands (with dest) and 12 bit imm S(B) type: 2 register operands (no dest) and 12 bit imm U(J) type, 1 register operation (dest) and 20 bit imm Aimed to simplify decoding and field extraction

13 RV32I Immediate Encoding S 17 L2 25 RV32I adopts 2 different register immediate formats (I vs S) to keep dest operand at inst[11:7] always Most RISCs had 1 register immediate format opcode 6 bit rs rt immediate 16 bit rt field used as a source (e.g., store) or dest (e.g., load) also common to opt for longer 16 bit immediate RV32I encodes immediate in non consecutive bits C Code { code A } if X==Y then { code B } else { code C } { code D } Control Flow Instructions Control Flow Graph True code B code A if X==Y code D False code C S 17 L2 26 Assembly Code (linearized) code A if X==Y goto code C goto code B code D basic blocks (1 way in, 1 way out, all or nothing)

14 (Conditional) Branch Instructions S 17 L2 27 Assembly (e.g., branch if equal) BEQ rs1, rs2, imm 13 Note: implicit imm[0] (always 0) Machine encoding imm[12 10:5] rs2 rs bit imm[4:1 11] Semantics target = PC + sign extend(imm 13 ) if GPR[rs1]==GPR[rs2] then PC target else PC PC + 4 How far can you jump? Exceptions: misaligned target (4 byte) if taken Variations BEQ, BNE, BLT, BGE, BLTU, BGEU Assembly Programming 301 S 17 L2 28 E.g. High level Code if (i == j) then e = g else e = h f = e Assembly Code suppose e, f, g, h, i, j are in r e, r f, r g, r h, r i, r j fork then else join bne r i r j L1 # L1 and L2 are addr labels # assembler computes offset add r e r g x0 # e = g beq x0 x0 L2 L1: add r e r h x0 # e = h L2: add r f r e x0 # f = e....

15 Function Call and Return S 17 L A: BEQ x0, x0, F B: BEQ x0, x0, F... F: BEQ x0, x0, A+4? A function return need to 1. jump back to different callers 2. know where to jump back to Jump Instruction S 17 L2 30 Assembly JAL rd imm 21 Note: implicit imm[0] (always 0) Machine encoding imm[20 10: :12] 20 bit rd Semantics target =PC + sign extend(imm 21 ) GPR[rd] PC + 4 PC target How far can you jump? Exceptions: misaligned target (4 byte) *Note*: use JAL x0 label instead of BEQ x0 x0 label UJ type

16 Jump Indirect Instruction S 17 L2 31 Assembly JALR rd, rs1, imm 12 Machine encoding imm[11:0] 12 bit rs bit rd Semantics target = GPR[rs1] + sign extend(imm 12 ) target &= 0xffff_fffe GPR[rd] PC + 4 PC target How far can you jump? Exceptions: misaligned target (4 byte) Assembly Programming 401 S 17 L2 32 Caller... code A... JAL x1, _myfxn... code C... JAL x1, _myfxn... code D... Callee _myfxn:... code B... JALR x0,x1,0... A call B return C call B return D... How do you pass argument between caller and callee? If A set x10 to 1, what is the value of x10 when B returns to C? What registers can B use? What happens to x1 if B calls another function

17 Caller and Callee Saved Registers S 17 L2 33 Callee Saved Registers Caller says to callee, The values of these registers should not change when you return to me. Callee says, If I need to use these registers, I promise to save the old values to memory first and restore them before I return to you. Caller Saved Registers Caller says to callee, If there is anything I care about in these registers, I already saved it myself. Callee says to caller, Don t count on them staying the same values after I am done. Unlike endianness, this is not arbitrary When to use which? S 17 L2 34 RISC V Register Usage Convention [from page 100, The RISC V Instruction Set Manual]

18 Memory Usage Convention S 17 L2 35 high address stack space grow down free space grow up stack pointer GPR[x2] dynamic data static data text binary executable low address reserved Basic Calling Convention caller saves caller saved registers 2. caller loads arguments into a0~a7 (x10~x17) 3. caller jumps to callee using JAL x1 S 17 L callee allocates space on the stack (dec. stack pointer) 5. callee saves callee saved registers to stack... body of callee (can nest additional calls) callee loads results to a0, a1 (x10, x11) 7. callee restores saved register values 8. JALR x0, x1 prologue epilogue 9. caller continues with return values in a0, a1...

19 Terminologies S 17 L2 37 Instruction Set Architecture machine state and functionality as observable and controllable by the programmer Instruction Set set of commands supported Machine Code instructions encoded in binary format directly consumable by the hardware Assembly Code instructions expressed in textual format e.g. add r1, r2, r3 converted to machine code by an assembler one to one correspondence with machine code (mostly true: compound instructions, address labels...) We didn t talk about S 17 L2 38 Privileged Modes user vs. supervisor Exception Handling trap to supervisor handling routine and back Virtual Memory each process has 4 GBytes of private, large, linear and fast memory? Floating Point Instructions

Lecture 2: RISC V Instruction Set Architecture. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 2: RISC V Instruction Set Architecture. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 2: RISC V Instruction Set Architecture James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L02 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Your goal today Housekeeping get bootstrapped

More information

Lecture 3: Single Cycle Microarchitecture. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 3: Single Cycle Microarchitecture. James C. Hoe Department of ECE Carnegie Mellon University 8 447 Lecture 3: Single Cycle Microarchitecture James C. Hoe Department of ECE Carnegie Mellon University 8 447 S8 L03 S, James C. Hoe, CMU/ECE/CALCM, 208 Your goal today Housekeeping first try at implementing

More information

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2014 Sources: Computer

More information

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2)

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) ELEC 5200-001/6200-001 Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) Victor P. Nelson, Professor & Asst. Chair Vishwani D. Agrawal, James J. Danaher Professor Department

More information

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA.

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA. Today s topics CS/COE1541: Introduction to Computer Architecture MIPS operations and operands MIPS registers Memory view Instruction encoding A Review of MIPS ISA Sangyeun Cho Arithmetic operations Logic

More information

EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design

EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown

More information

Chapter 2. Instruction Set. RISC vs. CISC Instruction set. The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2. Instruction Set. RISC vs. CISC Instruction set. The University of Adelaide, School of Computer Science 18 September 2017 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface RISC-V Edition Chapter 2 Instructions: Language of the Computer These slides are based on the slides by the authors. The slides doesn t

More information

Procedure Call Instructions

Procedure Call Instructions Procedure Calling Steps required 1. Place parameters in registers x10 to x17 2. Transfer control to procedure 3. Acquire storage for procedure 4. Perform procedure s operations 5. Place result in register

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 2 Instructions: Language of the Computer Fall 2005 Department of Computer Science Kent State University Assembly Language Encodes machine instructions using symbols and numbers

More information

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands Stored Program Concept Instructions: Instructions are bits Programs are stored in memory to be read or written just like data Processor Memory memory for data, programs, compilers, editors, etc. Fetch

More information

Anne Bracy CS 3410 Computer Science Cornell University. See P&H Chapter: , , Appendix B

Anne Bracy CS 3410 Computer Science Cornell University. See P&H Chapter: , , Appendix B Anne Bracy CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. See P&H Chapter: 2.16-2.20, 4.1-4.4,

More information

ECE 154A Introduction to. Fall 2012

ECE 154A Introduction to. Fall 2012 ECE 154A Introduction to Computer Architecture Fall 2012 Dmitri Strukov Lecture 4: Arithmetic and Data Transfer Instructions Agenda Review of last lecture Logic and shift instructions Load/store instructionsi

More information

CS 61C: Great Ideas in Computer Architecture More RISC-V Instructions and How to Implement Functions

CS 61C: Great Ideas in Computer Architecture More RISC-V Instructions and How to Implement Functions CS 61C: Great Ideas in Computer Architecture More RISC-V Instructions and How to Implement Functions Instructors: Krste Asanović and Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 9/14/17 Fall

More information

ISA: The Hardware Software Interface

ISA: The Hardware Software Interface ISA: The Hardware Software Interface Instruction Set Architecture (ISA) is where software meets hardware In embedded systems, this boundary is often flexible Understanding of ISA design is therefore important

More information

CS 61C: Great Ideas in Computer Architecture RISC-V Instruction Formats

CS 61C: Great Ideas in Computer Architecture RISC-V Instruction Formats CS 61C: Great Ideas in Computer Architecture RISC-V Instruction Formats Instructors: Krste Asanović and Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 9/14/17 Fall 2017 - Lecture #7 1 Levels of

More information

CS 4200/5200 Computer Architecture I

CS 4200/5200 Computer Architecture I CS 4200/5200 Computer Architecture I MIPS Instruction Set Architecture Dr. Xiaobo Zhou Department of Computer Science CS420/520 Lec3.1 UC. Colorado Springs Adapted from UCB97 & UCB03 Review: Organizational

More information

A Processor. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3

A Processor. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3 A Processor Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 2.16-20, 4.1-3 Let s build a MIPS CPU but using Harvard architecture Basic Computer System Registers ALU

More information

EE108B Lecture 3. MIPS Assembly Language II

EE108B Lecture 3. MIPS Assembly Language II EE108B Lecture 3 MIPS Assembly Language II Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b 1 Announcements Urgent: sign up at EEclass and say if you are taking 3 or 4 units Homework

More information

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands Stored Program Concept nstructions: nstructions are bits Programs are stored in memory to be read or written just like data Processor Memory memory for data, programs, compilers, editors, etc. Fetch &

More information

ECE232: Hardware Organization and Design. Computer Organization - Previously covered

ECE232: Hardware Organization and Design. Computer Organization - Previously covered ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization

More information

Mark Redekopp, All rights reserved. EE 352 Unit 3 MIPS ISA

Mark Redekopp, All rights reserved. EE 352 Unit 3 MIPS ISA EE 352 Unit 3 MIPS ISA Instruction Set Architecture (ISA) Defines the software interface of the processor and memory system Instruction set is the vocabulary the HW can understand and the SW is composed

More information

Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) Instruction Set Architecture (ISA)... the attributes of a [computing] system as seen by the programmer, i.e. the conceptual structure and functional behavior, as distinct from the organization of the data

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro II Lect 10 Feb 15, 2008 Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L10.1

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture MIPS Functions July 1, 2014 Review I RISC Design Principles Smaller is faster: 32 registers, fewer instructions Keep it simple: rigid syntax, fixed instruction length MIPS Registers: $s0-$s7,$t0-$t9, $0

More information

CS222: MIPS Instruction Set

CS222: MIPS Instruction Set CS222: MIPS Instruction Set Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Previous Introduction to MIPS Instruction Set MIPS Arithmetic's Register Vs Memory, Registers

More information

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda MIPS ISA and MIPS Assembly CS301 Prof. Szajda Administrative HW #2 due Wednesday (9/11) at 5pm Lab #2 due Friday (9/13) 1:30pm Read Appendix B5, B6, B.9 and Chapter 2.5-2.9 (if you have not already done

More information

Architecture II. Computer Systems Laboratory Sungkyunkwan University

Architecture II. Computer Systems Laboratory Sungkyunkwan University MIPS Instruction ti Set Architecture II Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Making Decisions (1) Conditional operations Branch to a

More information

Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21

Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21 2.9 Communication with People: Byte Data & Constants Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21 32: space 33:! 34: 35: #...

More information

Forecast. Instructions (354 Review) Basics. Basics. Instruction set architecture (ISA) is its vocabulary. Instructions are the words of a computer

Forecast. Instructions (354 Review) Basics. Basics. Instruction set architecture (ISA) is its vocabulary. Instructions are the words of a computer Instructions (354 Review) Forecast Instructions are the words of a computer Instruction set architecture (ISA) is its vocabulary With a few other things, this defines the interface of computers But implementations

More information

Part II Instruction-Set Architecture. Jan Computer Architecture, Instruction-Set Architecture Slide 1

Part II Instruction-Set Architecture. Jan Computer Architecture, Instruction-Set Architecture Slide 1 Part II Instruction-Set Architecture Jan. 211 Computer Architecture, Instruction-Set Architecture Slide 1 Short review of the previous lecture Performance = 1/(Execution time) = Clock rate / (Average CPI

More information

Lecture 3: The Instruction Set Architecture (cont.)

Lecture 3: The Instruction Set Architecture (cont.) Lecture 3: The Instruction Set Architecture (cont.) COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Review: Instructions Computers process information

More information

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction

More information

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#:

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#: Computer Science and Engineering 331 Midterm Examination #1 Fall 2000 Name: Solutions S.S.#: 1 41 2 13 3 18 4 28 Total 100 Instructions: This exam contains 4 questions. It is closed book and notes. Calculators

More information

CMSC Computer Architecture Lecture 2: ISA. Prof. Yanjing Li Department of Computer Science University of Chicago

CMSC Computer Architecture Lecture 2: ISA. Prof. Yanjing Li Department of Computer Science University of Chicago CMSC 22200 Computer Architecture Lecture 2: ISA Prof. Yanjing Li Department of Computer Science University of Chicago Administrative Stuff! Lab1 is out! " Due next Thursday (10/6)! Lab2 " Out next Thursday

More information

Lecture 11: Interrupt and Exception. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 11: Interrupt and Exception. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 11: Interrupt and Exception James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L11 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Your goal today Housekeeping first peek outside

More information

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero Do-While Example In C++ do { z--; while (a == b); z = b; In assembly language loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero 25 Comparisons Set on less than (slt) compares its source registers

More information

ECE 4750 Computer Architecture, Fall 2014 T01 Single-Cycle Processors

ECE 4750 Computer Architecture, Fall 2014 T01 Single-Cycle Processors ECE 4750 Computer Architecture, Fall 2014 T01 Single-Cycle Processors School of Electrical and Computer Engineering Cornell University revision: 2014-09-03-17-21 1 Instruction Set Architecture 2 1.1. IBM

More information

CS3350B Computer Architecture

CS3350B Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.1: MIPS ISA: Introduction Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted d from lectures on Computer Organization and Design, Patterson & Hennessy,

More information

Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats

Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats Today s Lecture Homework #2 Midterm I Feb 22 (in class closed book) MIPS Assembly Language Computer Science 14 Lecture 6 Outline Assembly Programming Reading Chapter 2, Appendix B 2 Review: A Program Review:

More information

MIPS%Assembly% E155%

MIPS%Assembly% E155% MIPS%Assembly% E155% Outline MIPS Architecture ISA Instruction types Machine codes Procedure call Stack 2 The MIPS Register Set Name Register Number Usage $0 0 the constant value 0 $at 1 assembler temporary

More information

A Processor! Hakim Weatherspoon CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3

A Processor! Hakim Weatherspoon CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3 A Processor! Hakim Weatherspoon CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 2.16-20, 4.1-3 Announcements! HW2 available later today HW2 due in one week and a half Work alone

More information

Grading: 3 pts each part. If answer is correct but uses more instructions, 1 pt off. Wrong answer 3pts off.

Grading: 3 pts each part. If answer is correct but uses more instructions, 1 pt off. Wrong answer 3pts off. Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 552 Introductions to Computer Architecture Homework #2 (Suggested Solution) 1. (10 points) MIPS and C program translations

More information

Lecture 4: MIPS Instruction Set

Lecture 4: MIPS Instruction Set Lecture 4: MIPS Instruction Set No class on Tuesday Today s topic: MIPS instructions Code examples 1 Instruction Set Understanding the language of the hardware is key to understanding the hardware/software

More information

EE 109 Unit 8 MIPS Instruction Set

EE 109 Unit 8 MIPS Instruction Set 1 EE 109 Unit 8 MIPS Instruction Set 2 Architecting a vocabulary for the HW INSTRUCTION SET OVERVIEW 3 Instruction Set Architecture (ISA) Defines the software interface of the processor and memory system

More information

Architecture I. Computer Systems Laboratory Sungkyunkwan University

Architecture I. Computer Systems Laboratory Sungkyunkwan University MIPS Instruction ti Set Architecture I Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Architecture (1) the attributes of a system as seen by the

More information

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture Instructors: Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c 9/7/17

More information

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers CSE 675.02: Introduction to Computer Architecture MIPS Processor Memory Instruction Set Architecture of MIPS Processor CPU Arithmetic Logic unit Registers $0 $31 Multiply divide Coprocessor 1 (FPU) Registers

More information

Concocting an Instruction Set

Concocting an Instruction Set Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Read: Chapter 2.1-2.7 L03 Instruction Set 1 A General-Purpose Computer The von

More information

MIPS PROJECT INSTRUCTION SET and FORMAT

MIPS PROJECT INSTRUCTION SET and FORMAT ECE 312: Semester Project MIPS PROJECT INSTRUCTION SET FORMAT This is a description of the required MIPS instruction set, their meanings, syntax, semantics, bit encodings. The syntax given for each instruction

More information

ECE/CS 552: Introduction To Computer Architecture 1. Instructor:Mikko H. Lipasti. University of Wisconsin-Madison. Basics Registers and ALU ops

ECE/CS 552: Introduction To Computer Architecture 1. Instructor:Mikko H. Lipasti. University of Wisconsin-Madison. Basics Registers and ALU ops ECE/CS 552: Instruction Sets Instructor:Mikko H. Lipasti Fall 2010 University of Wisconsin-Madison Lecture notes partially based on set created by Mark Hill. Instructions (354 Review) Instructions are

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

MIPS Assembly Programming

MIPS Assembly Programming COMP 212 Computer Organization & Architecture COMP 212 Fall 2008 Lecture 8 Cache & Disk System Review MIPS Assembly Programming Comp 212 Computer Org & Arch 1 Z. Li, 2008 Comp 212 Computer Org & Arch 2

More information

CSE Lecture In Class Example Handout

CSE Lecture In Class Example Handout CSE 30321 Lecture 07-08 In Class Example Handout Part A: J-Type Example: If you look in your book at the syntax for j (an unconditional jump instruction), you see something like: e.g. j addr would seemingly

More information

CPS311 - COMPUTER ORGANIZATION. A bit of history

CPS311 - COMPUTER ORGANIZATION. A bit of history CPS311 - COMPUTER ORGANIZATION A Brief Introduction to the MIPS Architecture A bit of history The MIPS architecture grows out of an early 1980's research project at Stanford University. In 1984, MIPS computer

More information

CS3350B Computer Architecture MIPS Procedures and Compilation

CS3350B Computer Architecture MIPS Procedures and Compilation CS3350B Computer Architecture MIPS Procedures and Compilation Marc Moreno Maza http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html Department of Computer Science University of Western Ontario, Canada

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Instructions: ti Language of the Computer Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Computer Hierarchy Levels Language understood

More information

COMP MIPS instructions 2 Feb. 8, f = g + h i;

COMP MIPS instructions 2 Feb. 8, f = g + h i; Register names (save, temporary, zero) From what I have said up to now, you will have the impression that you are free to use any of the 32 registers ($0,..., $31) in any instruction. This is not so, however.

More information

A General-Purpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction

A General-Purpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction page 1 Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... A General-Purpose Computer The von Neumann Model Many architectural approaches

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

We will study the MIPS assembly language as an exemplar of the concept.

We will study the MIPS assembly language as an exemplar of the concept. MIPS Assembly Language 1 We will study the MIPS assembly language as an exemplar of the concept. MIPS assembly instructions each consist of a single token specifying the command to be carried out, and

More information

MIPS (SPIM) Assembler Syntax

MIPS (SPIM) Assembler Syntax MIPS (SPIM) Assembler Syntax Comments begin with # Everything from # to the end of the line is ignored Identifiers are a sequence of alphanumeric characters, underbars (_), and dots () that do not begin

More information

ECE Exam I February 19 th, :00 pm 4:25pm

ECE Exam I February 19 th, :00 pm 4:25pm ECE 3056 Exam I February 19 th, 2015 3:00 pm 4:25pm 1. The exam is closed, notes, closed text, and no calculators. 2. The Georgia Tech Honor Code governs this examination. 3. There are 4 questions and

More information

EN164: Design of Computing Systems Lecture 09: Processor / ISA 2

EN164: Design of Computing Systems Lecture 09: Processor / ISA 2 EN164: Design of Computing Systems Lecture 09: Processor / ISA 2 Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

Computer Science 61C Spring Friedland and Weaver. The MIPS Datapath

Computer Science 61C Spring Friedland and Weaver. The MIPS Datapath The MIPS Datapath 1 The Critical Path and Circuit Timing The critical path is the slowest path through the circuit For a synchronous circuit, the clock cycle must be longer than the critical path otherwise

More information

COMP 303 Computer Architecture Lecture 3. Comp 303 Computer Architecture

COMP 303 Computer Architecture Lecture 3. Comp 303 Computer Architecture COMP 303 Computer Architecture Lecture 3 Comp 303 Computer Architecture 1 Supporting procedures in computer hardware The execution of a procedure Place parameters in a place where the procedure can access

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures $2M 3D camera Lecture 8 MIPS Instruction Representation I Instructor: Miki Lustig 2014-09-17 August 25: The final ISA showdown: Is ARM, x86, or

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

Concocting an Instruction Set

Concocting an Instruction Set Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Lab is posted. Do your prelab! Stay tuned for the first problem set. L04 Instruction

More information

MIPS Instruction Set Architecture (1)

MIPS Instruction Set Architecture (1) MIPS Instruction Set Architecture (1) Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu

More information

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath 361 datapath.1 Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath Outline of Today s Lecture Introduction Where are we with respect to the BIG picture? Questions and Administrative

More information

EC 413 Computer Organization

EC 413 Computer Organization EC 413 Computer Organization Review I Prof. Michel A. Kinsy Computing: The Art of Abstraction Application Algorithm Programming Language Operating System/Virtual Machine Instruction Set Architecture (ISA)

More information

Five classic components

Five classic components CS/COE0447: Computer Organization and Assembly Language Chapter 2 modified by Bruce Childers original slides by Sangyeun Cho Dept. of Computer Science Five classic components I am like a control tower

More information

MACHINE LANGUAGE. To work with the machine, we need a translator.

MACHINE LANGUAGE. To work with the machine, we need a translator. LECTURE 2 Assembly MACHINE LANGUAGE As humans, communicating with a machine is a tedious task. We can t, for example, just say add this number and that number and store the result here. Computers have

More information

Computer Organization MIPS Architecture. Department of Computer Science Missouri University of Science & Technology

Computer Organization MIPS Architecture. Department of Computer Science Missouri University of Science & Technology Computer Organization MIPS Architecture Department of Computer Science Missouri University of Science & Technology hurson@mst.edu Computer Organization Note, this unit will be covered in three lectures.

More information

CSE A215 Assembly Language Programming for Engineers

CSE A215 Assembly Language Programming for Engineers CSE A215 Assembly Language Programming for Engineers Lecture 7 MIPS vs. ARM (COD Chapter 2 and Exam #1 Review) October 12, 2012 Sam Siewert Comparison of MIPS32 and ARM Instruction Formats and Addressing

More information

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath Outline EEL-473 Computer Architecture Designing a Single Cycle path Introduction The steps of designing a processor path and timing for register-register operations path for logical operations with immediates

More information

MIPS Instruction Format

MIPS Instruction Format MIPS Instruction Format MIPS uses a 32-bit fixed-length instruction format. only three different instruction word formats: There are Register format Op-code Rs Rt Rd Function code 000000 sssss ttttt ddddd

More information

Lecture Topics. Branch Condition Options. Branch Conditions ECE 486/586. Computer Architecture. Lecture # 8. Instruction Set Principles.

Lecture Topics. Branch Condition Options. Branch Conditions ECE 486/586. Computer Architecture. Lecture # 8. Instruction Set Principles. ECE 486/586 Computer Architecture Lecture # 8 Spring 2015 Portland State University Instruction Set Principles MIPS Control flow instructions Dealing with constants IA-32 Fallacies and Pitfalls Reference:

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

SPIM Instruction Set

SPIM Instruction Set SPIM Instruction Set This document gives an overview of the more common instructions used in the SPIM simulator. Overview The SPIM simulator implements the full MIPS instruction set, as well as a large

More information

Chapter 2. Instruction Set Architecture (ISA)

Chapter 2. Instruction Set Architecture (ISA) Chapter 2 Instruction Set Architecture (ISA) MIPS arithmetic Design Principle: simplicity favors regularity. Why? Of course this complicates some things... C code: A = B + C + D; E = F - A; MIPS code:

More information

Inf2C - Computer Systems Lecture Processor Design Single Cycle

Inf2C - Computer Systems Lecture Processor Design Single Cycle Inf2C - Computer Systems Lecture 10-11 Processor Design Single Cycle Boris Grot School of Informatics University of Edinburgh Previous lectures Combinational circuits Combinations of gates (INV, AND, OR,

More information

All instructions have 3 operands Operand order is fixed (destination first)

All instructions have 3 operands Operand order is fixed (destination first) Instruction Set Architecture for MIPS Processors Overview Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70803 durresi@csc.lsu.edu These slides are available at: http://www.csc.lsu.edu/~durresi/_07/

More information

Instruction-set Design Issues: what is the ML instruction format(s) ML instruction Opcode Dest. Operand Source Operand 1...

Instruction-set Design Issues: what is the ML instruction format(s) ML instruction Opcode Dest. Operand Source Operand 1... Instruction-set Design Issues: what is the format(s) Opcode Dest. Operand Source Operand 1... 1) Which instructions to include: How many? Complexity - simple ADD R1, R2, R3 complex e.g., VAX MATCHC substrlength,

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control ELEC 52/62 Computer Architecture and Design Spring 217 Lecture 4: Datapath and Control Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849

More information

Computer Architecture EE 4720 Final Examination

Computer Architecture EE 4720 Final Examination Name Computer Architecture EE 4720 Final Examination 1 May 2017, 10:00 12:00 CDT Alias Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Exam Total (20 pts) (15 pts) (20 pts) (15 pts) (30 pts) (100 pts)

More information

Chapter 2. Instructions:

Chapter 2. Instructions: Chapter 2 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 MIPS/SPIM General Purpose Registers Powers of Two 0 $zero all bits are zero 16 $s0 local variable 1 $at assembler temporary 17 $s1 local

More information

CS 61C: Great Ideas in Computer Architecture More MIPS, MIPS Functions

CS 61C: Great Ideas in Computer Architecture More MIPS, MIPS Functions CS 61C: Great Ideas in Computer Architecture More MIPS, MIPS Functions Instructors: John Wawrzynek & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/fa15 1 Machine Interpretation Levels of Representation/Interpretation

More information

Mips Code Examples Peter Rounce

Mips Code Examples Peter Rounce Mips Code Examples Peter Rounce P.Rounce@cs.ucl.ac.uk Some C Examples Assignment : int j = 10 ; // space must be allocated to variable j Possibility 1: j is stored in a register, i.e. register $2 then

More information

Procedures and Stacks

Procedures and Stacks Procedures and Stacks Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. March 15, 2018 L10-1 Announcements Schedule has shifted due to snow day Quiz 2 is now on Thu 4/12 (one week later)

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware 4.1 Introduction We will examine two MIPS implementations

More information

MIPS Hello World. MIPS Assembly 1. # PROGRAM: Hello, World! # Data declaration section. out_string:.asciiz "\nhello, World!\n"

MIPS Hello World. MIPS Assembly 1. # PROGRAM: Hello, World! # Data declaration section. out_string:.asciiz \nhello, World!\n MIPS Hello World MIPS Assembly 1 # PROGRAM: Hello, World!.data # Data declaration section out_string:.asciiz "\nhello, World!\n".text # Assembly language instructions main: # Start of code section li $v0,

More information

Computer Architecture. Lecture 2 : Instructions

Computer Architecture. Lecture 2 : Instructions Computer Architecture Lecture 2 : Instructions 1 Components of a Computer Hierarchical Layers of Program Code 3 Instruction Set The repertoire of instructions of a computer 2.1 Intr roduction Different

More information

The Single Cycle Processor

The Single Cycle Processor EECS 322 Computer Architecture The Single Cycle Processor Instructor: Francis G. Wolff wolff@eecs.cwru.edu Case Western Reserve University This presentation uses powerpoint animation: please viewshow CWRU

More information

Overview of the MIPS Architecture: Part I. CS 161: Lecture 0 1/24/17

Overview of the MIPS Architecture: Part I. CS 161: Lecture 0 1/24/17 Overview of the MIPS Architecture: Part I CS 161: Lecture 0 1/24/17 Looking Behind the Curtain of Software The OS sits between hardware and user-level software, providing: Isolation (e.g., to give each

More information

Chapter 2: Instructions:

Chapter 2: Instructions: Chapter 2: Instructions: Language of the Computer Computer Architecture CS-3511-2 1 Instructions: To command a computer s hardware you must speak it s language The computer s language is called instruction

More information

Lecture 8: Data Hazard and Resolution. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 8: Data Hazard and Resolution. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 8: Data Hazard and Resolution James C. Hoe Department of ECE Carnegie ellon University 18 447 S18 L08 S1, James C. Hoe, CU/ECE/CALC, 2018 Your goal today Housekeeping detect and resolve

More information

Chapter 3. Instructions:

Chapter 3. Instructions: Chapter 3 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

Chapter 2. Instruction Set. The MIPS Instruction Set. Arithmetic Operations. Instructions: Language of the Computer

Chapter 2. Instruction Set. The MIPS Instruction Set. Arithmetic Operations. Instructions: Language of the Computer COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 2 Instructions: Language of the Computer

More information