ME 475 Modal Analysis and Optimization of a Tapered Beam

Size: px
Start display at page:

Download "ME 475 Modal Analysis and Optimization of a Tapered Beam"

Transcription

1 ME 475 Modal Analysis and Optimization of a Tapered Beam Objectives: To optimize the shape of a tapered beam to minimize the mass, while holding the first three natural frequencies above those of the baseline design. Analysis Problem Statement: Find the natural frequencies and mode shapes of vibration for a cantilevered tapered beam. The geometrical, material, and loading specifications are given in Figure 1. The height of the beam is 2 2h inches, where h is described by the equation: h = 4 0.6x x. Figure 1. Geometry, material, and loading specifications for a tapered beam. Optimization Problem Statement: minimize: mass of the tapered beam subject to: first natural frequency 2127 Hz second natural frequency Hz third natural frequency Hz 1

2 by varying: 3 height1 5 2 height2 4 2 height height height height height7 2 Baseline Design: height1 = 4 height2 = 3.43 height3 = 2.92 height4 = 2.08 height5 = 1.48 height6 = 1.12 height7 = 1 Mass = lbm. FirstNaturalFreq = Hz SecondNaturalFreq = Hz ThirdNaturalFreq = Hz Mathematical Idealization: The analysis will use the plane stress assumption, because the tapered beam is very thin in comparison to its other dimensions. Preliminary Procedure: Past optimizations modified parameters that existed directly in the Abaqus input file. Since this optimization involves changing geometry (shape optimization) of the part, it must be remeshed, and a new input file will be created for every HEEDS evaluation. The pre-processing side of this optimization will be similar to that for the Torque Arm optimization problem. A python script will 2

3 be recorded that will be used to generate new designs. In this case, the post-processing will use HEEDS Scripting. This time around, it is very important that the script always begin with a CAE database that reflects the baseline design. This is important because splines can become very irregular if modified more than once. Start with the finished Abaqus/CAE database from the last lab. The following steps will be recorded by Abaqus/CAE to a python script, so if mistakes are made, they will be recorded as well. It may be necessary to perform this series of steps a second or third time to get a good python script. This script is created so HEEDS can recreate the steps the analyst would typically perform by hand to generate a new design, except in an automated fashion. 1. Create a working directory in C:\Temp called Modal_Optimization. 2. Copy your 2D Modal Analysis CAE database, created in the last lab, into this folder. 3. Start with Abaqus/CAE closed. 4. Start Run type cmd, press enter. 5. Type C:, press enter. 6. Type cd C:\Temp\Modal_Optimization. 7. Type abaqus cae. 8. Open the saved 2D Model Analysis CAE database. 9. Edit the sketch that defines the beam geometry. 10. Modify the values of the vertical dimensions that define the height of the 7 points that the spline is created through. Change them to values that are different from the original values, but within the variable ranges specified in the Optimization Problem Statement. 11. Exit the sketcher, and be sure the part regenerates. The beam geometry should now reflect the changes made to the sketch. If it does not, you will need to regenerate the part manually. 12. Move to the assembly module. This will allow the assembly instance to regenerate. 13. Move to the mesh module 14. Remesh the part. Mesh seed, controls, and element type should not need to be specified again. 3

4 15. Move to the job module. 16. Write the input file. 17. Use the Save As command to save the CAE database as a new database. Do not use the Save command! Now look in the working directory for a file called abaqus.rpy. Rename it to change_beam.py. Open this file in a text editor. Change the path to the CAE database (on the line that starts with openmdb ) so only the name of the CAE database remains inside the single quotes. Do the same for the line at the end of the file (on the line that starts with mdb.saveas ). Save this python script. It is not ready to be used with HEEDS. However, it should be tested first. Modify the values of the variable values. Keep them within the ranges stated in the Optimization Problem Statement. Save the python script. Delete the *.inp file in the folder. Finally, from a command prompt that is already set to the working directory, execute the following command: abaqus cae nogui=change_beam.py This will start Abaqus/CAE and immediately execute the python script. After it finishes, check that the input file has been rewritten. If the input file was rewritten properly, then the python script works are intended. If not, you can attempt to debug the python script, or re-record it. Open the *.inp file in a text editor. Delete the contents, and save it. This is an error catching measure. HEEDS Procedure: First, be sure the python script and the CAE database is in the working directory. Also, be sure that there is a *.dat file in the output database. 4

5 1. Open the HEEDS Modeler. 2. Create a new project in the working directory. 3. In the Processes tab, change the name of the analysis to CAE, the execution command to abaqus, and the command line options to cae nogui=change_beam.py, all without the quotes. It should look similar to Figure 2 when finished. Figure 2. First HEEDS analysis manager options. 4. Add, as input files, the CAE database, the python script, and the now empty *.inp file. 5. There are no output files for this HEEDS analysis. 6. Create a second analysis, and name it FEA. Change the execution command to abaqus, and the command line options to interactive job=<jobname> where <jobname> is the name of the input deck that is created by the python script. It should look similar to Figure 3 when finished. Figure 3. Second HEEDS analysis manager options. 7. There are no input files for this HEEDS analysis. Add the *.dat file as an output file. 8. Move on to the variables tab. 9. Create seven design variables, and assign ranges as listed in the Optimization Problem Statement. 5

6 10. Create four responses, those listed in the Optimization Problem Statement. All will have a file as the source. 11. Move on to the Tagging tab. 12. Tag the design variables in the python script, as has been done in previous labs. 13. Next, the responses will be tagged using the Script method. Select the Mass response, then the *.dat file as the output file, and change the tagging mode to Script. 14. Add the following script: OPEN_FILE(Tapered_Beam_2D_Modal.dat) GOTO_STRING(TOTAL MASS,1) MOVE_DOWN(2) GET_VALUE_FREE(1) CLOSE_FILE a. Be sure to modify the file listed in the OPEN_FILE command to match the name of your output file. 15. Do the same for the following responses and scripts: a. FirstNaturalFreq: OPEN_FILE(Tapered_Beam_2D_Modal.dat) GOTO_STRING(EIGENVALUE,2) MOVE_DOWN(4) GET_VALUE_FREE(4) CLOSE_FILE b. SecondNaturalFreq: OPEN_FILE(Tapered_Beam_2D_Modal.dat) GOTO_STRING(EIGENVALUE,2) MOVE_DOWN(5) GET_VALUE_FREE(4) CLOSE_FILE c. ThirdNaturalFreq: OPEN_FILE(Tapered_Beam_2D_Modal.dat) GOTO_STRING(EIGENVALUE,2) MOVE_DOWN(6) 6

7 GET_VALUE_FREE(4) CLOSE_FILE 16. Be sure to extract the values for all these responses. They should match the values in the Baseline Design section. 17. Tagging is now complete. Move on to the Assembly tab. 18. Assign Process_1 to the optimization agent OPT_Agent_ Next, setup the responses. It should look like Figure 4 when finished. Figure 4. The agent responses after assigning the optimization options. 20. Click on the Variables button. Verify that all seven variables appear. If some or all are missing, it means they were not tagged properly. The default resolution of 101 is acceptable for this problem. 21. Click on the Methods button. Choose SHERPA, with 150 evaluations. 22. Next, move to the Run tab. Save the project. The optimization is now ready to be run. The length of one evaluation for this problem is usually about 10 to 40 seconds, depending on the computer used and location of the working directory. Thus, it could take a couple of hours to run the full optimization. Running on the local drive, such as in C:\Temp, will minimize runtime for each evaluation. Model Validation: The model was validated in last week s lab, so it is not necessary to validate it again. Report Requirements: A full report is required for this lab (see ME 475 Lab Report Format Guidelines). 1. Present plots of the first mode of vibration for the best and baseline design. 7

8 2. Present a table comparing the variable and response values for the best and baseline designs. Report the percent difference in mass between the best and baseline designs. 3. Present plots of trajectories of the responses throughout the optimization. Do the same for the design variables. 4. Comment on any convergence that exists. Note any constraints that are active and any design variables at extreme values. 8

ME Optimization of a Truss

ME Optimization of a Truss ME 475 - Optimization of a Truss Analysis Problem Statement: The following problem will be analyzed using Abaqus and optimized using HEEDS. 4 5 8 2 11 3 10 6 9 1 7 12 6 m 300 kn 300 kn 22 m 35 m Figure

More information

ME Optimization of a Frame

ME Optimization of a Frame ME 475 - Optimization of a Frame Analysis Problem Statement: The following problem will be analyzed using Abaqus. 4 7 7 5,000 N 5,000 N 0,000 N 6 6 4 3 5 5 4 4 3 3 Figure. Full frame geometry and loading

More information

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Problem Description: FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Instructor: Professor James Sherwood Revised: Dimitri Soteropoulos Programs Utilized: Abaqus/CAE 6.11-2 This tutorial explains how to build

More information

ME 475 FEA of a Composite Panel

ME 475 FEA of a Composite Panel ME 475 FEA of a Composite Panel Objectives: To determine the deflection and stress state of a composite panel subjected to asymmetric loading. Introduction: Composite laminates are composed of thin layers

More information

CE366/ME380 Finite Elements in Applied Mechanics I Fall 2007

CE366/ME380 Finite Elements in Applied Mechanics I Fall 2007 CE366/ME380 Finite Elements in Applied Mechanics I Fall 2007 FE Project 1: 2D Plane Stress Analysis of acantilever Beam (Due date =TBD) Figure 1 shows a cantilever beam that is subjected to a concentrated

More information

Finite Element Analysis Using Creo Simulate 4.0

Finite Element Analysis Using Creo Simulate 4.0 Introduction to Finite Element Analysis Using Creo Simulate 4.0 Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE Getting Started with Abaqus: Interactive Edition Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you

More information

Introduction to Abaqus. About this Course

Introduction to Abaqus. About this Course Introduction to Abaqus R 6.12 About this Course Course objectives Upon completion of this course you will be able to: Use Abaqus/CAE to create complete finite element models. Use Abaqus/CAE to submit and

More information

Creating and Analyzing a Simple Model in Abaqus/CAE

Creating and Analyzing a Simple Model in Abaqus/CAE Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you through the Abaqus/CAE modeling process by visiting

More information

3. Preprocessing of ABAQUS/CAE

3. Preprocessing of ABAQUS/CAE 3.1 Create new model database 3. Preprocessing of ABAQUS/CAE A finite element analysis in ABAQUS/CAE starts from create new model database in the toolbar. Then save it with a name user defined. To build

More information

This tutorial will take you all the steps required to import files into ABAQUS from SolidWorks

This tutorial will take you all the steps required to import files into ABAQUS from SolidWorks ENGN 1750: Advanced Mechanics of Solids ABAQUS CAD INTERFACE TUTORIAL School of Engineering Brown University This tutorial will take you all the steps required to import files into ABAQUS from SolidWorks

More information

Introduction to Abaqus/CAE. About this Course. Course objectives. Target audience. Prerequisites

Introduction to Abaqus/CAE. About this Course. Course objectives. Target audience. Prerequisites Introduction to Abaqus/CAE R 6.12 About this Course Course objectives Upon completion of this course you will be able to: Use Abaqus/CAE to create complete finite element models. Use Abaqus/CAE to submit

More information

This tutorial will take you all the steps required to set up and run a basic simulation using ABAQUS/CAE and visualize the results;

This tutorial will take you all the steps required to set up and run a basic simulation using ABAQUS/CAE and visualize the results; ENGN 1750: Advanced Mechanics of Solids ABAQUS TUTORIAL School of Engineering Brown University This tutorial will take you all the steps required to set up and run a basic simulation using ABAQUS/CAE and

More information

ECE421: Electronics for Instrumentation

ECE421: Electronics for Instrumentation ECE421: Electronics for Instrumentation Lecture #8: Introduction to FEA & ANSYS Mostafa Soliman, Ph.D. March 23 rd 2015 Mostafa Soliman, Ph.D. 1 Outline Introduction to Finite Element Analysis Introduction

More information

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Course Curriculum (Duration: 120 Hrs.) Section I: ANSYS Mechanical APDL Chapter 1: Before you start using ANSYS a. Introduction to

More information

Pro MECHANICA STRUCTURE WILDFIRE 4. ELEMENTS AND APPLICATIONS Part I. Yves Gagnon, M.A.Sc. Finite Element Analyst & Structural Consultant SDC

Pro MECHANICA STRUCTURE WILDFIRE 4. ELEMENTS AND APPLICATIONS Part I. Yves Gagnon, M.A.Sc. Finite Element Analyst & Structural Consultant SDC Pro MECHANICA STRUCTURE WILDFIRE 4 ELEMENTS AND APPLICATIONS Part I Yves Gagnon, M.A.Sc. Finite Element Analyst & Structural Consultant SDC PUBLICATIONS Schroff Development Corporation www.schroff.com

More information

Abaqus CAE Tutorial 1: 2D Plane Truss

Abaqus CAE Tutorial 1: 2D Plane Truss ENGI 7706/7934: Finite Element Analysis Abaqus CAE Tutorial 1: 2D Plane Truss Lab TA: Xiaotong Huo EN 3029B xh0381@mun.ca Download link for Abaqus student edition: http://academy.3ds.com/software/simulia/abaqus-student-edition/

More information

Abaqus/CAE (ver. 6.12) Vibrations Tutorial

Abaqus/CAE (ver. 6.12) Vibrations Tutorial Abaqus/CAE (ver. 6.12) Vibrations Tutorial Problem Description The two dimensional bridge structure, which consists of steel T sections, is simply supported at its lower corners. Determine the first 10

More information

Installation Guide. Beginners guide to structural analysis

Installation Guide. Beginners guide to structural analysis Installation Guide To install Abaqus, students at the School of Civil Engineering, Sohngaardsholmsvej 57, should log on to \\studserver, whereas the staff at the Department of Civil Engineering should

More information

Manual for Abaqus CAE Topology Optimization

Manual for Abaqus CAE Topology Optimization Abaqus CAE access: Manual for Abaqus CAE Topology Optimization 1. Open Exceed ondemand Client -> login and pass 2FA 2. Select Desktop_Mode_Full_Screen (or other user preferred resolution) for XConfig and

More information

Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10

Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10 Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10 This document contains an Abaqus tutorial for performing a buckling analysis using the finite element program

More information

Abaqus/CAE (ver. 6.9) Vibrations Tutorial

Abaqus/CAE (ver. 6.9) Vibrations Tutorial Abaqus/CAE (ver. 6.9) Vibrations Tutorial Problem Description The two dimensional bridge structure, which consists of steel T sections, is simply supported at its lower corners. Determine the first 10

More information

Modal Analysis of a Steel Frame

Modal Analysis of a Steel Frame Modal Analysis of a Steel Frame Name: Sushanth Kumareshwar Panchaxrimath Department: Mechanical Engineering Course: Powertrain NVH of Electrified Vehicles Date: 11/26/2016 SUMMARY A dynamic modal analysis

More information

Abaqus 6.9SE Handout

Abaqus 6.9SE Handout MANE 4240/ CIVL 4240: Introduction to Finite Elements Abaqus 6.9SE Handout Professor Suvranu De Department of Mechanical, Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute Table of Contents

More information

Manual for Computational Exercises

Manual for Computational Exercises Manual for the computational exercise in TMM4160 Fracture Mechanics Page 1 of 32 TMM4160 Fracture Mechanics Manual for Computational Exercises Version 3.0 Zhiliang Zhang Dept. of Structural Engineering

More information

16 SW Simulation design resources

16 SW Simulation design resources 16 SW Simulation design resources 16.1 Introduction This is simply a restatement of the SW Simulation online design scenarios tutorial with a little more visual detail supplied on the various menu picks

More information

Abaqus/CAE Axisymmetric Tutorial (Version 2016)

Abaqus/CAE Axisymmetric Tutorial (Version 2016) Abaqus/CAE Axisymmetric Tutorial (Version 2016) Problem Description A round bar with tapered diameter has a total load of 1000 N applied to its top face. The bottom of the bar is completely fixed. Determine

More information

Module 1.2: Moment of a 1D Cantilever Beam

Module 1.2: Moment of a 1D Cantilever Beam Module 1.: Moment of a 1D Cantilever Beam Table of Contents Page Number Problem Description Theory Geometry Preprocessor 6 Element Type 6 Real Constants and Material Properties 7 Meshing 9 Loads 10 Solution

More information

Module 1.3W Distributed Loading of a 1D Cantilever Beam

Module 1.3W Distributed Loading of a 1D Cantilever Beam Module 1.3W Distributed Loading of a 1D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Workbench Analysis System 4 Engineering Data 5 Geometry 6 Model 11 Setup 13 Solution

More information

Workshop 15. Single Pass Rolling of a Thick Plate

Workshop 15. Single Pass Rolling of a Thick Plate Introduction Workshop 15 Single Pass Rolling of a Thick Plate Rolling is a basic manufacturing technique used to transform preformed shapes into a form suitable for further processing. The rolling process

More information

Visit the following websites to learn more about this book:

Visit the following websites to learn more about this book: Visit the following websites to learn more about this book: 6 Introduction to Finite Element Simulation Historically, finite element modeling tools were only capable of solving the simplest engineering

More information

Lab#5 Combined analysis types in ANSYS By C. Daley

Lab#5 Combined analysis types in ANSYS By C. Daley Engineering 5003 - Ship Structures I Lab#5 Combined analysis types in ANSYS By C. Daley Overview In this lab we will model a simple pinned column using shell elements. Once again, we will use SpaceClaim

More information

Analysis Steps 1. Start Abaqus and choose to create a new model database

Analysis Steps 1. Start Abaqus and choose to create a new model database Source: Online tutorials for ABAQUS Problem Description The two dimensional bridge structure, which consists of steel T sections (b=0.25, h=0.25, I=0.125, t f =t w =0.05), is simply supported at its lower

More information

Abaqus CAE Tutorial 6: Contact Problem

Abaqus CAE Tutorial 6: Contact Problem ENGI 7706/7934: Finite Element Analysis Abaqus CAE Tutorial 6: Contact Problem Problem Description In this problem, a segment of an electrical contact switch (steel) is modeled by displacing the upper

More information

ABAQUS/CAE Workshops

ABAQUS/CAE Workshops ABAQUS/CAE Workshops University of Birmingham ABAQUS Training 27 th / 28 th October 2009 Workshop 1a: Create 3D Part Type: abaqus cae at the command prompt or select abaqus V6.9-1 from the start menu.

More information

PTC Newsletter January 14th, 2002

PTC  Newsletter January 14th, 2002 PTC Email Newsletter January 14th, 2002 PTC Product Focus: Pro/MECHANICA (Structure) Tip of the Week: Creating and using Rigid Connections Upcoming Events and Training Class Schedules PTC Product Focus:

More information

Overview of ABAQUS II. Working with Geometry in ABAQUS III. Working with models Created Outside ABAQUS IV. Material and Section Properties

Overview of ABAQUS II. Working with Geometry in ABAQUS III. Working with models Created Outside ABAQUS IV. Material and Section Properties ABAQUS TRAINING I. Overview of ABAQUS II. Working with Geometry in ABAQUS III. Working with models Created Outside ABAQUS IV. Material and Section Properties V. Assemblies in ABAQUS VI. Steps, Output,

More information

Abaqus/CAE Heat Transfer Tutorial

Abaqus/CAE Heat Transfer Tutorial Abaqus/CAE Heat Transfer Tutorial Problem Description The thin L shaped steel part shown above (lengths in meters) is exposed to a temperature of 20 o C on the two surfaces of the inner corner, and 120

More information

ME 442. Marc/Mentat-2011 Tutorial-1

ME 442. Marc/Mentat-2011 Tutorial-1 ME 442 Overview Marc/Mentat-2011 Tutorial-1 The purpose of this tutorial is to introduce the new user to the MSC/MARC/MENTAT finite element program. It should take about one hour to complete. The MARC/MENTAT

More information

Introduction To Finite Element Analysis

Introduction To Finite Element Analysis Creating a Part In this part of the tutorial we will introduce you to some basic modelling concepts. If you are already familiar with modelling in Pro Engineer you will find this section very easy. Before

More information

Abaqus/CAE (ver. 6.11) Nonlinear Buckling Tutorial

Abaqus/CAE (ver. 6.11) Nonlinear Buckling Tutorial Abaqus/CAE (ver. 6.11) Nonlinear Buckling Tutorial Problem Description This is the NAFEMS 1 proposed benchmark (Lee s frame buckling) problem. The applied load is based on the normalized (EI/L 2 ) value

More information

Abaqus/CAE (ver. 6.10) Stringer Tutorial

Abaqus/CAE (ver. 6.10) Stringer Tutorial Abaqus/CAE (ver. 6.10) Stringer Tutorial Problem Description A table made of steel tubing with a solid steel top and shelf is loaded with an oblique impulse load. Determine the transient response of the

More information

SIMULATION CAPABILITIES IN CREO

SIMULATION CAPABILITIES IN CREO SIMULATION CAPABILITIES IN CREO Enhance Your Product Design with Simulation & Using digital prototypes to understand how your designs perform in real-world conditions is vital to your product development

More information

Creo Simulate 3.0 Tutorial

Creo Simulate 3.0 Tutorial Creo Simulate 3.0 Tutorial Structure and Thermal Roger Toogood, Ph.D., P. Eng. SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

Creo for Analyst. Overview

Creo for Analyst. Overview Creo for Analyst Overview In this course, you will learn how to utilize the core functionality enhancements in Creo Parametric 2.0. First, you will become familiar with using and customizing the new ribbon

More information

LMS Virtual.Lab The Unified Environment for Functional Performance Engineering

LMS Virtual.Lab The Unified Environment for Functional Performance Engineering LMS Virtual.Lab The Unified Environment for Functional Performance Engineering LMS Imagine.Lab LMS OPTIMUS LMS Engineering and Deployment Services Technology Transfer Process Transformation & Best Practices

More information

Ansys Mechanical APDL

Ansys Mechanical APDL Ansys Mechanical APDL Day 1: FEA and ANSYS 9.00 12.00 About ANSYS, What is FEA?, Instructor Example Getting Started 12.00 1.00 Interactive Vs. Batch Mode, Starting ANSYS, Product Launcher, ANSYS Workbench,

More information

ME Week 12 Piston Mechanical Event Simulation

ME Week 12 Piston Mechanical Event Simulation Introduction to Mechanical Event Simulation The purpose of this introduction to Mechanical Event Simulation (MES) project is to explorer the dynamic simulation environment of Autodesk Simulation. This

More information

Automation of Static and Dynamic FEA Analysis of Bottomhole Assemblies

Automation of Static and Dynamic FEA Analysis of Bottomhole Assemblies Automation of Static and Dynamic FEA Analysis of Bottomhole Assemblies Nader E. Abedrabbo, Lev Ring & Raju Gandikota 1 Weatherford International 11909 Spencer Road, Houston, TX nader.abedrabbo@weatherford.com

More information

MODAL ANALYSIS OF A BEAM

MODAL ANALYSIS OF A BEAM MODAL ANALYSIS OF A BEAM Application Note Objectives: Perform modal analysis (Linear Eigenvalue Problem) of a cantilever beam in Akselos Modeler. Find the first three natural frequencies and mode shapes

More information

Example Cantilever beam

Example Cantilever beam Course in ANSYS Example0300 Example Cantilever beam Objective: Compute the maximum deflection and locate point of maximum deflection Tasks: How should this be modelled? Compare results with results obtained

More information

Abaqus Technology Brief. Two-Pass Rolling Simulation

Abaqus Technology Brief. Two-Pass Rolling Simulation Abaqus Technology Brief Two-Pass Rolling Simulation TB-03-TPRS-1 Revised: April 2007. Summary Hot rolling is a basic metal forming technique that is used to transform preformed shapes into final products

More information

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Problem Specification Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Consider the beam in the figure below. It is clamped on the left side and has a point force of 8kN acting

More information

Release Notes Version 5

Release Notes Version 5 Release Notes Version 5 Version 5.1 (2017-01-31) Solder Joint Fatigue Calculix Support for Column Grid Array (CGA) modeling for Solder Joint Fatigue FEA analysis and the Solder Fatigue tool has been added

More information

Module 3: Buckling of 1D Simply Supported Beam

Module 3: Buckling of 1D Simply Supported Beam Module : Buckling of 1D Simply Supported Beam Table of Contents Page Number Problem Description Theory Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing 9 Solution

More information

Finite Element Analysis Using Pro/Engineer

Finite Element Analysis Using Pro/Engineer Appendix A Finite Element Analysis Using Pro/Engineer A.1 INTRODUCTION Pro/ENGINEER is a three-dimensional product design tool that promotes practices in design while ensuring compliance with industry

More information

Lesson: Lightweighting of Robot Gripper Arm

Lesson: Lightweighting of Robot Gripper Arm Lesson: Lightweighting of Robot Gripper Arm This functionality is only available in Fusion 360 Ultimate. In this exercise we'll perform a Shape Optimization study to reduce the weight of a robot gripper

More information

Non-Parametric Optimization in Abaqus

Non-Parametric Optimization in Abaqus Non-Parametric Optimization in Abaqus 2016 About this Course Course objectives Upon completion of this course you will be able to: Apply topology, shape, sizing and bead optimization techniques to your

More information

SIMULATION CAPABILITIES IN CREO. Enhance Your Product Design with Simulation & Analysis

SIMULATION CAPABILITIES IN CREO. Enhance Your Product Design with Simulation & Analysis SIMULATION CAPABILITIES IN CREO Enhance Your Product Design with Simulation & Using digital prototypes to understand how your designs perform in real-world conditions is vital to your product development

More information

Introduction to Engineering Analysis

Introduction to Engineering Analysis Chapter 1 Introduction to Engineering Analysis This chapter introduces you to the Stress Analysis and Dynamic Simulation environments. You learn how digital prototyping can be used to simulate your designs

More information

New Capabilities in Project Hydra for Autodesk Simulation Mechanical

New Capabilities in Project Hydra for Autodesk Simulation Mechanical New Capabilities in Project Hydra for Autodesk Simulation Mechanical Sualp Ozel, PE. Autodesk SM2447-L In this hands-on lab, we will go through several exercises and cover several new capabilities included

More information

ANSYS Workbench Guide

ANSYS Workbench Guide ANSYS Workbench Guide Introduction This document serves as a step-by-step guide for conducting a Finite Element Analysis (FEA) using ANSYS Workbench. It will cover the use of the simulation package through

More information

MANE 4240/ CIVL 4240: Introduction to Finite Elements. Abaqus v6.7 Handout

MANE 4240/ CIVL 4240: Introduction to Finite Elements. Abaqus v6.7 Handout MANE 4240/ CIVL 4240: Introduction to Finite Elements Abaqus v6.7 Handout Professor Suvranu De Department of Mechanical, Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute Table of Contents

More information

CHAPTER 8 FINITE ELEMENT ANALYSIS

CHAPTER 8 FINITE ELEMENT ANALYSIS If you have any questions about this tutorial, feel free to contact Wenjin Tao (w.tao@mst.edu). CHAPTER 8 FINITE ELEMENT ANALYSIS Finite Element Analysis (FEA) is a practical application of the Finite

More information

Chapter 2. Structural Tutorial

Chapter 2. Structural Tutorial Chapter 2. Structural Tutorial Tutorials> Chapter 2. Structural Tutorial Static Analysis of a Corner Bracket Problem Specification Problem Description Build Geometry Define Materials Generate Mesh Apply

More information

file://c:\documents and Settings\sala\Configuración local\temp\~hha54f.htm

file://c:\documents and Settings\sala\Configuración local\temp\~hha54f.htm Página 1 de 26 Tutorials Chapter 2. Structural Tutorial 2.1. Static Analysis of a Corner Bracket 2.1.1. Problem Specification Applicable ANSYS Products: Level of Difficulty: Interactive Time Required:

More information

CAD - How Computer Can Aid Design?

CAD - How Computer Can Aid Design? CAD - How Computer Can Aid Design? Automating Drawing Generation Creating an Accurate 3D Model to Better Represent the Design and Allowing Easy Design Improvements Evaluating How Good is the Design and

More information

Development of a Durable Automotive Bushing with fe-safe/rubber

Development of a Durable Automotive Bushing with fe-safe/rubber Development of a Durable Automotive Bushing with fe-safe/rubber Jing Bi, Gergana Dimitrova, Sandy Eyl Dassault Systemes Simulia Corp 1301 Atwood Ave, Suite 101W, Johnston RI 02919 Abstract Fatigue life

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

Geometric Modeling. Introduction

Geometric Modeling. Introduction Geometric Modeling Introduction Geometric modeling is as important to CAD as governing equilibrium equations to classical engineering fields as mechanics and thermal fluids. intelligent decision on the

More information

STEPS BY STEPS FOR THREE-DIMENSIONAL ANALYSIS USING ABAQUS STEADY-STATE HEAT TRANSFER ANALYSIS

STEPS BY STEPS FOR THREE-DIMENSIONAL ANALYSIS USING ABAQUS STEADY-STATE HEAT TRANSFER ANALYSIS UNIVERSITI MALAYSIA PERLIS FACULTY OF ENGINEERING TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING TECHNOLOGY PDT348 FINITE ELEMENT ANALYSIS Semester II 2017/2018 STEPS BY STEPS FOR THREE-DIMENSIONAL ANALYSIS

More information

equivalent stress to the yield stess.

equivalent stress to the yield stess. Example 10.2-1 [Ansys Workbench/Thermal Stress and User Defined Result] A 50m long deck sitting on superstructures that sit on top of substructures is modeled by a box shape of size 20 x 5 x 50 m 3. It

More information

midas NFX 2017R1 Release Note

midas NFX 2017R1 Release Note Total Solution for True Analysis-driven Design midas NFX 2017R1 Release Note 1 midas NFX R E L E A S E N O T E 2 0 1 7 R 1 Major Improvements Midas NFX is an integrated finite element analysis program

More information

Bottom Truss ANALYSIS

Bottom Truss ANALYSIS Chapter 3 Beam Bottom Truss ANALYSIS A. Enable SolidWorks Simulation. Step 1. If necessary, open your Beam1 part file. Step 2. If necessary, turn on SolidWorks Simulation. To turn on Solid- Works Simulation,

More information

Modelling Flat Spring Performance Using FEA

Modelling Flat Spring Performance Using FEA Modelling Flat Spring Performance Using FEA Blessing O Fatola, Patrick Keogh and Ben Hicks Department of Mechanical Engineering, University of Corresponding author bf223@bath.ac.uk Abstract. This paper

More information

Laboratory Assignment: EM Numerical Modeling of a Stripline

Laboratory Assignment: EM Numerical Modeling of a Stripline Laboratory Assignment: EM Numerical Modeling of a Stripline Names: Objective This laboratory experiment provides a hands-on tutorial for drafting up an electromagnetic structure (a stripline transmission

More information

RHEOMOLD ENGINEERING SOLUTIONS LLP

RHEOMOLD ENGINEERING SOLUTIONS LLP RHEOMOLD ENGINEERING SOLUTIONS LLP 1 Content Rheomold Services & Capabilities Rheomold Capacity Design Projects executed CAE Projects executed Manufacturing Simulations (Moldflow, Casting & Forming) Customers

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction GTU Paper Analysis (New Syllabus) Sr. No. Questions 26/10/16 11/05/16 09/05/16 08/12/15 Theory 1. What is graphic standard? Explain different CAD standards. 2. Write Bresenham s

More information

AutoMesher for LS-DYNA Vehicle Modelling

AutoMesher for LS-DYNA Vehicle Modelling 13 th International LS-DYNA Users Conference Session: Computing Technology AutoMesher for LS-DYNA Vehicle Modelling Ryan Alberson 1, David Stevens 2, James D. Walker 3, Tom Moore 3 Protection Engineering

More information

ABAQUS/CAE Tutorial: Large Deformation Analysis of Beam-Plate in Bending

ABAQUS/CAE Tutorial: Large Deformation Analysis of Beam-Plate in Bending H. Kim 2004 1 ABAQUS/CAE Tutorial: Large Deformation Analysis of Beam-Plate in Bending Hyonny Kim September 28, 2004 In this tutorial, you ll learn how to: Create a 3D model using shell elements. Conduct

More information

Automation of COMSOL Multiphysics Parameter Studies using the MATLAB LiveLink

Automation of COMSOL Multiphysics Parameter Studies using the MATLAB LiveLink Automation of COMSOL Multiphysics Parameter Studies using the MATLAB LiveLink Dominik Kern a, Nils-Henning Framke b September 26, 2012 Abstract COMSOL Multiphysics is a Finite Element Methods (FEM) software

More information

course outline basic principles of numerical analysis, intro FEM

course outline basic principles of numerical analysis, intro FEM idealization, equilibrium, solutions, interpretation of results types of numerical engineering problems continuous vs discrete systems direct stiffness approach differential & variational formulation introduction

More information

[ ] u 1. ME309 Homework #2 $ % & u = 1 s 2 " # u 2. s,u. A,E constant along length. 4Etc

[ ] u 1. ME309 Homework #2 $ % & u = 1 s 2  # u 2. s,u. A,E constant along length. 4Etc ME09 Homework # OBJECTIVES: Introduction to convergence issues and modeling approaches Postprocessing procedures Element selection Experience with shape functions and stiffness terms NOTES: Problems 1and

More information

Introduction to the Finite Element Method (3)

Introduction to the Finite Element Method (3) Introduction to the Finite Element Method (3) Petr Kabele Czech Technical University in Prague Faculty of Civil Engineering Czech Republic petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele 1 Outline

More information

Module 1.7W: Point Loading of a 3D Cantilever Beam

Module 1.7W: Point Loading of a 3D Cantilever Beam Module 1.7W: Point Loading of a 3D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Workbench Analysis System 4 Engineering Data 5 Geometry 6 Model 11 Setup 13 Solution 14 Results

More information

CATIA Electrical Space Reservation TABLE OF CONTENTS

CATIA Electrical Space Reservation TABLE OF CONTENTS TABLE OF CONTENTS Introduction...1 Manual Format...2 Electrical Reservations...3 Equipment Reservations...5 Pathway Reservations...31 Advanced Reservations...49 Reservation Analysis...67 Clash...69 Sectioning...73

More information

Simcenter 3D Engineering Desktop

Simcenter 3D Engineering Desktop Simcenter 3D Engineering Desktop Integrating geometry and FE modeling to streamline the product development process Benefits Speed simulation processes by up to 70 percent Increase product quality by rapidly

More information

Coupled Thermal-Structural Analysis of the Shippingport Nuclear Reactor Using Adaptive Remeshing in Abaqus/CAE

Coupled Thermal-Structural Analysis of the Shippingport Nuclear Reactor Using Adaptive Remeshing in Abaqus/CAE Abaqus Technology Brief TB-06-ARCAE-1 Revised: April 2007. Coupled Thermal-Structural Analysis of the Shippingport Nuclear Reactor Using Adaptive Remeshing in Abaqus/CAE Summary Mesh construction is a

More information

Appendix A: Mesh Nonlinear Adaptivity. ANSYS Mechanical Introduction to Structural Nonlinearities

Appendix A: Mesh Nonlinear Adaptivity. ANSYS Mechanical Introduction to Structural Nonlinearities Appendix A: Mesh Nonlinear Adaptivity 16.0 Release ANSYS Mechanical Introduction to Structural Nonlinearities 1 2015 ANSYS, Inc. Mesh Nonlinear Adaptivity Introduction to Mesh Nonlinear Adaptivity Understanding

More information

Institute of Mechatronics and Information Systems

Institute of Mechatronics and Information Systems EXERCISE 2 Free vibrations of a beam arget Getting familiar with the fundamental issues of free vibrations analysis of elastic medium, with the use of a finite element computation system ANSYS. Program

More information

midas FEA V320 Table of Contents

midas FEA V320 Table of Contents midas FEA V320 New Feature 01 CFD Moving Mesh Pre Process 01 File Open > File Preview 02 Extract Surface 03 Frame to Solid > Import 04 Tetra Auto mesh generation 05 Mesh options 06 Auto mesh Solid Function

More information

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003 Engineering Analysis with COSMOSWorks SolidWorks 2003 / COSMOSWorks 2003 Paul M. Kurowski Ph.D., P.Eng. SDC PUBLICATIONS Design Generator, Inc. Schroff Development Corporation www.schroff.com www.schroff-europe.com

More information

GrafiCalc Examples. Here are nineteen (19) examples that illustrate proven applications of GrafiCalc technology.

GrafiCalc Examples. Here are nineteen (19) examples that illustrate proven applications of GrafiCalc technology. GrafiCalc Examples Here are nineteen (19) examples that illustrate proven applications of GrafiCalc technology. The examples have been arranged to show the following capabilities. 1. Predictive engineering

More information

Simulating Drilling Processes with DEFORM-3D

Simulating Drilling Processes with DEFORM-3D Simulating Drilling Processes with DEFORM-3D Due to the number of revolutions of a drill necessary to establish characteristic behavior, drilling simulations in DEFORM are time consuming. Therefore, every

More information

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation 3D Finite Element Software for Cracks Version 3.2 Benchmarks and Validation October 217 1965 57 th Court North, Suite 1 Boulder, CO 831 Main: (33) 415-1475 www.questintegrity.com http://www.questintegrity.com/software-products/feacrack

More information

Geometric Modeling Lecture Series. Prof. G. Wang Department of Mechanical and Industrial Engineering University of Manitoba

Geometric Modeling Lecture Series. Prof. G. Wang Department of Mechanical and Industrial Engineering University of Manitoba Geometric Modeling 25.353 Lecture Series Prof. G. Wang Department of Mechanical and Industrial Engineering University of Manitoba Introduction Geometric modeling is as important to CAD as governing equilibrium

More information

Linear and Nonlinear Analysis of a Cantilever Beam

Linear and Nonlinear Analysis of a Cantilever Beam LESSON 1 Linear and Nonlinear Analysis of a Cantilever Beam P L Objectives: Create a beam database to be used for the specified subsequent exercises. Compare small vs. large displacement analysis. Linear

More information

Modal Based Optimization of TAPS Using OptiStruct

Modal Based Optimization of TAPS Using OptiStruct Modal Based Optimization of TAPS Using OptiStruct Yogesh Jaju Sr. Manager CAE Dana India Technical Centre Pvt. Ltd 501 Pride Silicon Plaza Pune 411016 India Ulhas Patil Sr. Project Engineer - CAE Dana

More information

Generative Part Structural Analysis Fundamentals

Generative Part Structural Analysis Fundamentals CATIA V5 Training Foils Generative Part Structural Analysis Fundamentals Version 5 Release 19 September 2008 EDU_CAT_EN_GPF_FI_V5R19 About this course Objectives of the course Upon completion of this course

More information

Prescribed Deformations

Prescribed Deformations u Prescribed Deformations Outline 1 Description 2 Finite Element Model 2.1 Geometry Definition 2.2 Properties 2.3 Boundary Conditions 2.3.1 Constraints 2.3.2 Prescribed Deformation 2.4 Loads 2.4.1 Dead

More information