EE 308: Microcontrollers

Size: px
Start display at page:

Download "EE 308: Microcontrollers"

Transcription

1 EE 308: Microcontrollers Assmbly Language Part I Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA January 30, 2018 Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

2 Introduction to Assembly In the Introduction to Assembly lecture we discussed Structure of the assembly language Op Codes Instructions: LDI, ADD, LDS, STS, IN and OUT Assembling, linking and downloading Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

3 Example 1 Write a list of instructions that stores the numbers 32, 45 and 15 in memory locations 0x200, 0x201 and 0x202, respectively Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

4 Example 2 Write a list of instructions that adds the numbers 32, 45 and 15 Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

5 Example 3 Write a list of instructions that adds the numbers in memory locations 0x200, 0x201 and 0x202 and store the result in memory location 0x203 Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

6 Register usage convention Call-used registers (r18-r27, r30-r31): May be allocated for local data. You may use them freely in assembler subroutines. Calling subroutines can clobber any of them and the caller is responsible for saving and restoring. Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

7 Register usage convention Call-used registers (r18-r27, r30-r31): May be allocated for local data. You may use them freely in assembler subroutines. Calling subroutines can clobber any of them and the caller is responsible for saving and restoring. Call-saved registers (r2-r17, r28-r29): May be allocated for local data. Calling subroutines leaves them unchanged. Assembler subroutines are responsible for saving and restoring these registers, if changed. Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

8 Register usage convention Call-used registers (r18-r27, r30-r31): May be allocated for local data. You may use them freely in assembler subroutines. Calling subroutines can clobber any of them and the caller is responsible for saving and restoring. Call-saved registers (r2-r17, r28-r29): May be allocated for local data. Calling subroutines leaves them unchanged. Assembler subroutines are responsible for saving and restoring these registers, if changed. Fixed registers (r0, r1): Never allocated by gcc for local data, but often used for fixed purposes: Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

9 Register usage convention Call-used registers (r18-r27, r30-r31): May be allocated for local data. You may use them freely in assembler subroutines. Calling subroutines can clobber any of them and the caller is responsible for saving and restoring. Call-saved registers (r2-r17, r28-r29): May be allocated for local data. Calling subroutines leaves them unchanged. Assembler subroutines are responsible for saving and restoring these registers, if changed. Fixed registers (r0, r1): Never allocated by gcc for local data, but often used for fixed purposes: r0 - temporary register, can be clobbered by any code (except interrupt handlers which save it), may be used to remember something for a while within one piece of assembler code Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

10 Register usage convention Call-used registers (r18-r27, r30-r31): May be allocated for local data. You may use them freely in assembler subroutines. Calling subroutines can clobber any of them and the caller is responsible for saving and restoring. Call-saved registers (r2-r17, r28-r29): May be allocated for local data. Calling subroutines leaves them unchanged. Assembler subroutines are responsible for saving and restoring these registers, if changed. Fixed registers (r0, r1): Never allocated by gcc for local data, but often used for fixed purposes: r0 - temporary register, can be clobbered by any code (except interrupt handlers which save it), may be used to remember something for a while within one piece of assembler code r1 - assumed to be always zero in any code, may be used to remember something for a while within one piece of assembler code, but must then be cleared after use (clr r1). Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

11 Register usage convention Call-used registers (r18-r27, r30-r31): May be allocated for local data. You may use them freely in assembler subroutines. Calling subroutines can clobber any of them and the caller is responsible for saving and restoring. Call-saved registers (r2-r17, r28-r29): May be allocated for local data. Calling subroutines leaves them unchanged. Assembler subroutines are responsible for saving and restoring these registers, if changed. Fixed registers (r0, r1): Never allocated by gcc for local data, but often used for fixed purposes: r0 - temporary register, can be clobbered by any code (except interrupt handlers which save it), may be used to remember something for a while within one piece of assembler code r1 - assumed to be always zero in any code, may be used to remember something for a while within one piece of assembler code, but must then be cleared after use (clr r1). In other words when in doubt, you can use r18-r25 freely Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

12 Purpose Control the flow of the program Conditional branch, e.g., BREQ, BRNE, BRBS Unconditional branching: JMP, IJMP Branching to a subroutine Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

13 Conditional branching: BRNE instruction Conditional relative branch. BRNE k ;Branch if not equal k is a relative location If Rd Rr (Z=0) then PC PC+k+1, else PC PC+1 Examples: a1:... CPI r27,5 ;Compare r27 to 5 BRNE a1 ;load R20 with immediate hex value 0x3F Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

14 Key points Conditional branching instructions are of the form XXXX XXKK KKKK KXXX X means don t care k is the address to branch to relative to the program counter of the next instruction k can be either positive or negative What is the range of k? Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

15 Unconditional branching: JMP instruction Long jump JMP k ;jump to address k K KKKK 110K KKKK XXKK KKKK KKKK k is a relative location 4-byte instruction to address any memory location in 4M address space Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

16 Unconditional branching: RJMP instruction Long jump RJMP k ;jump to address k 1100 KKKK KKKK KKKK k is a relative location 2-byte instruction PC PC+k+1 What is the range of k? Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

17 Repeat a group of instructions Similar to for loop Increment or decrement a register and branch as long a condition is satisfied Using instructions like DEC or INC May have to use nested loop due to the size of the register (what is the maximum using for example R16?) Used quite a bit for creating delays Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

18 Looping example L1: ;start of the loop... ;some statement... ;another statement DEC Rn ;decrement Rn (What is the value of Z?) BRNE L1 ;branch to L1 if Z =? Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

19 Looping example L1: ;start of the loop... ;some statement... ;another statement DEC Rn ;decrement Rn (What is the value of Z?) BRNE L1 ;branch to L1 if Z =? How can we use the above approach to create delays? Aly El-Osery (NMT) EE 308: Microcontrollers January 30, / 13

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Introduction to the Assmbly Language Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA January 25, 2018 Aly

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Review Part I Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA February 15, 2018 Aly El-Osery (NMT) EE 308:

More information

COMP2121: Microprocessors and Interfacing

COMP2121: Microprocessors and Interfacing Interfacing Lecture 9: Program Control Instructions http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 1, 2006 Program control instructions in AVR Stacks Overview Sample AVR assembly programs

More information

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo 1 Lecture Overview AVR ISA AVR Instructions & Programming (I) Basic construct implementation 2 Atmel AVR 8-bit RISC architecture

More information

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo

AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo 1 Lecture Overview AVR ISA AVR Instructions & Programming (I) Basic construct implementation 2 Atmel AVR 8-bit RISC architecture

More information

AVR ISA & AVR Programming (I)

AVR ISA & AVR Programming (I) AVR ISA & AVR Programming (I) Lecturer: Sri Parameswaran Notes by: Annie Guo Week 1 1 Lecture Overview AVR ISA AVR Instructions & Programming (I) Basic construct implementation Week 1 2 1 Atmel AVR 8-bit

More information

COMP3221: Microprocessors and Embedded Systems

COMP3221: Microprocessors and Embedded Systems Embedded Systems Lecture 6: Addressing Modes http://www.cse.unsw.edu.au/~cs3221 Lecturer: Hui Wu Session 2, 2005 Addressing Modes Overview Instruction Examples 1 2 Operands Immediate Addressing Instructions

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers AVR Architecture Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA January 23, 2018 Aly El-Osery (NMT) EE 308:

More information

COMP2121: Microprocessors and Interfacing. Instruction Formats and Addressing Modes

COMP2121: Microprocessors and Interfacing. Instruction Formats and Addressing Modes COMP2121: Microprocessors and Interfacing Instruction Formats and Addressing Modes http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2017 1 1 Overview Instruction format AVR instruction format

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Timers Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA April 2, 2018 Aly El-Osery (NMT) EE 308: Microcontrollers

More information

CN310 Microprocessor Systems Design

CN310 Microprocessor Systems Design CN310 Microprocessor Systems Design Instruction Set (AVR) Nawin Somyat Department of Electrical and Computer Engineering Thammasat University Outline Course Contents 1 Introduction 2 Simple Computer 3

More information

By: Dr. Hamed Saghaei

By: Dr. Hamed Saghaei By: Dr. Hamed Saghaei The AVR RISC Microcontroller supports powerful and efficient addressing modes for access to the program memory (Flash) and data memory (SRAM). This section describes the different

More information

APPENDIX D FLOWCHARTS AND PSEUDOCODE OVERVIEW

APPENDIX D FLOWCHARTS AND PSEUDOCODE OVERVIEW APPENDIX D FLOWCHARTS AND PSEUDOCODE OVERVIEW This appendix provides an introduction to writing flowcharts and pseudocode. 689 Flowcharts If you have taken any previous programming courses, you are probably

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Interrupts Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA March 1, 2018 Aly El-Osery (NMT) EE 308: Microcontrollers

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Introduction Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA January 6, 2018 Aly El-Osery (NMT) EE 308: Microcontrollers

More information

Module 8: Atmega32 Stack & Subroutine. Stack Pointer Subroutine Call function

Module 8: Atmega32 Stack & Subroutine. Stack Pointer Subroutine Call function Module 8: Atmega32 Stack & Subroutine Stack Pointer Subroutine Call function Stack Stack o Stack is a section of RAM used by the CPU to store information temporarily (i.e. data or address). o The CPU needs

More information

Lecture 20: AVR Programming, Continued. AVR Program Visible State (ones we care about for now)

Lecture 20: AVR Programming, Continued. AVR Program Visible State (ones we care about for now) 18 100 Lecture 20: AVR Programming, Continued S 15 L20 1 James C. Hoe Dept of ECE, CMU April 2, 2015 Today s Goal: You will all be ace AVR hackers! Announcements: Midterm 2 can be picked up in lab and

More information

COMP 7860 Embedded Real- Time Systems: Threads

COMP 7860 Embedded Real- Time Systems: Threads COMP 7860 Embedded Real- Time Systems: Threads Jacky Baltes Autonomous Agents Lab University of Manitoba Winnipeg, Canada R3T 2N2 Email: jacky@cs.umanitoba.ca WWW: http://www.cs.umanitoba.ca/~jacky http://aalab.cs.umanitoba.ca

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Serial Perpherial Interface (SPI) Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA April 9, 2018 Aly El-Osery

More information

Register-Level Programming

Register-Level Programming Introduction Register-Level Programming Programming can be considered a set a instructions that are executed in a precise order. A programming simulator can evaluate how instructions store, move and calculate

More information

Introduction to Computer. Chapter 5 The LC-3. Instruction Set Architecture

Introduction to Computer. Chapter 5 The LC-3. Instruction Set Architecture Introduction to Computer Engineering ECE/CS 252, Fall 2010 Prof. Mikko Lipasti Department of Electrical and Computer Engineering University of Wisconsin Madison Chapter 5 The LC-3 Instruction Set Architecture

More information

MIPS Programming. A basic rule is: try to be mechanical (that is, don't be "tricky") when you translate high-level code into assembler code.

MIPS Programming. A basic rule is: try to be mechanical (that is, don't be tricky) when you translate high-level code into assembler code. MIPS Programming This is your crash course in assembler programming; you will teach yourself how to program in assembler for the MIPS processor. You will learn how to use the instruction set summary to

More information

COMP3221: Microprocessors and Embedded Systems

COMP3221: Microprocessors and Embedded Systems Embedded ystems Overview Arithmetic and Logic nstructions in AR ample AR Assembly Programs Using AL instructions Lecture 7: Arithmetic and logic nstructions http://www.cse.unsw.edu.au/~cs3221 Lecturer:

More information

Interrupts (II) Lecturer: Sri Parameswaran Notes by: Annie Guo

Interrupts (II) Lecturer: Sri Parameswaran Notes by: Annie Guo Interrupts (II) Lecturer: Sri Parameswaran Notes by: Annie Guo 1 External Interrupts The external interrupts are triggered by the INT7:0 pins. If enabled, the interrupts will trigger even if the INT7:0

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Interrupts (II) Interrupts in AVR External interrupts Internal interrupts Timers/Counters Lecturer : Dr. Annie Guo S2, 2008 COMP9032 Week7 1 S2, 2008 COMP9032

More information

Lecture 5: Procedure Calls

Lecture 5: Procedure Calls Lecture 5: Procedure Calls Today s topics: Memory layout, numbers, control instructions Procedure calls 1 Memory Organization The space allocated on stack by a procedure is termed the activation record

More information

Logic Instructions and Programs READING

Logic Instructions and Programs READING 1 P a g e Logic Instructions and Programs READING The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi Chapter 5: Arithmetic, Logic

More information

APPENDIX B AVR INSTRUCTIONS EXPLAINED OVERVIEW

APPENDIX B AVR INSTRUCTIONS EXPLAINED OVERVIEW APPENDIX B AVR INSTRUCTIONS EXPLAINED OVERVIEW In this appendix, we describe each intruction of the ATmega328. In many cases, a simple code example is given to clarify the instruction. Instructions are

More information

COMP2121: Microprocessors and Interfacing

COMP2121: Microprocessors and Interfacing nterfacing Overview Arithmetic and Logic nstructions in AR ample AR Assembly Programs Using AL instructions Lecture 8: Arithmetic and logic nstructions http://www.cse.unsw.edu.au/~cs2121 Lecturer: ui Wu

More information

AVR Control Transfer -AVR Branching

AVR Control Transfer -AVR Branching 1 P a g e AVR Control Transfer -AVR Branching Reading The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi Chapter 3: Branch, Call,

More information

Microprocessor Fundamentals. Topic 8 Binary Addition

Microprocessor Fundamentals. Topic 8 Binary Addition Microprocessor Fundamentals Topic 8 Binary Addition Objectives Examine several assembler directives:.dseg /.eseg /.cseg.db.byte Use indirect addressing X register (r26 and r27) Post-increment Store results

More information

8-bit Instruction Set

8-bit Instruction Set Instruction Set Nomenclature Status Register (SREG) SREG: Status Register C: Carry Flag Z: Zero Flag N: Negative Flag V: Two s complement overflow indicator S: N V, For signed tests H: Half Carry Flag

More information

Subroutines. int main() { int i, j; i = 5; j = celtokel(i); i = j; return 0;}

Subroutines. int main() { int i, j; i = 5; j = celtokel(i); i = j; return 0;} Subroutines Also called procedures or functions Example C code: int main() { int i, j; i = 5; j = celtokel(i); i = j; return 0;} // subroutine converts Celsius to kelvin int celtokel(int i) { return (i

More information

8-bit Instruction Set

8-bit Instruction Set Instruction Set Nomenclature Status Register (SREG) SREG: Status Register C: Carry Flag Z: Zero Flag N: Negative Flag V: Two s complement overflow indicator S: N V, For signed tests H: Half Carry Flag

More information

The Assembly Language of the Boz 5

The Assembly Language of the Boz 5 The Assembly Language of the Boz 5 The Boz 5 uses bits 31 27 of the IR as a five bit opcode. Of the possible 32 opcodes, only 26 are implemented. Op-Code Mnemonic Description 00000 HLT Halt the Computer

More information

COMP2121: Microprocessors and Interfacing. I/O Devices (II)

COMP2121: Microprocessors and Interfacing. I/O Devices (II) COMP2121: Microprocessors and Interfacing I/O Devices (II) http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2017 1 Overview Keyboard LCD (Liquid Crystal Display) 2 2 Input Switches (1/2)

More information

Load -- read data from memory to register. Store -- write data from register to memory. Load effective address -- compute address, save in register

Load -- read data from memory to register. Store -- write data from register to memory. Load effective address -- compute address, save in register Data Movement Instructions Load -- read data from memory to register LD: PC-relative mode LDR: base+offset mode LDI: indirect mode Store -- write data from register to memory ST: PC-relative mode STR:

More information

Programming. A. Assembly Language Programming. A.1 Machine Code. Machine Code Example: Motorola ADD

Programming. A. Assembly Language Programming. A.1 Machine Code. Machine Code Example: Motorola ADD A. Assembly Language Programming Programming of a computer system: Machine code direct execution Assembly language tool: assembler High level programming language tool: interpreter tool: compiler Programming

More information

6.001 Recitation 23: Register Machines and Stack Frames

6.001 Recitation 23: Register Machines and Stack Frames 6.001 Recitation 23: Register achines and Stack Frames RI: Gerald Dalley, dalleyg@mit.edu, 8 ay 2007 http://people.csail.mit.edu/dalleyg/6.001/sp2007/ iscellany apply: See the IT Scheme documentation for

More information

ECE 375 Computer Organization and Assembly Language Programming Winter 2018 Solution Set #2

ECE 375 Computer Organization and Assembly Language Programming Winter 2018 Solution Set #2 ECE 375 Computer Organization and Assembly Language Programming Winter 2018 Set #2 1- Consider the internal structure of the pseudo-cpu discussed in class augmented with a single-port register file (i.e.,

More information

Addressing Modes Part II AVR Addressing Indirect READING

Addressing Modes Part II AVR Addressing Indirect READING 1 P a g e Addressing Modes Part II AVR Addressing Indirect READING The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi Chapter 6: AVR

More information

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University What is Assembly Language? Assembly language is a programming language

More information

AVR Subroutine Basics

AVR Subroutine Basics 1 P a g e AVR Subroutine Basics READING The AVR Microcontroller and Embedded Systems using Assembly and C) by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi Chapter 3: Branch, Call, and Time Delay

More information

Course Administration

Course Administration Fall 2018 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture Introduction 4/4 Avinash Karanth Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701

More information

EEL 5722C Field-Programmable Gate Array Design

EEL 5722C Field-Programmable Gate Array Design EEL 5722C Field-Programmable Gate Array Design Lecture 12: Pipelined Processor Design and Implementation Prof. Mingjie Lin Patt and Patel: Intro. to Computing System * Stanford EE271 notes 1 Instruction

More information

EE 361 University of Hawaii Fall

EE 361 University of Hawaii Fall C functions Road Map Computation flow Implementation using MIPS instructions Useful new instructions Addressing modes Stack data structure 1 EE 361 University of Hawaii Implementation of C functions and

More information

Review on Lecture-1. ICT 6641: Advanced Embedded System. Lecture 2 Branch, Call and Delay Loops, AVR I/O port programming

Review on Lecture-1. ICT 6641: Advanced Embedded System. Lecture 2 Branch, Call and Delay Loops, AVR I/O port programming ICT 6641: Advanced Embedded System Lecture 2 Branch, Call and Delay Loops, AVR I/O port programming Prof. S. M. Lutful Kabir Session: April, 2011 Review on Lecture-1 Three parts of a computer : CPU, Memory

More information

comp 180 Lecture 10 Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions

comp 180 Lecture 10 Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions Procedure Calls A procedure of a subroutine is like an agent which needs certain information to perform a

More information

Microcontroller Intel [Instruction Set]

Microcontroller Intel [Instruction Set] Microcontroller Intel 8051 [Instruction Set] Structure of Assembly Language [ label: ] mnemonic [operands] [ ;comment ] Example: MOV R1, #25H ; load data 25H into R1 2 8051 Assembly Language Registers

More information

Chapter 4: Atmel s AVR 8-bit Microcontroller Part 1 Assembly Programming

Chapter 4: Atmel s AVR 8-bit Microcontroller Part 1 Assembly Programming Chapter 4: Atmel s AVR 8-bit Microcontroller Part 1 Assembly Programming Prof. Ben Lee Oregon State University School of Electrical Engineering and Computer Science Chapter Goals Understand how to program

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Interrupts (I) Lecturer : Dr. Annie Guo Introduction to Interrupts Interrupt system specifications Multiple sources of interrupts Interrupt priorities Interrupts

More information

Digital Systems - Mini AVR 3

Digital Systems - Mini AVR 3 Digital Systems - Mini AVR 3 Pere Palà - Alexis López itic http://itic.cat April 2016 Enhancing the processor Up to now, we have a linear program flow Suitable for a pre-planned task Unable to react to

More information

Menu. The Cost of Debugging

Menu. The Cost of Debugging 12-Sep-18 330 PM ging >Why do we need to debug? >When do we need to debug? >How do we debug? Before/as we code After we code >Common bugs Menu Look into my... 1 The Cost of ging Increases exponentially

More information

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1 Interrupts (I) Lecturer: Sri Notes by Annie Guo Week8 1 Lecture overview Introduction to Interrupts Interrupt system specifications Multiple Sources of Interrupts Interrupt Priorities Interrupts in AVR

More information

Ch. 5: The LC-3. PC-Relative Addressing Mode. Data Movement Instructions. James Goodman!

Ch. 5: The LC-3. PC-Relative Addressing Mode. Data Movement Instructions. James Goodman! 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADD + 0001 1 0 00 2 Computer Science 210 s1c Computer Systems 1 2012 Semester 1 Lecture Notes ADD + AND + AND + BR JMP 0001 1 1 imm5 0101 1 0 00 2 0101 1 1 imm5 0000

More information

AVR Instruction Set Encoding

AVR Instruction Set Encoding 1 P age AVR Instruction Set Encoding READING 1. "AVR Instruction Set" document doc856 "The Program and Data Addressing Modes." 2. In this lecture I will teach you how to translate your assembly code into

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Branch to a labeled instruction if a condition is true Otherwise, continue sequentially beq rs, rt, L1 if (rs == rt) branch to

More information

Assembly Programming (III) Lecturer: Sri Parameswaran Notes by: Annie Guo Dr. Hui Wu

Assembly Programming (III) Lecturer: Sri Parameswaran Notes by: Annie Guo Dr. Hui Wu Assembly Programming (III) Lecturer: Sri Parameswaran Notes by: Annie Guo Dr. Hui Wu 1 Lecture overview Stack and stack operations Functions and function calls Calling conventions 2 Stack What is stack?

More information

Chapter 2. Instruction Set Architecture (ISA)

Chapter 2. Instruction Set Architecture (ISA) Chapter 2 Instruction Set Architecture (ISA) MIPS arithmetic Design Principle: simplicity favors regularity. Why? Of course this complicates some things... C code: A = B + C + D; E = F - A; MIPS code:

More information

Chapter 5 The LC-3. ACKNOWLEDGEMENT: This lecture uses slides prepared by Gregory T. Byrd, North Carolina State University 5-2

Chapter 5 The LC-3. ACKNOWLEDGEMENT: This lecture uses slides prepared by Gregory T. Byrd, North Carolina State University 5-2 Chapter 5 The LC-3 ACKNOWLEDGEMENT: This lecture uses slides prepared by Gregory T. Byrd, North Carolina State University 5-2 Instruction Set Architecture ISA = All of the programmer-visible components

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text 1. Interrupt An interrupt is the occurrence of a condition--an event --

More information

IAS0430 MICROPROCESSOR SYSTEMS

IAS0430 MICROPROCESSOR SYSTEMS IAS0430 MICROPROCESSOR SYSTEMS Fall 2018 Arduino and assembly language Martin Jaanus U02-308 martin.jaanus@ttu.ee 620 2110, 56 91 31 93 Learning environment : http://isc.ttu.ee Materials : http://isc.ttu.ee/martin

More information

JUMP, LOOP AND CALL INSTRUCTIONS

JUMP, LOOP AND CALL INSTRUCTIONS JUMP, LOOP AND CALL INSTRUCTIONS After you have understood the tutorial on Introduction to assembly language which includes simple instruction sets like input/output operations, now it s time to learn

More information

4 bits Microcontroller

4 bits Microcontroller EM MICROELECTRONIC - MARIN SA Question & answer 4 bits Microcontroller Questions and s Copyright 2001, EM Microelectronic-Marin SA 1 www.emmicroelectronic.com 1 Q: Is there an instruction to rotate left

More information

Introduction to Assembly language

Introduction to Assembly language Introduction to Assembly language 1 USING THE AVR MICROPROCESSOR Outline Introduction to Assembly Code The AVR Microprocessor Binary/Hex Numbers Breaking down an example microprocessor program AVR instructions

More information

EE 459/500 HDL Based Digital Design with Programmable Logic

EE 459/500 HDL Based Digital Design with Programmable Logic EE 459/500 HDL Based Digital Design with Programmable Logic Lecture 17 From special-purpose FSMD to general-purpose microcontroller: Xilinx s PicoBlaze 1 Overview From FSMD to Microcontroller PicoBlaze

More information

2. Arithmetic Instructions addition, subtraction, multiplication, divison (HCS12 Core Users Guide, Sections 4.3.4, and ).

2. Arithmetic Instructions addition, subtraction, multiplication, divison (HCS12 Core Users Guide, Sections 4.3.4, and ). AS12 Assembler Directives A Summary of 9S12 instructions Disassembly of 9S12 op codes Huang Section 1.8, Chapter 2 MC9S12 V1.5 Core User Guide Version 1.2, Section 12 o A labels is a name assigned the

More information

Subroutines & Traps. Announcements. New due date for assignment 2 5pm Wednesday, 5May

Subroutines & Traps. Announcements. New due date for assignment 2 5pm Wednesday, 5May Computer Science 210 s1c Computer Systems 1 2010 Semester 1 Lecture Notes Lecture 19, 26Apr10: Subroutines & Traps James Goodman! Announcements New due date for assignment 2 5pm Wednesday, 5May Test is

More information

Chapter Family Microcontrollers Instruction Set

Chapter Family Microcontrollers Instruction Set Chapter 4 8051 Family Microcontrollers Instruction Set Lesson 5 Program Flow Control and Interrupt Flow Control Instructions 2 Branch instructions- Jump to new value of Program Counter (PC) LJMP address16

More information

CENG3420 Lecture 03 Review

CENG3420 Lecture 03 Review CENG3420 Lecture 03 Review Bei Yu byu@cse.cuhk.edu.hk 2017 Spring 1 / 38 CISC vs. RISC Complex Instruction Set Computer (CISC) Lots of instructions of variable size, very memory optimal, typically less

More information

Chapter 9 TRAP Routines and Subroutines

Chapter 9 TRAP Routines and Subroutines Chapter 9 TRAP Routines and Subroutines System Calls Certain operations require specialized knowledge and protection: specific knowledge of I/O device registers and the sequence of operations needed to

More information

appendix a The LC-3 ISA A.1 Overview

appendix a The LC-3 ISA A.1 Overview A.1 Overview The Instruction Set Architecture (ISA) of the LC-3 is defined as follows: Memory address space 16 bits, corresponding to 2 16 locations, each containing one word (16 bits). Addresses are numbered

More information

CSE Lecture In Class Example Handout

CSE Lecture In Class Example Handout CSE 30321 Lecture 07-08 In Class Example Handout Part A: J-Type Example: If you look in your book at the syntax for j (an unconditional jump instruction), you see something like: e.g. j addr would seemingly

More information

System Calls. Chapter 9 TRAP Routines and Subroutines

System Calls. Chapter 9 TRAP Routines and Subroutines System Calls Chapter 9 TRAP Routines and Subroutines Original slides from Gregory Byrd, North Carolina State University Modified slides by Chris Wilcox, Colorado State University Certain operations require

More information

Assembly Programming (III)

Assembly Programming (III) Assembly Programming (III) Lecturer: Annie Guo S2, 2006 COMP9032 Week6 1 Lecture Overview Stack and stack operations Functions and function calls Calling conventions S2, 2006 COMP9032 Week6 2 What is stack?

More information

Midterm 2 Review Chapters 4-16 LC-3

Midterm 2 Review Chapters 4-16 LC-3 Midterm 2 Review Chapters 4-16 LC-3 ISA You will be allowed to use the one page summary. 8-2 LC-3 Overview: Instruction Set Opcodes 15 opcodes Operate instructions: ADD, AND, NOT Data movement instructions:

More information

Using the stack and the stack pointer

Using the stack and the stack pointer Using the stack and the stack pointer o The Stack and Stack Pointer o The stack is a memory area for temporary storage o The stack pointer points to the last byte in the stack o Some instructions which

More information

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont )

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont ) Chapter 2 Computer Abstractions and Technology Lesson 4: MIPS (cont ) Logical Operations Instructions for bitwise manipulation Operation C Java MIPS Shift left >>> srl Bitwise

More information

ECE251: Tuesday September 12

ECE251: Tuesday September 12 ECE251: Tuesday September 12 Finish Branch related instructions Stack Subroutines Note: Lab 3 is a 2 week lab, starting this week and covers the Stack and Subroutines. Labs: Lab #2 is due this week. Lab

More information

Announcements HW1 is due on this Friday (Sept 12th) Appendix A is very helpful to HW1. Check out system calls

Announcements HW1 is due on this Friday (Sept 12th) Appendix A is very helpful to HW1. Check out system calls Announcements HW1 is due on this Friday (Sept 12 th ) Appendix A is very helpful to HW1. Check out system calls on Page A-48. Ask TA (Liquan chen: liquan@ece.rutgers.edu) about homework related questions.

More information

1 The ARC processor (data path and control)

1 The ARC processor (data path and control) 1 The ARC processor (data path and control) 1 The ARC processor (data path and control)... 1 1.1 Introduction... 2 1.2 Main part of data path... 2 1.3 Data path... 2 1.4 Controller... 3 1.4.1 Micro instruction

More information

APPENDIX A FOR SKEE3732 LABORATORY 1 SHEET

APPENDIX A FOR SKEE3732 LABORATORY 1 SHEET APPENDIX A FOR SKEE3732 LABORATORY 1 SHEET Other documents that are referred within this document are located at the link https://www.dropbox.com/sh/s16jri4eol3agl5/aaazn_w3p7fodjs-wi-xcenqa?dl=0 The ATmega32/ATmega2A

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications Lecture Overview EE 3170 Microcontroller Applications Lecture 7 : Instruction Subset & Machine Language: Conditions & Branches in Motorola 68HC11 - Miller 2.2 & 2.3 & 2.4 Based on slides for ECE3170 by

More information

Chapter 9 TRAP Routines and Subroutines

Chapter 9 TRAP Routines and Subroutines Chapter 9 TRAP Routines and Subroutines ACKNOWLEDGEMENT: This lecture uses slides prepared by Gregory T. Byrd, North Carolina State University 5-2 System Calls Certain operations require specialized knowledge

More information

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri CS356: Discussion #6 Assembly Procedures and Arrays Marco Paolieri (paolieri@usc.edu) Procedures Functions are a key abstraction in software They break down a problem into subproblems. Reusable functionality:

More information

MIPS Functions and Instruction Formats

MIPS Functions and Instruction Formats MIPS Functions and Instruction Formats 1 The Contract: The MIPS Calling Convention You write functions, your compiler writes functions, other compilers write functions And all your functions call other

More information

AT90S Bit Microcontroller with 1K bytes Downloadable Flash AT90S1200. Features. Description. Pin Configuration

AT90S Bit Microcontroller with 1K bytes Downloadable Flash AT90S1200. Features. Description. Pin Configuration Features Utilizes the AVR Enhanced RISC Architecture 89 Powerful Instructions - Most Single Clock Cycle Execution 1K bytes of In-System Reprogrammable Downloadable Flash - SPI Serial Interface for Program

More information

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site)

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) Function Calls COS 217 Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) 1 Goals of Today s Lecture Finishing introduction to assembly language o EFLAGS register

More information

COMP2121: Microprocessors and Interfacing. Instruction Set Architecture (ISA)

COMP2121: Microprocessors and Interfacing. Instruction Set Architecture (ISA) COMP2121: Microprocessors and Interfacing Instruction Set Architecture (ISA) http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2017 1 Contents Memory models Registers Data types Instructions

More information

COMP2121: Microprocessors and Interfacing

COMP2121: Microprocessors and Interfacing Lecture 19: Interrupts II http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 1, 2006 Overview AVR Interrupts Interrupt Vector Table System Reset Watchdog Timer Timer/Counter0 Interrupt Service

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Input/Output Devices Input devices Input switches Basics of switches Keypads Output devices LCD Lecturer : Dr. Annie Guo S2, 2008 COMP9032 Week8 1 S2, 2008

More information

Using SRAM in AVR assembler language

Using SRAM in AVR assembler language Using SRAM in AVR assembler language All AVR-type MCUs have static RAM (SRAM) on board. Only very simple assembler programs can avoid using this memory space by putting all info into registers. If you

More information

Introduction to Computer Engineering. CS/ECE 252, Fall 2016 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Fall 2016 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Fall 2016 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Chapter 7 & 9.2 Assembly Language and Subroutines Human-Readable

More information

COSC121: Computer Systems: Review

COSC121: Computer Systems: Review COSC121: Computer Systems: Review Jeremy Bolton, PhD Assistant Teaching Professor Constructed using materials: - Patt and Patel Introduction to Computing Systems (2nd) - Patterson and Hennessy Computer

More information

Introduction to Computer Engineering. CS/ECE 252, Fall 2016 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Fall 2016 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Fall 2016 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Chapter 5 The LC-3 Instruction Set Architecture ISA = All of the

More information

COSC 243. Instruction Sets And Addressing Modes. Lecture 7&8 Instruction Sets and Addressing Modes. COSC 243 (Computer Architecture)

COSC 243. Instruction Sets And Addressing Modes. Lecture 7&8 Instruction Sets and Addressing Modes. COSC 243 (Computer Architecture) COSC 243 Instruction Sets And Addressing Modes 1 Overview This Lecture Source Chapters 12 & 13 (10 th editition) Textbook uses x86 and ARM (we use 6502) Next 2 Lectures Assembly language programming 2

More information

Introduction to Computer Engineering. Chapter 5 The LC-3. Instruction Set Architecture

Introduction to Computer Engineering. Chapter 5 The LC-3. Instruction Set Architecture Introduction to Computer Engineering CS/ECE 252, Spring 200 Prof. David A. Wood Computer Sciences Department University of Wisconsin Madison Chapter 5 The LC-3 Adapted from Prof. Mark Hill s slides Instruction

More information

Computing Layers. Chapter 5 The LC-3

Computing Layers. Chapter 5 The LC-3 Computing Layers Problems Chapter 5 The LC-3 Original slides from Gregory Byrd, North Carolina State University Modified slides by Chris Wilcox, Colorado State University Algorithms Language Instruction

More information

CSE Lecture In Class Example Handout

CSE Lecture In Class Example Handout CSE 30321 Lecture 07-09 In Class Example Handout Part A: A Simple, MIPS-based Procedure: Swap Procedure Example: Let s write the MIPS code for the following statement (and function call): if (A[i] > A

More information

Chapter 2A Instructions: Language of the Computer

Chapter 2A Instructions: Language of the Computer Chapter 2A Instructions: Language of the Computer Copyright 2009 Elsevier, Inc. All rights reserved. Instruction Set The repertoire of instructions of a computer Different computers have different instruction

More information