Monday, October 26, 2015

Size: px
Start display at page:

Download "Monday, October 26, 2015"

Transcription

1 Monday, October 26, 2015 Topics for today Indexed branching Implementation of switch statement Reusable subroutines Indexed branching It turns out that arrays are useful in translating other language constructs, the case/switch statement for example Note that when we write BR LAB we mean BR LAB,i (the assembler lets us omit the,i for readability) From the table of Pep/8 instructions (eg, inside front cover) we see that it is also possible to write branches using indexing as in BR tab,x Q: What it the effect and why is it useful? A: The effect is to jump to whatever address is stored in Mem[tab+register X] This means we can set up a table of addresses then branch quickly to any one of them based on the value in Register X This is one way to implement a multi-way branch, eg a switch/case statement In Fig 640, Warford has an example of a switch statement translation here is a more general one: switch(w) { } case 13: case 16: < action 1 > break case 14: < action 2 > break case 11: < action 3 > break default: < action 4 > The implementation of a switch statement in Pep/8 has three components Comp 162 Notes Page 1 of 6 October 26, 2015

2 (1) implementations of the actions, with labels Each action should end with a branch to take program control to whatever statement follows the end of the switch statement This branch is the implementation of the break in the high-level example (2) A table containing the labels of the action sections Table[k] contains the label of the action we should take when the switch variable has value k or, more generally, k+constant (3) A driver section to implement the branch Here is an implementation of the example above Part 1 - the actions action1: code for whatever action 1 does goes here br endsw this branch to stop us falling into action 2 action2: other actions are similar br endsw action3: br endsw action4: br endsw Part 2 - the table The addrss directive in Pep/8 is similar to word Both have the effect of initializing a two-byte location with a value known at assembly time Since we are storing addresses, we choose to use addrss In our example, if the switch variable has value 12 or 15 we go to the default case swtab: addrss action3 case 11 addrss action4 case 12 addrss action1 case 13 addrss action2 case 14 addrss action4 case 15 addrss action1 case 16 Comp 162 Notes Page 2 of 6 October 26, 2015

3 Part 3 - the driver section ldx w,d the switch variable cpx 11,i less than the lowest switch case? brlt action4 yes do the default case cpx 16,i greater then the highest switch case? brgt action4 yes do the default case subx 11,i to get X in range of array indexes: 0 aslx to make into offset for table of (2-byte) addresses br swtab,x jump to one of the actions endsw: go here after each case Clearly this approach would not be a good one in all instances What if the switch statement were switch(w) { case 1: < action 1 > case 100: < action 2 > case 1000: < action 3 > default: < action 4 > } The array in this case would be very large and almost all the entries would point to the default case In this instance it would be better to implement the switch statement as a sequence of test-andbranch statements A compiler will apply some internal check to the case labels to decide which of the two implementations to use Indexed subroutine calls Note that CALL tab,x is also legal so we can set up a table of subroutine addresses and jump to one depending on the value on register X then return to the instruction following the CALL This might be a good way to implement a menu-driven program Something like the following perhaps Comp 162 Notes Page 3 of 6 October 26, 2015

4 main: stro prompt,d output a prompt deci choice,d get user selection brne act assume entering zero means stop stop act: ldx choice,d action number aslx subroutine addresses are 2 bytes call options,x use table of subroutine addresses br main then get next choice options:word 0 never executed corresponds to option 0 = stop address sub1 sub1 to be called if user enters 1 address sub2 sub2 to be called if user enters 2 and so on sub1: action corresponding to command 1 ret0 sub2: action corresponding to command 2 ret0 and so on Comp 162 Notes Page 4 of 6 October 26, 2015

5 Reusable subroutines We would like the subroutines we write to be usable in more than one program What are some issues that might prevent us from cutting a subroutine from one program (source) and pasting into another (target)? A couple of problems are: (1) Labels that we use in the subroutine may clash with labels already in use in the target program (2) The subroutine may interfere with the way that registers are being used in the target program, for example to control loops Possible solutions (1) We can reduce the probability of label-clash if all the labels in a subroutine begin with a common prefix However, rather than make this prefix a random string, we could base it on the name of the subroutine 1 (2) We can save the values of registers A and X on entry to the subroutine and restore them on exit We can use scratch stack space for this A third characteristic of a reusable subroutine would be commentary describing parameters, results and any assumptions made about the environment in which the subroutine is used Here is an example bitcount (pds 10/22/09) Parameter N Result: number of 1's in the (two's complement) binary representation of N Label common prefix: bitco bitcount: sta -2,s saving registers on entry stx -4,s lda 0,i to count the 1s ldx 2,s register X holds the number being tested bitcotop: breq bitcofin zero means no more 1's brgt bitcolab skip if sign bit is zero adda 1,i count of 1's incremented because sign bit is 1 bitcolab: aslx shifting number brings next bit to sign position br bitcotop bitcofin: sta 4,s count is returned as result lda -2,s restoring registers on exit ldx -4,s ret0 1 Many assembly languages have a symbol (for example, a period or asterisk) that represents the current location The symbol can be used in branch instructions avoiding the need for labels at all though making the code lees readable BR *+6 BRLT -12 Comp 162 Notes Page 5 of 6 October 26, 2015

6 Reading Case statements are covered in pages Comp 162 Notes Page 6 of 6 October 26, 2015

Monday, March 27, 2017

Monday, March 27, 2017 Monday, March 27, 2017 Topics for today Indexed branching Implementation of switch statement Reusable subroutines Indexed branching It turns out that arrays are useful in translating other language constructs,

More information

Wednesday, October 17, 2012

Wednesday, October 17, 2012 Wednesday, October 17, 2012 Topics for today Arrays and Indexed Addressing Arrays as parameters of functions Multi-dimensional arrays Indexed branching Implementation of switch statement Arrays as parameters

More information

Wednesday, March 12, 2014

Wednesday, March 12, 2014 Wednesday, March 12, 2014 Topics for today Solutions to HW #3 Arrays and Indexed Addressing Global arrays Local arrays Buffer exploit attacks Solutions to Homework #3 1. deci N,d < (a) N not defined lda

More information

Monday, October 24, 2016

Monday, October 24, 2016 Monday, October 24, 2016 Topics for today Arrays and Indexed Addressing Arrays as parameters of functions Multi-dimensional arrays Option A: Space-minimal solution Option B: Iliffe vectors Array bound

More information

A rubric for programming assignments

A rubric for programming assignments Fall 2012 Comp 162 Peter Smith A rubric for programming assignments Generally, half the points for a program assignment are for the Correctness of the program with respect to the specification. The other

More information

Monday, March 9, 2015

Monday, March 9, 2015 Monday, March 9, 2015 Topics for today C functions and Pep/8 subroutines Passing parameters by reference Globals Locals More reverse engineering: Pep/8 to C Representation of Booleans C Functions and Pep/8

More information

Monday, October 17, 2016

Monday, October 17, 2016 Monday, October 17, 2016 Topics for today C functions and Pep/8 subroutines Passing parameters by reference Globals Locals Reverse Engineering II Representation of Booleans C Functions and Pep/8 Subroutines

More information

Wednesday, February 15, 2017

Wednesday, February 15, 2017 Wednesday, February 15, 2017 Topics for today Before and after assembly: Macros, Linkers Overview of Chapter 6 Branching Unconditional Status bits and branching If statements While statements The V and

More information

Monday, March 13, 2017

Monday, March 13, 2017 Monday, March 13, 2017 Topics for today Arrays and Indexed Addressing Global arrays Local arrays Buffer exploit attacks Arrays and indexed addressing (section 6.4) So far we have looked at scalars (int,

More information

Wednesday, April 16, 2014

Wednesday, April 16, 2014 Wednesday, pril 16, 2014 Topics for today Homework #5 solutions Code generation nalysis lgorithm 4: infix to tree Synthesis lgorithm 5: tree to code Optimization HW #5 solutions 1. lda 0,i ; for sum of

More information

Wednesday, April 22, 2015

Wednesday, April 22, 2015 Wednesday, April 22, 2015 Topics for today Topics for Exam 3 Process management (Chapter 8) Loader Traps Interrupts, Time-sharing Storage management (Chapter 9) Main memory (1) Uniprogramming (2) Fixed-partition

More information

Wednesday, February 28, 2018

Wednesday, February 28, 2018 Wednesday, February 28, 2018 Topics for today C functions and Pep/9 subroutines Introduction Location of subprograms in a program Translating functions (a) Void functions (b) Void functions with parameters

More information

Monday, February 16, 2015

Monday, February 16, 2015 Monday, February 16, 2015 Topics for today How assemblers work Symbol tables ILC Pass 1 algorithm, Error checking Pass 2 Immediate mode and equate Assembler variants: Disassembler, Cross assembler Macros

More information

Monday, March 6, We have seen how to translate void functions. What about functions that return a value such as

Monday, March 6, We have seen how to translate void functions. What about functions that return a value such as Monday, March 6, 2017 Topics for today C functions and Pep/9 subroutines Translating functions (c) Non-void functions (d) Recursive functions Reverse Engineering: Pep/9 to C C Functions and Pep/9 Subroutines

More information

Monday, November 7, Structures and dynamic memory

Monday, November 7, Structures and dynamic memory Monday, November 7, 2016 Topics for today Structures Structures and dynamic memory Grammars and Languages (Chapter 7) String generation Parsing Regular languages Structures We have seen one composite data

More information

Wednesday, April 19, 2017

Wednesday, April 19, 2017 Wednesday, April 19, 2017 Topics for today Process management (Chapter 8) Loader Traps Interrupts, Time-sharing Storage management (Chapter 9) Main memory (1) Uniprogramming (2) Fixed-partition multiprogramming

More information

Wednesday, March 14, 2018

Wednesday, March 14, 2018 Wednesday, March 14, 2018 Topics for today Arrays and Indexed Addressing Arrays as parameters of functions Multi-dimensional arrays Option A: Space-minimal solution Option B: Iliffe vectors Array bound

More information

Wednesday, September 21, 2016

Wednesday, September 21, 2016 Wednesday, September 21, 2016 Topics for today More high-level to translations Compilers and Assemblers How assemblers work Symbol tables ILC Pass 1 algorithm, Error checking Pass 2 Immediate mode and

More information

Wednesday, March 29, Implementation of sets in an efficient manner illustrates some bit-manipulation ideas.

Wednesday, March 29, Implementation of sets in an efficient manner illustrates some bit-manipulation ideas. Wednesday, March 29, 2017 Topics for today Sets: representation and manipulation using bits Dynamic memory allocation Addressing mode summary Sets Implementation of sets in an efficient manner illustrates

More information

Monday, February 11, 2013

Monday, February 11, 2013 Monday, February 11, 2013 Topics for today The Pep/8 memory Four example programs The loader The assembly language level (Chapter 5) Symbolic Instructions Assembler directives Immediate mode and equate

More information

Wednesday, February 7, 2018

Wednesday, February 7, 2018 Wednesday, February 7, 2018 Topics for today The Pep/9 memory Four example programs The loader The assembly language level (Chapter 5) Symbolic Instructions Assembler directives Immediate mode and equate

More information

Wednesday, September 20, 2017

Wednesday, September 20, 2017 Wednesday, September 20, 2017 Topics for today More high-level to Pep/9 translations Compilers and Assemblers How assemblers work Symbol tables ILC Pass 1 algorithm, Error checking Pass 2 Immediate mode

More information

Wednesday, April

Wednesday, April Wednesday, April 9. 2014 Topics for today Addressing mode summary Structures Structures and dynamic memory Grammars and Languages (Chapter 7) String generation Parsing Regular languages Summary of addressing

More information

Wednesday, September 27, 2017

Wednesday, September 27, 2017 Wednesday, September 27, 2017 Topics for today Chapter 6: Mapping High-level to assembly-level The Pep/9 run-time stack (6.1) Stack-relative addressing (,s) SP manipulation Stack as scratch space Global

More information

LOW-LEVEL PROGRAMMING LANAGUAGES AND PSEUDOCODE. Introduction to Computer Engineering 2015 Spring by Euiseong Seo

LOW-LEVEL PROGRAMMING LANAGUAGES AND PSEUDOCODE. Introduction to Computer Engineering 2015 Spring by Euiseong Seo LOW-LEVEL PROGRAMMING LANAGUAGES AND PSEUDOCODE Introduction to Computer Engineering 2015 Spring by Euiseong Seo Where are we? Chapter 1: The Big Picture Chapter 2: Binary Values and Number Systems Chapter

More information

Wednesday, February 4, Chapter 4

Wednesday, February 4, Chapter 4 Wednesday, February 4, 2015 Topics for today Introduction to Computer Systems Static overview Operation Cycle Introduction to Pep/8 Features of the system Operational cycle Program trace Categories of

More information

Monday, April 14, 2014

Monday, April 14, 2014 Monday, April 14, 2014 Topics for today Grammars and Languages (Chapter 7) Finite State Machines Semantic actions Code generation - Overview Analysis Algorithm 1: evaluation of postfix Algorithm 2: infix

More information

Extra-credit QUIZ Pipelining -due next time-

Extra-credit QUIZ Pipelining -due next time- QUIZ Pipelining A computer pipeline has 4 processors, as shown above. Each processor takes 15 ms to execute, and each instruction must go sequentially through all 4 processors. A program has 10 instructions.

More information

Monday, November 9, 2015

Monday, November 9, 2015 Monday, November 9, 2015 Topics for today Grammars and Languages (Chapter 7) Finite State Machines Semantic actions Code generation - Overview nalysis lgorithm 1: evaluation of postfix lgorithm 2: infix

More information

Lecture #2 January 30, 2004 The 6502 Architecture

Lecture #2 January 30, 2004 The 6502 Architecture Lecture #2 January 30, 2004 The 6502 Architecture In order to understand the more modern computer architectures, it is helpful to examine an older but quite successful processor architecture, the MOS-6502.

More information

Module 8: Atmega32 Stack & Subroutine. Stack Pointer Subroutine Call function

Module 8: Atmega32 Stack & Subroutine. Stack Pointer Subroutine Call function Module 8: Atmega32 Stack & Subroutine Stack Pointer Subroutine Call function Stack Stack o Stack is a section of RAM used by the CPU to store information temporarily (i.e. data or address). o The CPU needs

More information

Low-level software. Components Circuits Gates Transistors

Low-level software. Components Circuits Gates Transistors QUIZ Pipelining A computer pipeline has 4 processors, as shown above. Each processor takes 15 ms to execute, and each instruction must go sequentially through all 4 processors. A program has 10 instructions.

More information

QUIZ. Name all the 4 parts of the fetch-execute cycle.

QUIZ. Name all the 4 parts of the fetch-execute cycle. QUIZ Name all the 4 parts of the fetch-execute cycle. 1 Solution Name all the 4 parts of the fetch-execute cycle. 2 QUIZ Name two fundamental differences between magnetic drives and optical drives: 3 QUIZ

More information

QUIZ. Name all the 4 parts of the fetch-execute cycle.

QUIZ. Name all the 4 parts of the fetch-execute cycle. QUIZ Name all the 4 parts of the fetch-execute cycle. 1 Solution Name all the 4 parts of the fetch-execute cycle. 2 QUIZ Name two fundamental differences between magnetic drives and optical drives: 3 Solution

More information

Low-Level Programming Languages and Pseudocode

Low-Level Programming Languages and Pseudocode Chapter 6 Low-Level Programming Languages and Pseudocode Chapter Goals List the operations that a computer can perform Describe the important features of the Pep/8 virtual machine Distinguish between immediate

More information

Programming Book for 6809 Microprocessor Kit

Programming Book for 6809 Microprocessor Kit Programming Book for 6809 Microprocessor Kit Wichit Sirichote, wichit.sirichote@gmail.com Image By Konstantin Lanzet - CPU collection Konstantin Lanzet, CC BY-SA 3.0, Rev1.2 March 2018 1 Contents Lab 1

More information

Wednesday, September 13, Chapter 4

Wednesday, September 13, Chapter 4 Wednesday, September 13, 2017 Topics for today Introduction to Computer Systems Static overview Operation Cycle Introduction to Pep/9 Features of the system Operational cycle Program trace Categories of

More information

CS2422 Assembly Language & System Programming

CS2422 Assembly Language & System Programming CS2422 Assembly Language & System Programming November 30, 2006 Today s Topic Assembler: Basic Functions Section 2.1 of Beck s System Software book. Reading Assignment: pages 43-52. Role of Assembler Source

More information

Machine Code and Assemblers November 6

Machine Code and Assemblers November 6 Machine Code and Assemblers November 6 CSC201 Section 002 Fall, 2000 Definitions Assembly time vs. link time vs. load time vs. run time.c file.asm file.obj file.exe file compiler assembler linker Running

More information

Monday, September 28, 2015

Monday, September 28, 2015 Monda, September 28, 2015 Topics for toda Chapter 6: Mapping High-level to assembl-level The Pep/8 run-time stack (6.1) Stack-relative addressing (,s) SP manipulation Stack as scratch space Global variables

More information

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri CS356: Discussion #6 Assembly Procedures and Arrays Marco Paolieri (paolieri@usc.edu) Procedures Functions are a key abstraction in software They break down a problem into subproblems. Reusable functionality:

More information

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University What is Assembly Language? Assembly language is a programming language

More information

CSC 221: Computer Organization, Spring 2009

CSC 221: Computer Organization, Spring 2009 1 of 7 4/17/2009 10:52 AM Overview Schedule Resources Assignments Home CSC 221: Computer Organization, Spring 2009 Practice Exam 2 Solutions The exam will be open-book, so that you don't have to memorize

More information

Monday, April 15, We will lead up to the Analysis and Synthesis algorithms involved by first looking at three simpler ones.

Monday, April 15, We will lead up to the Analysis and Synthesis algorithms involved by first looking at three simpler ones. Monday, pril 15, 2013 Topics for today Code generation nalysis lgorithm 1: evaluation of postfix lgorithm 2: infix to postfix lgorithm 3: evaluation of infix lgorithm 4: infix to tree Synthesis lgorithm

More information

Today s Menu. >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory

Today s Menu. >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory Today s Menu Methods >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory Look into my See examples on web-site: ParamPassing*asm and see Methods in Software and

More information

Wednesday, October 4, Optimizing compilers source modification Optimizing compilers code generation Your program - miscellaneous

Wednesday, October 4, Optimizing compilers source modification Optimizing compilers code generation Your program - miscellaneous Wednesday, October 4, 2017 Topics for today Code improvement Optimizing compilers source modification Optimizing compilers code generation Your program - miscellaneous Optimization Michael Jackson Donald

More information

Wednesday, February 19, 2014

Wednesday, February 19, 2014 Wednesda, Februar 19, 2014 Topics for toda Solutions to HW #2 Topics for Eam #1 Chapter 6: Mapping High-level to assembl-level The Pep/8 run-time stack Stack-relative addressing (,s) SP manipulation Stack

More information

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero Do-While Example In C++ do { z--; while (a == b); z = b; In assembly language loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero 25 Comparisons Set on less than (slt) compares its source registers

More information

ECE260: Fundamentals of Computer Engineering. Supporting Procedures in Computer Hardware

ECE260: Fundamentals of Computer Engineering. Supporting Procedures in Computer Hardware Supporting Procedures in Computer Hardware James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy

More information

ME 6405 Introduction to Mechatronics

ME 6405 Introduction to Mechatronics ME 6405 Introduction to Mechatronics Fall 2005 Instructor: Professor Charles Ume LECTURE 9 Homework 1 Solution 1. Write an assembly language program to clear the usable internal RAM in the M68HC11E9. Solution:

More information

Chapter. Assembly Language

Chapter. Assembly Language Chapter 5 Assembly Language Mappings The mapping from Asmb5 to ISA3 is one-toone The mapping from HOL6 to Asmb5 is oneto-many Symbols Defined by an identifier followed by a colon at the start of a statement

More information

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo 1 Lecture Overview AVR ISA AVR Instructions & Programming (I) Basic construct implementation 2 Atmel AVR 8-bit RISC architecture

More information

COMP2121: Microprocessors and Interfacing

COMP2121: Microprocessors and Interfacing Interfacing Lecture 9: Program Control Instructions http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 1, 2006 Program control instructions in AVR Stacks Overview Sample AVR assembly programs

More information

Assembly Language Programming of 8085

Assembly Language Programming of 8085 Assembly Language Programming of 8085 1. Introduction A microprocessor executes instructions given by the user Instructions should be in a language known to the microprocessor Microprocessor understands

More information

COSC 243. Instruction Sets And Addressing Modes. Lecture 7&8 Instruction Sets and Addressing Modes. COSC 243 (Computer Architecture)

COSC 243. Instruction Sets And Addressing Modes. Lecture 7&8 Instruction Sets and Addressing Modes. COSC 243 (Computer Architecture) COSC 243 Instruction Sets And Addressing Modes 1 Overview This Lecture Source Chapters 12 & 13 (10 th editition) Textbook uses x86 and ARM (we use 6502) Next 2 Lectures Assembly language programming 2

More information

Assembly Language Programming of 8085

Assembly Language Programming of 8085 Assembly Language Programming of 8085 Topics 1. Introduction 2. Programming model of 8085 3. Instruction set of 8085 4. Example Programs 5. Addressing modes of 8085 6. Instruction & Data Formats of 8085

More information

COMPUTE! ISSUE 36 / MAY 1983 / PAGE 244

COMPUTE! ISSUE 36 / MAY 1983 / PAGE 244 Versatile Data Acquisition with VIC Doug Homer and Stan Klein COMPUTE! ISSUE 36 / MAY 1983 / PAGE 244 This simple method of adjusting the VIC's internal jiffy dock can slow it down to match your timing

More information

AVR ISA & AVR Programming (I)

AVR ISA & AVR Programming (I) AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo Week 1 1 Lecture Overview AVR ISA AVR Instructions & Programming (I) Basic construct implementation Week 1 2 1 Atmel AVR 8-bit

More information

Chapter 1 Background. Professor Gwan-Hwan Hwang Dept. Computer Science and Information Engineering National Taiwan Normal University

Chapter 1 Background. Professor Gwan-Hwan Hwang Dept. Computer Science and Information Engineering National Taiwan Normal University Chapter 1 Background Professor Gwan-Hwan Hwang Dept. Computer Science and Information Engineering National Taiwan Normal University 9/17/2009 1 Outlines 1.1 Introduction 1.2 System Software and Machine

More information

ECE 375 Computer Organization and Assembly Language Programming Winter 2018 Solution Set #2

ECE 375 Computer Organization and Assembly Language Programming Winter 2018 Solution Set #2 ECE 375 Computer Organization and Assembly Language Programming Winter 2018 Set #2 1- Consider the internal structure of the pseudo-cpu discussed in class augmented with a single-port register file (i.e.,

More information

Example Programs for 6502 Microprocessor Kit

Example Programs for 6502 Microprocessor Kit Example Programs for 6502 Microprocessor Kit 0001 0000 0002 0000 GPIO1.EQU $8000 0003 0000 0004 0000 0005 0200.ORG $200 0006 0200 0007 0200 A5 00 LDA $0 0008 0202 8D 00 80 STA $GPIO1 0009 0205 00 BRK 0010

More information

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo 1 Lecture Overview AVR ISA AVR Instructions & Programming (I) Basic construct implementation 2 Atmel AVR 8-bit RISC architecture

More information

Computer System Architecture

Computer System Architecture CSC 203 1.5 Computer System Architecture Department of Statistics and Computer Science University of Sri Jayewardenepura Addressing 2 Addressing Subject of specifying where the operands (addresses) are

More information

EE 361 University of Hawaii Fall

EE 361 University of Hawaii Fall C functions Road Map Computation flow Implementation using MIPS instructions Useful new instructions Addressing modes Stack data structure 1 EE 361 University of Hawaii Implementation of C functions and

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 11 Instruction Sets: Addressing Modes and Formats

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 11 Instruction Sets: Addressing Modes and Formats William Stallings Computer Organization and Architecture 8 th Edition Chapter 11 Instruction Sets: Addressing Modes and Formats Addressing Modes Immediate Direct Indirect Register Register Indirect Displacement

More information

n NOPn Unary no operation trap U aaa NOP Nonunary no operation trap i

n NOPn Unary no operation trap U aaa NOP Nonunary no operation trap i Instruction set Instruction Mnemonic Instruction Addressing Status Specifier Mode Bits 0000 0000 STOP Stop execution U 0000 0001 RET Return from CALL U 0000 0010 RETTR Return from trap U 0000 0011 MOVSPA

More information

Part 7. Stacks. Stack. Stack. Examples of Stacks. Stack Operation: Push. Piles of Data. The Stack

Part 7. Stacks. Stack. Stack. Examples of Stacks. Stack Operation: Push. Piles of Data. The Stack Part 7 Stacks The Stack Piles of Data Stack Stack A stack is an abstract data structure that stores objects Based on the concept of a stack of items like a stack of dishes Data can only be added to or

More information

Exam I Review February 2017

Exam I Review February 2017 Exam I Review February 2017 Binary Number Representations Conversion of binary to hexadecimal and decimal. Convert binary number 1000 1101 to hexadecimal: Make groups of 4 bits to convert to hexadecimal,

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT - 1 MACHINE ARCHITECTURE 11 Introduction: The Software is set of instructions or programs written to carry out certain task on digital computers It is classified into system software and application

More information

Lecture 4: MIPS Instruction Set

Lecture 4: MIPS Instruction Set Lecture 4: MIPS Instruction Set No class on Tuesday Today s topic: MIPS instructions Code examples 1 Instruction Set Understanding the language of the hardware is key to understanding the hardware/software

More information

CS401 - Computer Architecture and Assembly Language Programming Glossary By

CS401 - Computer Architecture and Assembly Language Programming Glossary By CS401 - Computer Architecture and Assembly Language Programming Glossary By absolute address : A virtual (not physical) address within the process address space that is computed as an absolute number.

More information

switch case Logic Syntax Basics Functionality Rules Nested switch switch case Comp Sci 1570 Introduction to C++

switch case Logic Syntax Basics Functionality Rules Nested switch switch case Comp Sci 1570 Introduction to C++ Comp Sci 1570 Introduction to C++ Outline 1 Outline 1 Outline 1 switch ( e x p r e s s i o n ) { case c o n s t a n t 1 : group of statements 1; break ; case c o n s t a n t 2 : group of statements 2;

More information

instruction 1 Fri Oct 13 13:05:

instruction 1 Fri Oct 13 13:05: instruction Fri Oct :0:0. Introduction SECTION INSTRUCTION SET This section describes the aressing modes and instruction types.. Aressing Modes The CPU uses eight aressing modes for flexibility in accessing

More information

CS2304-SYSTEM SOFTWARE 2 MARK QUESTION & ANSWERS. UNIT I INTRODUCTION

CS2304-SYSTEM SOFTWARE 2 MARK QUESTION & ANSWERS. UNIT I INTRODUCTION CS2304-SYSTEM SOFTWARE 2 MARK QUESTION & ANSWERS. UNIT I INTRODUCTION 1. Define System Software. System software consists of a variety of programs that supports the operations of a computer. Eg. Compiler,

More information

When an instruction is initially read from memory it goes to the Instruction register.

When an instruction is initially read from memory it goes to the Instruction register. CS 320 Ch. 12 Instruction Sets Computer instructions are written in mnemonics. Mnemonics typically have a 1 to 1 correspondence between a mnemonic and the machine code. Mnemonics are the assembly language

More information

2. Arithmetic Instructions addition, subtraction, multiplication, divison (HCS12 Core Users Guide, Sections 4.3.4, and ).

2. Arithmetic Instructions addition, subtraction, multiplication, divison (HCS12 Core Users Guide, Sections 4.3.4, and ). AS12 Assembler Directives A Summary of 9S12 instructions Disassembly of 9S12 op codes Huang Section 1.8, Chapter 2 MC9S12 V1.5 Core User Guide Version 1.2, Section 12 o A labels is a name assigned the

More information

Unified Engineering Fall 2004

Unified Engineering Fall 2004 Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139 Unified Engineering Fall 2004 Problem Set #3 Solutions C&P PSET 3 Solutions 1. 12

More information

Trap Vector Table. Interrupt Vector Table. Operating System and Supervisor Stack. Available for User Programs. Device Register Addresses

Trap Vector Table. Interrupt Vector Table. Operating System and Supervisor Stack. Available for User Programs. Device Register Addresses Chapter 1 The LC-3b ISA 1.1 Overview The Instruction Set Architecture (ISA) of the LC-3b is defined as follows: Memory address space 16 bits, corresponding to 2 16 locations, each containing one byte (8

More information

CN310 Microprocessor Systems Design

CN310 Microprocessor Systems Design CN310 Microprocessor Systems Design Instruction Set (AVR) Nawin Somyat Department of Electrical and Computer Engineering Thammasat University Outline Course Contents 1 Introduction 2 Simple Computer 3

More information

October 24. Five Execution Steps

October 24. Five Execution Steps October 24 Programming problems? Read Section 6.1 for November 5 How instructions execute Test Preview Ask Questions! 10/24/2001 Comp 120 Fall 2001 1 Five Execution Steps Instruction Fetch Instruction

More information

Lab 3 (All Sections) Prelab: MIPS-Control Instructions

Lab 3 (All Sections) Prelab: MIPS-Control Instructions Lab 3 (All Sections) Prelab: MIPS-Control Instructions Name: Sign the following statement: On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work 1 Objective

More information

Monday, April 9, 2018

Monday, April 9, 2018 Monday, April 9, 208 Topics for today Grammars and Languages (Chapter 7) Finite State Machines Semantic actions Code generation Overview Finite State Machines (see 7.2) If a language is regular (Type 3)

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Assmbly Language Part I Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA January 30, 2018 Aly El-Osery (NMT)

More information

Lecture 5: Procedure Calls

Lecture 5: Procedure Calls Lecture 5: Procedure Calls Today s topics: Memory layout, numbers, control instructions Procedure calls 1 Memory Organization The space allocated on stack by a procedure is termed the activation record

More information

Announcements. Class 7: Intro to SRC Simulator Procedure Calls HLL -> Assembly. Agenda. SRC Procedure Calls. SRC Memory Layout. High Level Program

Announcements. Class 7: Intro to SRC Simulator Procedure Calls HLL -> Assembly. Agenda. SRC Procedure Calls. SRC Memory Layout. High Level Program Fall 2006 CS333: Computer Architecture University of Virginia Computer Science Michele Co Announcements Class 7: Intro to SRC Simulator Procedure Calls HLL -> Assembly Homework #2 Due next Wednesday, Sept.

More information

Chapter 1: Background

Chapter 1: Background Chapter 1: Background Hsung-Pin Chang Department of Computer Science National Chung Hsing University Outline 1.1 Introduction 1.2 System Software and Machine Architecture 1.3 The Simplified Instructional

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 8: Procedures (cont d), Binary Numbers and Adders Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Review: Procedure Calling Steps

More information

ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines

ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines M J Brockway February 13, 2016 The Cortex-M4 Stack SP The subroutine stack is full, descending It grows downwards from higher

More information

Implementing Control Flow Constructs Comp 412

Implementing Control Flow Constructs Comp 412 COMP 412 FALL 2018 Implementing Control Flow Constructs Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2018, Keith D. Cooper & Linda Torczon, all rights reserved. Students

More information

A Java-based Computer Simulator and its Applications

A Java-based Computer Simulator and its Applications A Java-based Computer Simulator and its Applications John K. Estell Bluffton College Session 2220 Abstract This paper describes a learning philosophy for computer science that is based on having students

More information

Compiling Code, Procedures and Stacks

Compiling Code, Procedures and Stacks Compiling Code, Procedures and Stacks L03-1 RISC-V Recap Computational Instructions executed by ALU Register-Register: op dest, src1, src2 Register-Immediate: op dest, src1, const Control flow instructions

More information

ECE 331: PC Lab 3 Stack and Subroutines

ECE 331: PC Lab 3 Stack and Subroutines ECE 331: PC Lab 3 Stack and Subroutines Professor Andrew Mason Michigan State University Rev: S11 p.1 Announcements Objectives Topics Outline Review starting and using ASM development environment Pushing

More information

Lecture 20: AVR Programming, Continued. AVR Program Visible State (ones we care about for now)

Lecture 20: AVR Programming, Continued. AVR Program Visible State (ones we care about for now) 18 100 Lecture 20: AVR Programming, Continued S 15 L20 1 James C. Hoe Dept of ECE, CMU April 2, 2015 Today s Goal: You will all be ace AVR hackers! Announcements: Midterm 2 can be picked up in lab and

More information

ECE2049 E17 Lecture 2: Data Representations & C Programming Basics

ECE2049 E17 Lecture 2: Data Representations & C Programming Basics ECE2049 E17 Lecture 2: Data Representations & C Programming Basics Administrivia Lab 0 after class today! o Get your MSP430 board! Install instructions for CCS are on course website under Resources o You

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications Q. 3.9 of HW3 EE 37 Microcontroller Applications (a) (c) (b) (d) Midterm Review: Miller Chapter -3 -The Stuff That Might Be On the Exam D67 (e) (g) (h) CEC23 (i) (f) (j) (k) (l) (m) EE37/CC/Lecture-Review

More information

Using the stack and the stack pointer

Using the stack and the stack pointer Using the stack and the stack pointer o The Stack and Stack Pointer o The stack is a memory area for temporary storage o The stack pointer points to the last byte in the stack o Some instructions which

More information

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#:

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#: Computer Science and Engineering 331 Midterm Examination #1 Fall 2000 Name: Solutions S.S.#: 1 41 2 13 3 18 4 28 Total 100 Instructions: This exam contains 4 questions. It is closed book and notes. Calculators

More information

III. Flags of the Processor Staus Register

III. Flags of the Processor Staus Register III. Flags of the Processor Staus Register INHALT 1. Meaning 2. Application 2.1 Shifts 2.2 Branches 2.3 Addition and Subtraction 2.4 Comparisons in magnitude 1. Meaning processor status register Overflow

More information

COSC 243. Assembly Language Techniques. Lecture 9. COSC 243 (Computer Architecture)

COSC 243. Assembly Language Techniques. Lecture 9. COSC 243 (Computer Architecture) COSC 243 Assembly Language Techniques 1 Overview This Lecture Source Handouts Next Lectures Memory and Storage Systems 2 Parameter Passing In a high level language we don t worry about the number of parameters

More information

MODULE 4 INSTRUCTIONS: LANGUAGE OF THE MACHINE

MODULE 4 INSTRUCTIONS: LANGUAGE OF THE MACHINE MODULE 4 INSTRUCTIONS: LANGUAGE OF THE MACHINE 1 ARCHITECTURE MODEL The basic instruction set of a computer is comprised of sequences of REGISTER TRANSFERS. Example: Add A, B, C Register B # A

More information