Exam 2 E2-1 Fall Name: Exam 2

Size: px
Start display at page:

Download "Exam 2 E2-1 Fall Name: Exam 2"

Transcription

1 Exam 2 E2-1 Fall Short Answer [20 pts] Exam 2 a. [4 points] Show the contents of registers A, B, SP, and X after the following code executes: lds #$a00 ldab #$23 A = ldaa #$87 ldx #$2543 B = pshd pshx SP= pulb pula X= pulx b. [4 points] Calculate the correct checksum for this S-Record: S C6003D c. [4 points] If the SCI is set up for 4800 baud serial communication, what is the width of a single bit? d. [4 points] If two input capture events occur at counts $1033 and $F044, how many counts (in decimal) have occurred between these two events? e. [4 points] For the preceding question assume the answer was 1200 (decimal). If the MCLK is 2 MHz and the prescalar bits PR[2:1:0] are set to 101, how much time transpired between the two input capture events?

2 Exam 2 E2-2 Fall [20 points] Write a function RTI_init() that will initialize the Real Time Interrupt (RTI) subsystem to produce interrupts at a rate one interrupt every milliseconds and enable interrupts. Assume the E-clock is 8MHz. ;********************************************************* ; RTI_init Sets up the RTI subsystem to produce interrupts ; at msecs. Assumes E-clock is 8MHz, enables ; interrupts. ; Input: None ; Output: enables interrupts and stars RTI subsystem RTI_init 3. [20 pts] In this problem, you will write a subroutine called reverse that will print a message in reverse. The string to be printed is pointed to by the X register (address of the first byte of the string is in X). The string is NULL terminated. Your function should print all the characters (except the NULL) in reverse order. For example, if the string contains Testing... your function should print gnitset on the PC screen. You may use any of the basic IO routines

3 Exam 2 E2-3 Fall 2004 we used in lecture and lab (they are provided at the end of the exam). Note: An ASCII table is also included on the last page of the test. Also, your function should not affect any registers or the condition codes (protect them or do not use them). ;********************************************************* ; reverse -- Print the NULL terminated string pointed to ; by X register in reverse order. Does not affect ; any registers or the CCs. ; ; Input: X register points to the string ; Output: ASCII data on the serial port ; (place your code below) $include basicio.asm reverse

4 Exam 2 E2-4 Fall [20 pts] Write a function newrti that will perform the same function as the RTI instruction in the 68HC12 instruction set ( you may not use the RTI instruction itself in your function). Assume the following stacking order on entry to an interrupt: Memory Location SP + 7 SP + 5 SP + 3 SP + 1 SP CPU Register RTN H : RTN L Y H : Y L X H : X L B : A CCR ;******************************************************* ; newrti Function to replace the HC12 RTI instruction ; newrti

5 Exam 2 E2-5 Fall [20 pts] In this problem you will write an improved version of outchar() from the set of standard IO functions we used in the lab. The new improved version will be called newoutchar(). If the SCI is not ready to send a character newoutchar() will not block. Instead, it will save the byte in a special memory location (buffer) and then let an interrupt service routine take care of sending the character when the SCI is ready. The new function still must block if there is already a character queued up in the buffer waiting to be sent, otherwise it would overwrite the waiting character. Put your code in the spaces below. ;************************************************************** ; Name: newoutchar ; Description: outputs ASCII character passed in the A register ; to the SCI serial port without blocking (buffer ; size is one) ;************************************************************** bstatus fcb 00 buffer rmb 1 newoutchar pshc pshb ldab #txdre ; load transmit data register empty mask bitb scisr ; check if ready to transmit beq queueit; set up for isr to handle it if not ready staa scidr ; output ASCII character to SCI exito pulb pulc queueit tst bstatus bne queueit ; block if buffer is full staa buffer ; put the char in the buffer inc bstatus ; mark the buffer full bra exito ; enable SCI transmit interrupts sci_isr ; assume the interrupt vector is correctly mapped ; You should set the SCI to ; disable future sci transmit ; interrupts because you are ; emptying the buffer ; remember to output the ; character in the buffer. ; also, mark the buffer empty ; and be sure the interrupt ; flag is cleared. rti

6 Exam 2 E2-6 Fall 2004 ; Some Basic Character I/O Routines for use in Lab #3 ; Declarations ; Serial Communications Interface (SCI) rxdrf equ 20h ; receive buffer full mask pattern txdre equ 80h ; transmit buffer empty mask pattern scisr equ 00c4h ; SCI control/status register scidr equ 00c7h ; SCI transmit/receive data register ; Name: inchar ; Description: inputs ASCII character from SCI serial port ; and returns it in the A register ; Returns: ASCII character in A register ; Modifies: A register inchar: pshc ci1: ldaa #rxdrf ; load receive data register full mask bita scisr ; check for incoming character beq ci1 ; wait if no character received ldaa scidr ; return ASCII character in A register pulc ; Name: outchar ; Description: outputs ASCII character passed in the A register ; to the SCI serial port outchar: pshc pshb ldab #txdre ; load transmit data register empty mask co1: bitb scisr ; check if ready to transmit beq co1 ; wait if not ready staa scidr ; output ASCII character to SCI pulb pulc ; pmsg -- Print string following call to routine. Note that subroutine ; return address points to string, and is adjusted to point to ; next valid instruction after call as string is printed. pmsg pulx ; Get pointer to string (return addr). ploop ldaa 1,x+ ; Get next character of string. beq pexit ; Exit if ASCII null encountered. jsr outchar ; Print character on terminal screen. bra ploop ; Process next string character. pexit pshx ; Place corrected return address on stack. ; Exit routine. ; Name: getbyte ; Description: inputs two ASCII characters from the HC12 SCI ; and conve them to two hexadecimal digits ; packed into a single byte ; Returns: hex byte equivalent of ASCII characters in A register ; Modifies: A register ; Calls: inchar, outchar, atoh getbyte: pshc jsr inchar ; get first ASCII character jsr outchar ; echo character jsr atoh ; convert ASCII character to hex bcs errhex1 ; if not hex, go to error routine get2: asla asla ; to upper nibble asla asla psha ; shift converted hex digit ; save on stack temporarily jsr inchar ; get second ASCII character jsr outchar ; echo to screen

7 Exam 2 E2-7 Fall 2004 jsr atoh ; convert ASCII character to hex bcs errhex2 ; if not hex, go to error routine oraa 1,sp+ ; OR converted hex digits together pulc errhex1: ldaa #'?' ; get? to prompt for new character jsr outchar bra getbyte errhex2: ldaa #'?' jsr outchar bra get2 ; Name: atoh ; Description: conve an ASCII character to a hexadecimal digit ; Inputs: ASCII character passed via A register ; Returns: converted hexadecimal digit returned in A register, ; CF = 0, result OK; CF = 1, error occured (invalid input) ; Modifies: A register and CC register atoh: pshb pshx pshy suba #30h ; subtract "bias" to get ASCII equivalent blt outhex cmpa #0ah bge cont1 quithx: clc ; return with CF = 0 to indicate result OK puly pulx pulb cont1: suba #07h cmpa #09h blt outhex cmpa #10h blt quithx suba #20h cmpa #09h blt outhex cmpa #10h blt quithx outhex: sec ; set CF <- 1 to indicate error puly pulx pulb ; Name: getword ; Description: get 4 ASCII characters and put into a hex word in the ; D register ; Inputs: 4 ASCII characters typed on the keyboard ; Returns: equivalent hex word in the D register ; Reg. Mod.: D,CC ; Calls: getbyte ; getword: jsr getbyte ; get first byte of the data entered bcs badval ; is there an error in the first byte tfr a,b ; save MSB in B jsr getbyte ; get second byte of data entered bcs badval ; is there an error in the second byte exg a,b ; put MSB in A and LSB in B andcc #$FE ; no errors, clear Z flag badval: orcc #$01 ; error, set Z flag

8 Exam 2 E2-8 Fall 2004 ASCII Table

Exam 2 E2-1 Fall Name: Exam 2

Exam 2 E2-1 Fall Name: Exam 2 Exam 2 E2-1 Fall 2002 1. Short Answer [10 pts] Exam 2 a.[2 pts] Briefly describe what each of the following instructions do so that it is clear what the differences between them are: STAA -2,X STAA 2,-X

More information

Module 1-G. Marcos and Structured Programming

Module 1-G. Marcos and Structured Programming Module 1-G Marcos and Structured Programming 1 Learning Outcome #1 An ability to program a microcontroller to perform various tasks How? A. Architecture and Programming Model B. Instruction Set Overview

More information

Programming the Motorola MC68HC11 Microcontroller

Programming the Motorola MC68HC11 Microcontroller Programming the Motorola MC68HC11 Microcontroller COMMON PROGRAM INSTRUCTIONS WITH EXAMPLES aba Add register B to register A Similar commands are abx aby aba add the value in register B to the value in

More information

An ability to program a microcontroller to perform various tasks

An ability to program a microcontroller to perform various tasks Learning Outcome #1 An ability to program a microcontroller to perform various tasks How? A. Architecture and Programming Model B. Instruction Set Overview C. Assembly Control Structures D. Control Structure

More information

Table 1: Mnemonics Operations Dictionary. Add Accumulators Add B to Y. Add with carry to B. Add Memory to B. Add 16-bit to D And B with Memory

Table 1: Mnemonics Operations Dictionary. Add Accumulators Add B to Y. Add with carry to B. Add Memory to B. Add 16-bit to D And B with Memory Table 1: Mnemonics s Dictionary ABA ABX ABY ADCA ADCB ADDA ADDB ADDD ANDA ANDB ASL ASLA ASLB ASLD ASR ASRA ASRB BCC BCLR BCS BEQ BGE BGT BHI BHS BITA BITB BLE BLO BLS BLT Add Accumulators Add B to X Add

More information

538 Lecture Notes Week 3

538 Lecture Notes Week 3 538 Lecture Notes Week 3 (Sept. 16, 2013) 1/18 538 Lecture Notes Week 3 Answers to last week's questions 1 Write code so that the least significant bit of Accumulator A is cleared, the most significant

More information

Lab 7: Asynchronous Serial I/O

Lab 7: Asynchronous Serial I/O CpE 390 Microprocessor Systems Lab 7: Asynchronous Serial I/O 1. Introduction Serial communications is the transfer of data, one bit at a time, over a communications channel. Serial communications can

More information

Outline. 2.8 Stack. 2.9 Subroutines

Outline. 2.8 Stack. 2.9 Subroutines Outline 21 Assembly language program structure 22 Data transfer instructions 23 Arithmetic instructions 24 Branch and loop instructions 25 Shift and rotate instructions 26 Boolean logic instructions 27

More information

CMPEN 472 Sample EXAM II

CMPEN 472 Sample EXAM II CMPEN 472 Sample EXAM II Name: Student ID number (last 4 digit): Please write your name on every page. Write your solutions clearly. You may use backside of each page for scratch but the solutions must

More information

Lecture 9 Subroutines

Lecture 9 Subroutines CPE 390: Microprocessor Systems Spring 2018 Lecture 9 Subroutines Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030 Adapted from HCS12/9S12

More information

Module 1-D. Control Structure Applications. Tim Rogers 2017 [1.D]-1

Module 1-D. Control Structure Applications. Tim Rogers 2017 [1.D]-1 Module 1-D Control Structure Applications Tim Rogers 2017 [1.D]-1 Learning Outcome #1 An ability to program a microcontroller to perform various tasks How? A. Architecture and Programming Model B. Instruction

More information

The Motorola 68HC11 Instruc5on Set

The Motorola 68HC11 Instruc5on Set The Motorola 68HC11 Instruc5on Set Some Defini5ons A, B * accumulators A and B D * double accumulator (A + B) IX, IY * index registers X and Y SP * stack pointer M * some memory loca5on opr * an operand

More information

COE538 Lecture Notes Week 3 (Week of Sept 17, 2012)

COE538 Lecture Notes Week 3 (Week of Sept 17, 2012) COE538 Lecture Notes: Week 3 1 of 11 COE538 Lecture Notes Week 3 (Week of Sept 17, 2012) Announcements My lecture sections should now be on Blackboard. I've also created a discussion forum (and anonymous

More information

Exam I Review February 2017

Exam I Review February 2017 Exam I Review February 2017 Binary Number Representations Conversion of binary to hexadecimal and decimal. Convert binary number 1000 1101 to hexadecimal: Make groups of 4 bits to convert to hexadecimal,

More information

Module 3.F. Serial Communications Interface (SCI) Tim Rogers 2017

Module 3.F. Serial Communications Interface (SCI) Tim Rogers 2017 Module 3.F Serial Communications Interface (SCI) Tim Rogers 2017 Learning Outcome #3 An ability to effectively utilize the wide variety of peripherals integrated into a contemporary microcontroller How?

More information

Using the stack and the stack pointer

Using the stack and the stack pointer Using the stack and the stack pointer o The Stack and Stack Pointer o The stack is a memory area for temporary storage o The stack pointer points to the last byte in the stack o Some instructions which

More information

Coe538 Final Study Guide 2016 (Questions & Answers)

Coe538 Final Study Guide 2016 (Questions & Answers) Coe538 Study Guide 1 of 8 Coe538 Final Study Guide 2016 (Questions & Answers) This version contains questions AND answers. This study guide is meant to help you review coe538 and prepare for the final.

More information

Sample Problem Set #1

Sample Problem Set #1 Sample Problem Set #1 Notes: These problems are typical exam problems; most are drawn from previous homeworks and exams. This exam is open book, open notes. It may help to have a calculator. For partial

More information

Chapter 4: Advanced Assembly Programming. EE383: Introduction to Embedded Systems University of Kentucky. Samir Rawashdeh

Chapter 4: Advanced Assembly Programming. EE383: Introduction to Embedded Systems University of Kentucky. Samir Rawashdeh Chapter 4: Advanced Assembly Programming EE383: Introduction to Embedded Systems University of Kentucky Samir Rawashdeh With slides based on material by H Huang Delmar Cengage Learning Chapter Summery

More information

ME 6405 Introduction to Mechatronics

ME 6405 Introduction to Mechatronics ME 6405 Introduction to Mechatronics Fall 2005 Instructor: Professor Charles Ume LECTURE 9 Homework 1 Solution 1. Write an assembly language program to clear the usable internal RAM in the M68HC11E9. Solution:

More information

Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers

Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers o How to disassemble an MC9S12 instruction sequence o Binary numbers are a code and represent what the programmer intends for the

More information

Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers

Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers Disassembly of MC9S12 op codes Decimal, Hexadecimal and Binary Numbers o How to disassemble an MC9S12 instruction sequence o Binary numbers are a code and represent what the programmer intends for the

More information

Addressing Mode Description Addressing Mode Source Format Abbrev. Description

Addressing Mode Description Addressing Mode Source Format Abbrev. Description Addressing Mode Description Addressing Mode Source Format Abbrev. Description Inherent INST (no operands) INH Operands (if any) are in CPU registers Immediate INST #opr8i or INST #opr16i IMM Operand is

More information

EE319K Final Fall 2005 Solution C. (3) Question 1. (3) Question 2. short function(const short in){ return in+5; } const

EE319K Final Fall 2005 Solution C. (3) Question 1. (3) Question 2. short function(const short in){ return in+5; } const EE319K Final Fall 2005 Solution C. Jonathan Valvano (3) Question 1. Consider a matrix with 4 rows and 6 columns, stored in column-major zero-index format. Each element is 16 bits. Which equation correctly

More information

; export symbols ; export 'Entry' symbol. ; include derivative specific macros PORTA EQU $0000 PORTB EQU $0001 DDRA EQU $0002 DDRB EQU $0003

; export symbols ; export 'Entry' symbol. ; include derivative specific macros PORTA EQU $0000 PORTB EQU $0001 DDRA EQU $0002 DDRB EQU $0003 ******************************************************* * This program for CSE472, Flash Memory Writing * * By Kyusun Choi, ID=0000 * * Date: 11/14/2009 * * Freescale CodeWarrior, for the MC9S12C32 Program

More information

CHAPTER 8. Solutions for Exercises

CHAPTER 8. Solutions for Exercises CHAPTER 8 Solutions for Exercises E8.1 The number of bits in the memory addresses is the same as the address bus width, which is 20. Thus the number of unique addresses is 2 20 = 1,048,576 = 1024 1024

More information

Disassembly of an HC12 Program It is sometimes useful to be able to convert HC12 op codes into mnemonics. For example, consider the hex code:

Disassembly of an HC12 Program It is sometimes useful to be able to convert HC12 op codes into mnemonics. For example, consider the hex code: Disassembly of an HC12 Program It is sometimes useful to be able to convert HC12 op codes into mnemonics. For example, consider the hex code: ADDR DATA ---- ------------------------------------------------------

More information

Cross Assembly and Program Development

Cross Assembly and Program Development Cross Assembly and ENGG4640/3640; Fall 2004; Prepared by Radu Muresan 1 Introduction Text Editor Program Ex. DOS, Notepad, Word saved as ASCII Source Code Assembler or Cross-Assembler Object Code Machine

More information

538 Lecture Notes Week 3

538 Lecture Notes Week 3 538 Lecture Notes Week 3 (Sept. 20, 2017) 1/24 538 Lecture Notes Week 3 Answers to last week's questions 1 Write code so that the least significant bit of Accumulator A is cleared, the most significant

More information

Module 2.F. Buffered, Interrupt-Driven Printer Design Example. Tim Rogers 2017

Module 2.F. Buffered, Interrupt-Driven Printer Design Example. Tim Rogers 2017 Module 2.F Buffered, Interrupt-Driven Printer Design Example Tim Rogers 2017 Learning Outcome #2 An ability to interface a microcontroller to various devices How? A. Bus Timing Analysis B. 9S12C Multiplexed

More information

; export symbols XDEF Entry ; export 'Entry' symbol ABSENTRY Entry ; for assembly entry point

; export symbols XDEF Entry ; export 'Entry' symbol ABSENTRY Entry ; for assembly entry point **************************************************************** * This program for CMPEN 472, Flash Memory Writing * * By Kyusun Choi, ID=0000 * * Date: 11/15/2017 * * Freescale CodeWarrior, for the HCS12C128

More information

Chapter 2: HCS12 Assembly Programming. EE383: Introduction to Embedded Systems University of Kentucky. Samir Rawashdeh

Chapter 2: HCS12 Assembly Programming. EE383: Introduction to Embedded Systems University of Kentucky. Samir Rawashdeh Chapter 2: HCS12 Assembly Programming EE383: Introduction to Embedded Systems University of Kentucky Samir Rawashdeh With slides based on material by H. Huang Delmar Cengage Learning 1 Three Sections of

More information

2. Arithmetic Instructions addition, subtraction, multiplication, divison (HCS12 Core Users Guide, Sections 4.3.4, and ).

2. Arithmetic Instructions addition, subtraction, multiplication, divison (HCS12 Core Users Guide, Sections 4.3.4, and ). AS12 Assembler Directives A Summary of 9S12 instructions Disassembly of 9S12 op codes Huang Section 1.8, Chapter 2 MC9S12 V1.5 Core User Guide Version 1.2, Section 12 o A labels is a name assigned the

More information

Reading Assignment. 68HC12 Instruction Set. M68HC12 Instruction Set Categories. Some Tips. Endianness (Byte Order) Load and Store Instructions

Reading Assignment. 68HC12 Instruction Set. M68HC12 Instruction Set Categories. Some Tips. Endianness (Byte Order) Load and Store Instructions Reading Assignment EEL 4744C: Microprocessor Applications Lecture 5 68HC12 Instruction Set Software and Hardware Engineering (Old version) Chapter 4 Or Software and Hardware Engineering (New version) Chapter

More information

Introduction to Embedded Microcomputer Systems Lecture 10.1

Introduction to Embedded Microcomputer Systems Lecture 10.1 Introduction to Embedded Microcomputer Systems Lecture 10.1 Recap Switch, LED interface Real board debugging if-then statements Overview Successive refinement Modular programming Subroutines, parameter

More information

0b) [2] Can you name 2 people form technical support services (stockroom)?

0b) [2] Can you name 2 people form technical support services (stockroom)? ECE 372 1 st Midterm ECE 372 Midterm Exam Fall 2004 In this exam only pencil/pen are allowed. Please write your name on the front page. If you unstaple the papers write your name on the loose papers also.

More information

C SC 230 Computer Architecture and Assembly Language April 2000 Exam Sample Solutions

C SC 230 Computer Architecture and Assembly Language April 2000 Exam Sample Solutions C SC 230 Computer Architecture and Assembly Language April 2000 Exam Sample Solutions 1. (12 marks) Circle the correct answer for each of the following: The 8-bit two's complement representation of -15

More information

2) [ 2 marks] Both of the following statements cause the value $0300 to be stored in location $1000, but at different times. Explain the difference.

2) [ 2 marks] Both of the following statements cause the value $0300 to be stored in location $1000, but at different times. Explain the difference. 1) [ 9 marks] Write a sequence of directives for an HCS12 assembly language program that performs all of these tasks, in this order: a) Define an array called Measurements starting from memory location

More information

UNIVERSITY OF MANITOBA DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Term Test #2 Solution ECE 3610 MICROPROCESSING SYSTEMS

UNIVERSITY OF MANITOBA DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Term Test #2 Solution ECE 3610 MICROPROCESSING SYSTEMS ECE 3610 Test 2 Solution 1 of 7 PRINT LAST NAME: STUDENT NUMBER PRINT FIRST NAME: UNIVERSITY OF MANITOBA DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DATE: Feb. 28, 11; TIME: 6:00-8:00 P.M. Term Test

More information

CET335 Microprocessor Interfacing Lab 5: LCD Interface (Bus Attached Peripheral)

CET335 Microprocessor Interfacing Lab 5: LCD Interface (Bus Attached Peripheral) CET335 Microprocessor Interfacing Lab 5: LCD Interface (Bus Attached Peripheral) Introduction: In this lab, you will learn the interface and operation of a bus-attached peripheral; in other words, a controller

More information

MC9S12 Assembler Directives A Summary of MC9S12 Instructions Disassembly of MC9S12 op codes. Summary of HCS12 addressing modes ADDRESSING MODES

MC9S12 Assembler Directives A Summary of MC9S12 Instructions Disassembly of MC9S12 op codes. Summary of HCS12 addressing modes ADDRESSING MODES MC9S12 Assembler Directives A Summary of MC9S12 Instructions Disassembly of MC9S12 op codes o Review of Addressing Modes o Which branch instruction to use (signed vs unsigned) o Using X and Y registers

More information

COSC345 Software Engineering. Basic Computer Architecture and The Stack

COSC345 Software Engineering. Basic Computer Architecture and The Stack COSC345 Software Engineering Basic Computer Architecture and The Stack Outline Architectural models A little about the 68HC11 Memory map Registers A little bit of assembly (never did us any harm) The program

More information

ECE331 Handout 3- ASM Instructions, Address Modes and Directives

ECE331 Handout 3- ASM Instructions, Address Modes and Directives ECE331 Handout 3- ASM Instructions, Address Modes and Directives ASM Instructions Functional Instruction Groups Data Transfer/Manipulation Arithmetic Logic & Bit Operations Data Test Branch Function Call

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications EE 3170 Microcontroller Applications Lecture 12: Advanced Assembly Language Programming Part II- Stacks Calling Conventions & Base Pointer Usage & Subroutine Examples - Miller 5.5-5.7 Based on slides for

More information

Department of Computer Science and Engineering

Department of Computer Science and Engineering Department of Computer Science and Engineering Instruction Set Overview This is a complete overview of the instruction set for the Motorola MC9S12DT256 microprocessor. Some of the groups are irrelevant

More information

EE319K Fall 2007 Quiz 1A Page 1. (5) Question 2. What will be the value of the carry (C) bit after executing the following? ldab #210 subb #60

EE319K Fall 2007 Quiz 1A Page 1. (5) Question 2. What will be the value of the carry (C) bit after executing the following? ldab #210 subb #60 EE319K Fall 2007 Quiz 1A Page 1 First: Last: This is a closed book exam. You must put your answers on this piece of paper only. You have 50 minutes, so allocate your time accordingly. Please read the entire

More information

Mark II Aiken Relay Calculator

Mark II Aiken Relay Calculator Introduction to Embedded Microcomputer Systems Lecture 6.1 Mark II Aiken Relay Calculator 2.12. Tutorial 2. Arithmetic and logical operations format descriptions examples h 8-bit unsigned hexadecimal $00

More information

CS 273 Machine Programming and Organization Lecture Notes

CS 273 Machine Programming and Organization Lecture Notes CS 273 Machine Programming and Organization Lecture Notes Joe Song Department of Computer Science NMSU, Spring 2009 March 9, 2009 Each lecture lasts 75 minutes Lecture 1 Announcements 1 fee payment for

More information

Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3. You will be able to use all of the Motorola data manuals on the exam.

Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3. You will be able to use all of the Motorola data manuals on the exam. Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3 o Comparison of C and Assembly programs for the HC12 o How to compile a C program using the GNU-C compiler o Using pointers to access

More information

(5) Question 7. Simplified memory cycles (you may or may not need all 5 entries) R/W Addr Data

(5) Question 7. Simplified memory cycles (you may or may not need all 5 entries) R/W Addr Data EE319K Fall 2003 Quiz 3 Page 1 First: Middle Initial: Last: This is a closed book exam. You must put your answers on this piece of paper only. You have 50 minutes, so allocate your time accordingly. Please

More information

Timing Generation and Measurements

Timing Generation and Measurements Timing Generation and Measurements Lab #7 Robert McManus & Junsang Cho April 2, 2004 Timing Generation and Measurements 1. Objective To gain experience using input capture to measure pulse width. To gain

More information

Lecture #4 Microcontroller Instruction Set Embedded System Engineering Philip Koopman Monday, 25-Jan-2016

Lecture #4 Microcontroller Instruction Set Embedded System Engineering Philip Koopman Monday, 25-Jan-2016 Lecture #4 Microcontroller Instruction Set 2 18-348 Embedded System Engineering Philip Koopman Monday, 25-Jan-2016 Electrical& Computer ENGINEERING Copyright 2006-2016, Philip Koopman, All Rights Reserved

More information

SECTION 6 CENTRAL PROCESSING UNIT

SECTION 6 CENTRAL PROCESSING UNIT SECTION 6 CENTRAL PROCESSING UNIT This section discusses the M68HC11 central processing unit (CPU), which is responsible for executing all software instructions in their programmed sequence. The M68HC11

More information

Programming Book for 6809 Microprocessor Kit

Programming Book for 6809 Microprocessor Kit Programming Book for 6809 Microprocessor Kit Wichit Sirichote, wichit.sirichote@gmail.com Image By Konstantin Lanzet - CPU collection Konstantin Lanzet, CC BY-SA 3.0, Rev1.2 March 2018 1 Contents Lab 1

More information

Motorola HC11. Fun with Microcontrollers and Embedded Systems

Motorola HC11. Fun with Microcontrollers and Embedded Systems Motorola HC11 Fun with Microcontrollers and Embedded Systems Original Source: http://www.soe.ucsc.edu/classes/cmpe012c/winter04/notes/12_microcontrollers.ppt Microcontrollers What is a microcontroller?

More information

EE319K Fall 2006 Quiz 1 Page 1

EE319K Fall 2006 Quiz 1 Page 1 EE319K Fall 2006 Quiz 1 Page 1 First: Last: This is a closed book exam. You must put your answers on this piece of paper only. You have 50 minutes, so allocate your time accordingly. Please read the entire

More information

Immediate vs. Extended mode: Immediate values are marked with a # symbol. They also are different instructions when assembled.

Immediate vs. Extended mode: Immediate values are marked with a # symbol. They also are different instructions when assembled. So, you basically didn t study and now you re in the final and you hope to pass this test and save your miserable grade... And you expect this cheat sheet to save you? Well, I sincerely hope it does. Slacker.

More information

Fri. Aug 25 Announcements

Fri. Aug 25 Announcements Fri. Aug 25 Announcements HW 1 / Lab 1 next week Tools and fundamentals of instructions Remember no in-lab quiz but HWs still marked Slides online Complete class for last year This year s slides available

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications Q. 3.9 of HW3 EE 37 Microcontroller Applications (a) (c) (b) (d) Midterm Review: Miller Chapter -3 -The Stuff That Might Be On the Exam D67 (e) (g) (h) CEC23 (i) (f) (j) (k) (l) (m) EE37/CC/Lecture-Review

More information

EE319K Fall 2003 Quiz 1 Page 1

EE319K Fall 2003 Quiz 1 Page 1 EE319K Fall 2003 Quiz 1 Page 1 First: Last: This is a closed book exam. You must put your answers on this piece of paper only. You have 50 minutes, so allocate your time accordingly. Please read the entire

More information

ECET Chapter 2, Part 3 of 3

ECET Chapter 2, Part 3 of 3 ECET 310-001 Chapter 2, Part 3 of 3 W. Barnes, 9/2006, rev d. 10/07 Ref. Huang, Han-Way, The HCS12/9S12: An Introduction to Software and Hardware Interfacing, Thomson/Delmar. In This Set of Slides: 1.

More information

68HC11 Opera,ng Modes

68HC11 Opera,ng Modes 68HC11 Opera,ng Modes Modes Single- Chip Expanded Mul,plexed Special Bootstrap Special Test Minimal Circuit Layout: Single Chip Timing Diagrams Timing Laboratory 2 Debrief Exercise 1: Serial TX Generally

More information

538 Lecture Notes Week 5

538 Lecture Notes Week 5 538 Lecture Notes Week 5 (Sept. 30, 2013) 1/15 538 Lecture Notes Week 5 Answers to last week's questions 1. With the diagram shown for a port (single bit), what happens if the Direction Register is read?

More information

538 Lecture Notes Week 5

538 Lecture Notes Week 5 538 Lecture Notes Week 5 (October 4, 2017) 1/18 538 Lecture Notes Week 5 Announements Midterm: Tuesday, October 25 Answers to last week's questions 1. With the diagram shown for a port (single bit), what

More information

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University What is Assembly Language? Assembly language is a programming language

More information

Decimal, Hexadecimal and Binary Numbers Writing an assembly language program

Decimal, Hexadecimal and Binary Numbers Writing an assembly language program Decimal, Hexadecimal and Binary Numbers Writing an assembly language program o Disassembly of MC9S12 op codes o Use flow charts to lay out structure of program o Use common flow structures if-then if-then-else

More information

LECTURE #21: G-CPU & Assembly Code EEL 3701: Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz

LECTURE #21: G-CPU & Assembly Code EEL 3701: Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz LECTURE #21: G-CPU & Assembly Code EEL 3701: Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz G-CPU Important Notes (see Schwartz s lecture for a general overview) - The

More information

Administrivia. ECE/CS 5780/6780: Embedded System Design. Assembly Language Syntax. Assembly Language Development Process

Administrivia. ECE/CS 5780/6780: Embedded System Design. Assembly Language Syntax. Assembly Language Development Process Administrivia ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 3: Assembly Language Programming 2 versions of CodeWarrior are on the lab machines. You should use the 4.5 version (CW for

More information

BRANCH IF REGISTER IS HIGHER/GREATHER/ THAN OPERAND e.g. CMPA #$D0

BRANCH IF REGISTER IS HIGHER/GREATHER/ THAN OPERAND e.g. CMPA #$D0 Midterm Review 1. Branch instructions BHI (unsigned), BGT (signed) Take a look at the preceding comparison instruction. Then, you can use this instead of using complex formula in the instruction reference.

More information

ECE/CS 5780/6780: Embedded System Design

ECE/CS 5780/6780: Embedded System Design ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 3: Assembly Language Programming Scott R. Little (Lecture 3: Assembly) ECE/CS 5780/6780 1 / 59 Administrivia 2 versions of CodeWarrior are

More information

ME4447/6405. Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics. Instructor: Professor Charles Ume LECTURE 7

ME4447/6405. Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics. Instructor: Professor Charles Ume LECTURE 7 ME4447/6405 Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics Instructor: Professor Charles Ume LECTURE 7 Reading Assignments Reading assignments for this week and next

More information

HC11 Instruction Set Architecture

HC11 Instruction Set Architecture HC11 Instruction Set Architecture High-level HC11 architecture Interrupt logic MEMORY Timer and counter M8601 CPU core Serial I/O A/D converter Port A Port B Port C Port D Port E CMPE12 Summer 2009 16-2

More information

HC11 Instruction Set Architecture

HC11 Instruction Set Architecture HC11 Instruction Set Architecture Summer 2008 High-level HC11 architecture Interrupt logic MEMORY Timer and counter M8601 CPU core Serial I/O A/D converter Port A Port B Port C Port D Port E CMPE12 Summer

More information

Lecture 13 Serial Interfaces

Lecture 13 Serial Interfaces CPE 390: Microprocessor Systems Spring 2018 Lecture 13 Serial Interfaces Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030 Adapted from HCS12/9S12

More information

AN1064. Motorola Semiconductor Application Note. Use of Stack Simplifies M68HC11 Programming By Gordon Doughman. Introduction

AN1064. Motorola Semiconductor Application Note. Use of Stack Simplifies M68HC11 Programming By Gordon Doughman. Introduction Order this document by /D Motorola Semiconductor Application Note Use of Stack Simplifies M68HC11 Programming By Gordon Doughman Introduction The architectural extensions of the M6800 incorporated into

More information

Exam 1 Feb. 23, 25, 27?

Exam 1 Feb. 23, 25, 27? Exam 1 Feb. 23, 25, 27? You will be able to use all of the Motorola data manuals on the exam. No calculators will be allowed for the exam. Numbers Decimal to Hex (signed and unsigned) Hex to Decimal (signed

More information

1 Execution of main program is suspended. 2 All registers are pushed onto the stack. 3 The ISR, or background thread, is executed.

1 Execution of main program is suspended. 2 All registers are pushed onto the stack. 3 The ISR, or background thread, is executed. Introduction ECE/CS 5780/6780: Embedded System Design Chris J. Myers Lecture 7: Interrupt Synchronization Interrupts provide guarantee on response time. Interrupts allow response to rare but important

More information

Introduction to Microcontrollers

Introduction to Microcontrollers Motorola M68HC11 Specs Assembly Programming Language BUFFALO Topics of Discussion Microcontrollers M68HC11 Package & Pinouts Accumulators Index Registers Special Registers Memory Map I/O Registers Instruction

More information

EB301. Motorola Semiconductor Engineering Bulletin. Programming EEPROM on the MC68HC811E2 during Program Execution. Freescale Semiconductor, I

EB301. Motorola Semiconductor Engineering Bulletin. Programming EEPROM on the MC68HC811E2 during Program Execution. Freescale Semiconductor, I Order this document by /D Motorola Semiconductor Programming EEPROM on the MC68HC811E2 during Program Execution By Brian Scott Crow Austin, Texas Introduction The Problem The MC68HC811E2 microcontroller

More information

MACO Multiple Agent Climbing Organism

MACO Multiple Agent Climbing Organism MACO Multiple Agent Climbing Organism Final Report Ted Belser University of Florida, Department of Computer Engineering EEL 5666, Machine Intelligence Design Laboratory Table of Contents MACO... 1 Multiple

More information

Go Gators! Relax! May the Schwartz be with you!

Go Gators! Relax! May the Schwartz be with you! Page 1/12 Exam 1 Instructions: Turn off cell phones beepers and other noise making devices. Show all work on the front of the test papers. If you need more room make a clearly indicated note on the front

More information

Assembly Language Development Process. ECE/CS 5780/6780: Embedded System Design. Assembly Language Listing. Assembly Language Syntax

Assembly Language Development Process. ECE/CS 5780/6780: Embedded System Design. Assembly Language Listing. Assembly Language Syntax Assembly Language Development Process ECE/CS 5780/6780: Embedded System Design Chris J. Myers Lecture 3: Assembly Language Programming Chris J. Myers (Lecture 3: Assembly Language) ECE/CS 5780/6780: Embedded

More information

HC 11 Instructions! From Alex Hollowayʼs notes with! many thanks!

HC 11 Instructions! From Alex Hollowayʼs notes with! many thanks! HC 11 Instructions! From Alex Hollowayʼs notes with! many thanks! Instruction Classes! Accumulator and Memory! Stack and Index Register! Condition Code Register! Program Control! Accumulator and memory

More information

EE319 K Lecture 3. Introduction to the 9S12 Lab 1 Discussion Using the TExaS simulator. University of Texas ECE

EE319 K Lecture 3. Introduction to the 9S12 Lab 1 Discussion Using the TExaS simulator. University of Texas ECE EE319 K Lecture 3 Introduction to the 9S12 Lab 1 Discussion Using the TExaS simulator University of Texas ECE Introduction (von Neumann architecture) processor Bus Memory Mapped I/O System Input Devices

More information

ECE/CE 3720: Embedded System Design

ECE/CE 3720: Embedded System Design Basic Components of Input Capture Slide 1 ECE/CE 3720: Embedded System Design Chris J. Myers Lecture 12: Input Capture Slide 3 Basic Principles of Input Capture Basic Principles of Input Capture (cont)

More information

EE319K Fall 2005 Quiz 1A Page 1

EE319K Fall 2005 Quiz 1A Page 1 EE319K Fall 2005 Quiz 1A Page 1 First: Last: This is a closed book exam. You must put your answers on this piece of paper only. You have 50 minutes, so allocate your time accordingly. Please read the entire

More information

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Interrupts and Resets

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Interrupts and Resets ME645 Introduction to Mechatronics Fall 24 Instructor: Professor Charles Ume Interrupts and Resets Reason for Interrupts You might want instructions executed immediately after internal request and/or request

More information

Menu. Programming Models for the Atmel XMEGA Architecture (and others devices) Assembly Programming Addressing Modes for the XMEGA Instruction Set

Menu. Programming Models for the Atmel XMEGA Architecture (and others devices) Assembly Programming Addressing Modes for the XMEGA Instruction Set Menu Programming Models for the Atmel XMEGA Architecture (and others devices) Assembly Programming Addressing Modes for the XMEGA Instruction Set Look into my... See examples on web-site: doc8331, doc0856

More information

Ryerson University Department of Electrical and Computer Engineering ELE 538 Microprocessor Systems Final Examination December 8, 2003

Ryerson University Department of Electrical and Computer Engineering ELE 538 Microprocessor Systems Final Examination December 8, 2003 Ryerson University Department of Electrical and Computer Engineering ELE 538 Microprocessor Systems Final Examination December 8, 23 Name: Student Number: Time limit: 3 hours Section: Examiners: K Clowes,

More information

Microcontrollers and Embedded Systems. Fun with Motorola/Freescale HC11

Microcontrollers and Embedded Systems. Fun with Motorola/Freescale HC11 Microcontrollers and Embedded Systems Fun with Motorola/Freescale HC11 What is a microcontroller? A microprocessor Usually not cutting edge Dependable All major bugs well known Predictable Critical for

More information

CodeWarrior. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

CodeWarrior. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff CodeWarrior 1 Assembler An assembler is a program that translates assembly language into machine code. Machine code are the numbers that the CPU recognizes as instructions. $B6 $10 $00 Assembly language

More information

Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3

Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3 Introduction to Programming the 9S12 in C Huang Sections 5.2 and 5.3 o Comparison of C and Assembly programs for the HC12 o How to compile a C program using the GNU-C compiler o Using pointers to access

More information

ECE/CE 3720: Embedded System Design

ECE/CE 3720: Embedded System Design Produce-Consumer Examples Slide 1 ECE/CE 3720: Embedded System Design Chris J. Myers Slide 3 Source/producer Keyboard input Program with data Sink/consumer Program that interprets Printer output Lecture

More information

EE319K Fall 2010 Exam 1B Page 1

EE319K Fall 2010 Exam 1B Page 1 EE319K Fall 2010 Exam 1B Page 1 First: Last: This is a closed book exam. You must put your answers on pages 1,2,3,4 only. You have 50 minutes, so allocate your time accordingly. Show your work, and put

More information

Addition and Subtraction of Hexadecimal Numbers Simple assembly language programming

Addition and Subtraction of Hexadecimal Numbers Simple assembly language programming Addition and Subtraction of Hexadecimal Numbers Simple assembly language programming o A simple Assembly Language Program o Assembling an Assembly Language Program o Simple 9S12 programs o Hex code generated

More information

m 1 se 7 m 23 Introduction to Embedded Microcomputer Systems Lecture 16.1 Recap Finite State Machines Pointer implementation

m 1 se 7 m 23 Introduction to Embedded Microcomputer Systems Lecture 16.1 Recap Finite State Machines Pointer implementation Introduction to Embedded Microcomputer Systems Lecture 16.1 Recap Finite State Machines Pointer implementation Overview Fixed-point: why, when, how Local variables: scope and allocation How these concepts

More information

EE319K Spring 2010 Exam 1A Page 1

EE319K Spring 2010 Exam 1A Page 1 EE319K Spring 2010 Exam 1A Page 1 First: Last: This is a closed book exam. You must put your answers pages 1,2,3 only. You have 50 minutes, so allocate your time accordingly. Show your work, and put your

More information

EE4390 Microprocessors

EE4390 Microprocessors EE4390 Microprocessors Lesson 6,7 Instruction Set, Branch Instructions, Assembler Directives Revised: Aug 1, 2003 1 68HC12 Instruction Set An instruction set is defined as a set of instructions that a

More information

TEMPERATURE SENSOR. Revision Class. Instructor / Professor LICENSE

TEMPERATURE SENSOR. Revision Class. Instructor / Professor LICENSE CME-11E9 EVBU LAB EXPERIMENT TEMPERATURE SENSOR Revision 04.02.11 Class Instructor / Professor LICENSE You may use, copy, modify and distribute this document freely as long as you include this license

More information