Exercícios de FORTRAN90/95

Size: px
Start display at page:

Download "Exercícios de FORTRAN90/95"

Transcription

1 Eercícios de FORTRAN90/95 1. Estruturas de Repetição (Do Loops) 2. Estruturas codicioais (IF, CASE) 3. Arrays(1D, 2D) 4. Fuções e loops em diferetes liguages de programação. 1. Estrutura de Repetição ( Loops) Eemplo 1.1 Diferetes tipos de -Loop Método de Newto ara raiz quadrada: 1 A + 1 = ( + ) Þ 2 A (i) loop Cotrolado; repete um úmero de vezes fiado PROGRAM NEWTON REAL A! umber to be square-rooted REAL X! curret value of root INTEGER N! loop couter PRINT *, 'Eter a umber' READ *, A! iput umber to be rooted X = 1.0! iitial value N = 1, 10! fied umber of iteratios X = 0.5 * ( X + A / X )! update value (ii) loops Fleível, eecuta até que alguma codição seja satisfeita. (a) Usado IF (...) EXIT PROGRAM NEWTON REAL A!umber to be square-rooted REAL X, XOLD! curret ad previous value REAL CHANGE! chage durig oe iteratio REAL, PARAMETER :: TOLERANCE = 1.0E-6 PRINT *, 'Eter a umber' READ *, A X = 1.0 XOLD = X X = 0.5 * ( X + A / X ) CHANGE = ABS( (X - XOLD) / X ) IF ( CHANGE < TOLERANCE ) EXIT! tolerace for covergece! iput umber to be rooted! iitial value! store previous value! update value! fractioal chage! criterio for stoppig (b) Usado WHILE (...)

2 PROGRAM NEWTON REAL A REAL X, XOLD REAL CHANGE REAL, PARAMETER :: TOLERANCE = 1.0E-6 PRINT *, 'Eter a umber' READ *, A X = 1.0 CHANGE = 1.0 WHILE ( CHANGE > TOLERANCE ) XOLD = X X = 0.5 * ( X + A / X ) CHANGE = ABS( (X - XOLD) / X )! umber to be square-rooted!curret ad previous value!chage durig oe iteratio!tolerace for covergece! iput umber to be rooted! iitial value! aythig big eough to make! the first loop ru! criterio for cotiuig! store previous value! update value! fractioal chage Eemplo 1.2 Somatório de série de potêcia ep( ) = ! + 3 3! +... Note que cada termo ão é determiado por si só, mas de uma maeira mais eficiete como um múltiplo do termo previamete determiado.! = -1 ( -1)! PROGRAM POWER_SERIES REAL, EXTERNAL :: NEW_EXP! declare a fuctio to be used REAL VALUE! umber to test PRINT *, 'Eter a umber' READ *, VALUE PRINT *, 'Sum of series = ', NEW_EXP( VALUE )! our ow fuctio PRINT *, 'Actual EXP(X) = ', EXP( VALUE )! stadard fuctio STOP END PROGRAM POWER_SERIES!========================================================================= REAL FUNCTION NEW_EXP( X )! Sum a power series for ep(x) REAL X!argumet of fuctio INTEGER N!umber of a term REAL TERM!a term i the series REAL, PARAMETER :: TOLERANCE = 1.0E-07!trucatio level! First term N = 0; TERM = 1; NEW_EXP = TERM! Add successive terms util they become egligible WHILE ( ABS( TERM ) > TOLERANCE )! criterio for cotiuig N=N+1! ide of et term TERM = TERM * X / N! ew term is a multiple of last NEW_EXP = NEW_EXP + TERM END FUNCTION NEW_EXP! add to sum

3 Observação: o térmio do programa é assegurado pelo critério: term < úmero pequeo Este critério é valido desde que a presete série é covergete. Isto ão é sempre valido, logo ão é uma codição suficiete. Por eemplo, a série harmôica: å = esta série diverge, mesmo embora os termos tedem à zero. 2. Cotrole codicioal (IF, CASE) Eemplo 2.1 Comparado IF e CASE. PROGRAM EXAM INTEGER MARK CHARACTER GRADE WRITE( *, '("Eter mark (egative to ed): ")', ADVANCE = 'NO' ) READ *, MARK IF ( MARK < 0 ) STOP! stop program with a egative value IF ( MARK >= 70 ) THEN GRADE = 'A' ELSE IF ( MARK >= 60 ) THEN GRADE = 'B' ELSE IF ( MARK >= 50 ) THEN GRADE = 'C' ELSE IF ( MARK >= 40 ) THEN GRADE = 'D' ELSE IF ( MARK >= 30 ) THEN GRADE = 'E' ELSE GRADE = 'F' END IF PRINT *, 'Grade is ', GRADE END PROGRAM EXAM PROGRAM EXAM INTEGER MARK CHARACTER GRADE WRITE( *, '("Eter mark (egative to ed): ")', ADVANCE = 'NO' ) READ *, MARK IF ( MARK < 0 ) STOP! stop program with a egative value SELECT CASE ( MARK ) CASE ( 70: ) GRADE = 'A' CASE ( 60:69 ) GRADE = 'B' CASE ( 50:59 ) GRADE = 'C' CASE ( 40:49 ) GRADE = 'D' CASE ( 30:39 ) GRADE = 'E'

4 CASE ( :29 ) GRADE = 'F' END SELECT PRINT *, 'Grade is ', GRADE END PROGRAM EXAM 3. Matrizes multidimesioais - Arrays Eemplo 3.1 Ilustra operações de elemeto por elemeto com arrays PROGRAM MATRIX REAL, DIMENSION(3,3) :: A, B, C!declare size of A, B ad C! REAL A(3,3), B(3,3), C(3,3)!alterative dimesio statemet REAL PI!the umber pi INTEGER I, J!couters CHARACTER (LEN=*), PARAMETER :: FMT = '( A, 3(/, 3(1X, F8.3)), / )'! format strig for output! Basic iitialisatio of matrices by assigig all values iefficiet A(1,1) = 1.0; A(1,2) = 2.0; A(1,3) = 3.0 A(2,1) = 4.0; A(2,2) = 5.0; A(2,3) = 6.0 A(3,1) = 7.0; A(3,2) = 8.0; A(3,3) = 9.0 B(1,1) = 10.0; B(1,2) = 20.0; B(1,3) = 30.0 B(2,1) = 40.0; B(2,2) = 50.0; B(2,3) = 60.0 B(3,1) = 70.0; B(3,2) = 80.0; B(3,3) = 90.0! Alterative iitialisatio usig DATA statemets ote order DATA A / 1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0 / DATA B / 10.0, 40.0, 70.0, 20.0, 50.0, 80.0, 30.0, 60.0, 90.0 /! Alterative iitialisatio computig each elemet of A J = 1, 3 I = 1, 3 A(I,J) = (I - 1) * 3 + J! the whole-array operatio for B B = 10.0 * A! Write out matrices (usig implied loops) WRITE( *, FMT ) 'A', ( ( A(I,J), J = 1, 3 ), I = 1, 3 ) WRITE( *, FMT ) 'B', ( ( B(I,J), J = 1, 3 ), I = 1, 3 )! Matri sum C=A+B WRITE( *, FMT ) 'A+B', ( ( C(I,J), J = 1, 3 ), I = 1, 3 )! "Elemet-by-elemet" multiplicatio C=A*B WRITE( *, FMT ) 'A*B', ( ( C(I,J), J = 1, 3 ), I = 1, 3 )! "Proper" matri multiplicatio C = MATMUL( A, B ) WRITE( *, FMT ) 'MATMUL(A,B)', ( ( C(I,J), J = 1, 3 ), I = 1, 3 )! Some operatio applied to all elemets of a matri PI = 4.0 * ATAN( 1.0 ) C = SIN( B * PI / ) WRITE( *, FMT ) 'SIN(B)', ( ( C(I,J), J = 1, 3 ), I = 1, 3 ) STOP END PROGRAM MATRIX

5 Fuções e do loops em diferetes liguages de programação Cosidere a fução sumsqr ( ) = Fortra Iteger Fuctio sumsqr( ) Iteger Iteger i sumsqr = 0 Do i = 1, sumsqr = sumsqr + i * i Ed Do Ed Fuctio sumsqr! declare argumet type! declare iteral variables! iitialise sum! start of loop! add to sum! ed of loop Visual Basic Fuctio sumsqr( As Iteger) As Iteger Dim i As Iteger ' declare iteral variables sumsqr = 0 ' iitialise sum For i = 1 To ' start of loop sumsqr = sumsqr + i * i ' add to sum Net i ' ed of loop Ed Fuctio C++ it sumsqr( it ) { it i, value; // declare iteral variables value = 0; // iitialise sum for (i = 1; i <= ; i++) { // start of loop value += i * i; // add to sum } // ed of loop retur value; }

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

High-Order Language APPLICATION LEVEL HIGH-ORDER LANGUAGE LEVEL ASSEMBLY LEVEL OPERATING SYSTEM LEVEL INSTRUCTION SET ARCHITECTURE LEVEL

High-Order Language APPLICATION LEVEL HIGH-ORDER LANGUAGE LEVEL ASSEMBLY LEVEL OPERATING SYSTEM LEVEL INSTRUCTION SET ARCHITECTURE LEVEL Chapter 2 C High-Order Laguage APPLICATION LEVEL HIGH-ORDER LANGUAGE LEVEL 6 ASSEMBLY LEVEL OPERATING SYSTEM LEVEL INSTRUCTION SET ARCHITECTURE LEVEL MICROCODE LEVEL LOGIC GATE LEVEL Figure 2. 7 6 5 4

More information

A graphical view of big-o notation. c*g(n) f(n) f(n) = O(g(n))

A graphical view of big-o notation. c*g(n) f(n) f(n) = O(g(n)) ca see that time required to search/sort grows with size of We How do space/time eeds of program grow with iput size? iput. time: cout umber of operatios as fuctio of iput Executio size operatio Assigmet:

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

CS211 Fall 2003 Prelim 2 Solutions and Grading Guide

CS211 Fall 2003 Prelim 2 Solutions and Grading Guide CS11 Fall 003 Prelim Solutios ad Gradig Guide Problem 1: (a) obj = obj1; ILLEGAL because type of referece must always be a supertype of type of object (b) obj3 = obj1; ILLEGAL because type of referece

More information

CS 111: Program Design I Lecture # 7: First Loop, Web Crawler, Functions

CS 111: Program Design I Lecture # 7: First Loop, Web Crawler, Functions CS 111: Program Desig I Lecture # 7: First Loop, Web Crawler, Fuctios Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago September 18, 2018 What will this prit? x = 5 if x == 3: prit("hi!")

More information

Package RcppRoll. December 22, 2014

Package RcppRoll. December 22, 2014 Type Package Package RcppRoll December 22, 2014 Title Fast rollig fuctios through Rcpp ad RcppArmadillo Versio 0.1.0 Date 2013-01-10 Author Kevi Ushey Maitaier Kevi Ushey RcppRoll

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis Outlie ad Readig Aalysis of Algorithms Iput Algorithm Output Ruig time ( 3.) Pseudo-code ( 3.2) Coutig primitive operatios ( 3.3-3.) Asymptotic otatio ( 3.6) Asymptotic aalysis ( 3.7) Case study Aalysis

More information

1. Character 2. Subrotinas e funções

1. Character 2. Subrotinas e funções PROGRAMAS EXTRAS FORTRAN90/95 1. Character 2. Subrotinas e funções Exemplo 1.1 Operações básicas com character. PROGRAM CHARACTER_FUNCTIONS! Program illustrating strings and character functions CHARACTER

More information

Fuzzy Membership Function Optimization for System Identification Using an Extended Kalman Filter

Fuzzy Membership Function Optimization for System Identification Using an Extended Kalman Filter Fuzzy Membership Fuctio Optimizatio for System Idetificatio Usig a Eteded Kalma Filter Srikira Kosaam ad Da Simo Clevelad State Uiversity NAFIPS Coferece Jue 4, 2006 Embedded Cotrol Systems Research Lab

More information

CS 11 C track: lecture 1

CS 11 C track: lecture 1 CS 11 C track: lecture 1 Prelimiaries Need a CMS cluster accout http://acctreq.cms.caltech.edu/cgi-bi/request.cgi Need to kow UNIX IMSS tutorial liked from track home page Track home page: http://courses.cms.caltech.edu/courses/cs11/material

More information

Recursion. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Review: Method Frames

Recursion. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Review: Method Frames Uit 4, Part 3 Recursio Computer Sciece S-111 Harvard Uiversity David G. Sulliva, Ph.D. Review: Method Frames Whe you make a method call, the Java rutime sets aside a block of memory kow as the frame of

More information

Chapter 4 The Datapath

Chapter 4 The Datapath The Ageda Chapter 4 The Datapath Based o slides McGraw-Hill Additioal material 24/25/26 Lewis/Marti Additioal material 28 Roth Additioal material 2 Taylor Additioal material 2 Farmer Tae the elemets that

More information

CMPT 125 Assignment 2 Solutions

CMPT 125 Assignment 2 Solutions CMPT 25 Assigmet 2 Solutios Questio (20 marks total) a) Let s cosider a iteger array of size 0. (0 marks, each part is 2 marks) it a[0]; I. How would you assig a poiter, called pa, to store the address

More information

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70 NOTE:. Attempt all seve questios. Major CSL 02 2. Write your ame ad etry o o every sheet of the aswer script. Time 2 Hrs Max Marks 70 Q No Q Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Total MM 6 2 4 0 8 4 6 70 Q. Write a

More information

Chapter 8. Strings and Vectors. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 8. Strings and Vectors. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 8 Strigs ad Vectors Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 8.1 A Array Type for Strigs 8.2 The Stadard strig Class 8.3 Vectors Copyright 2015 Pearso Educatio, Ltd..

More information

Chapter 8. Strings and Vectors. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 8. Strings and Vectors. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 8 Strigs ad Vectors Overview 8.1 A Array Type for Strigs 8.2 The Stadard strig Class 8.3 Vectors Slide 8-3 8.1 A Array Type for Strigs A Array Type for Strigs C-strigs ca be used to represet strigs

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions:

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions: CS 604 Data Structures Midterm Sprig, 00 VIRG INIA POLYTECHNIC INSTITUTE AND STATE U T PROSI M UNI VERSI TY Istructios: Prit your ame i the space provided below. This examiatio is closed book ad closed

More information

WebAssign Lesson 6-1b Geometric Series (Homework)

WebAssign Lesson 6-1b Geometric Series (Homework) WebAssig Lesso 6-b Geometric Series (Homework) Curret Score : / 49 Due : Wedesday, July 30 204 :0 AM MDT Jaimos Skriletz Math 75, sectio 3, Summer 2 204 Istructor: Jaimos Skriletz. /2 poitsrogac alcet2

More information

How do we evaluate algorithms?

How do we evaluate algorithms? F2 Readig referece: chapter 2 + slides Algorithm complexity Big O ad big Ω To calculate ruig time Aalysis of recursive Algorithms Next time: Litterature: slides mostly The first Algorithm desig methods:

More information

BACHMANN-LANDAU NOTATIONS. Lecturer: Dr. Jomar F. Rabajante IMSP, UPLB MATH 174: Numerical Analysis I 1 st Sem AY

BACHMANN-LANDAU NOTATIONS. Lecturer: Dr. Jomar F. Rabajante IMSP, UPLB MATH 174: Numerical Analysis I 1 st Sem AY BACHMANN-LANDAU NOTATIONS Lecturer: Dr. Jomar F. Rabajate IMSP, UPLB MATH 174: Numerical Aalysis I 1 st Sem AY 018-019 RANKING OF FUNCTIONS Name Big-Oh Eamples Costat O(1 10 Logarithmic O(log log, log(

More information

3. b. Present a combinatorial argument that for all positive integers n : : 2 n

3. b. Present a combinatorial argument that for all positive integers n : : 2 n . b. Preset a combiatorial argumet that for all positive itegers : : Cosider two distict sets A ad B each of size. Sice they are distict, the cardiality of A B is. The umber of ways of choosig a pair of

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Ruig Time of a algorithm Ruig Time Upper Bouds Lower Bouds Examples Mathematical facts Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite

More information

Lecture 3. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram

Lecture 3. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram Lecture 3 RTL Desig Methodology Trasitio from Pseudocode & Iterface to a Correspodig Block Diagram Structure of a Typical Digital Data Iputs Datapath (Executio Uit) Data Outputs System Cotrol Sigals Status

More information

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects. The

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time ( 3.1) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step- by- step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Ruig Time Most algorithms trasform iput objects ito output objects. The

More information

Exercise 6 (Week 42) For the foreign students only.

Exercise 6 (Week 42) For the foreign students only. These are the last exercises of the course. Please, remember that to pass exercises, the sum of the poits gathered by solvig the questios ad attedig the exercise groups must be at least 4% ( poits) of

More information

CS 111: Program Design I Lecture 16: Module Review, Encodings, Lists

CS 111: Program Design I Lecture 16: Module Review, Encodings, Lists CS 111: Program Desig I Lecture 16: Module Review, Ecodigs, Lists Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago October 18, 2016 Last time Dot otatio ad methods Padas: user maual poit

More information

K-NET bus. When several turrets are connected to the K-Bus, the structure of the system is as showns

K-NET bus. When several turrets are connected to the K-Bus, the structure of the system is as showns K-NET bus The K-Net bus is based o the SPI bus but it allows to addressig may differet turrets like the I 2 C bus. The K-Net is 6 a wires bus (4 for SPI wires ad 2 additioal wires for request ad ackowledge

More information

Data diverse software fault tolerance techniques

Data diverse software fault tolerance techniques Data diverse software fault tolerace techiques Complemets desig diversity by compesatig for desig diversity s s limitatios Ivolves obtaiig a related set of poits i the program data space, executig the

More information

Chapter 4. Procedural Abstraction and Functions That Return a Value. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 4. Procedural Abstraction and Functions That Return a Value. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 4 Procedural Abstractio ad Fuctios That Retur a Value Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 4.1 Top-Dow Desig 4.2 Predefied Fuctios 4.3 Programmer-Defied Fuctios 4.4

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

SINGLE-PHASE, TWO-WIRE (ONE ELEMENT) MODELS WITH INTERNAL CURRENT SENSOR

SINGLE-PHASE, TWO-WIRE (ONE ELEMENT) MODELS WITH INTERNAL CURRENT SENSOR ATT/ ATTHOUR AC ATT TRASDUCER ICLUDES PHASE-FIRED & ZERO CROSSIG S DESCRIPTIO The PC5 Series att transducers utilize Hall-effect multipliers to provide continuous multiplication of voltage and current

More information

Lecture 2. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram

Lecture 2. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram Lecture 2 RTL Desig Methodology Trasitio from Pseudocode & Iterface to a Correspodig Block Diagram Structure of a Typical Digital Data Iputs Datapath (Executio Uit) Data Outputs System Cotrol Sigals Status

More information

top() Applications of Stacks

top() Applications of Stacks CS22 Algorithms ad Data Structures MW :00 am - 2: pm, MSEC 0 Istructor: Xiao Qi Lecture 6: Stacks ad Queues Aoucemets Quiz results Homework 2 is available Due o September 29 th, 2004 www.cs.mt.edu~xqicoursescs22

More information

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 11 Frieds, Overloaded Operators, ad Arrays i Classes Copyright 2014 Pearso Addiso-Wesley. All rights reserved. Overview 11.1 Fried Fuctios 11.2 Overloadig Operators 11.3 Arrays ad Classes 11.4

More information

Abstract Data Types (ADTs) Stacks. The Stack ADT ( 4.2) Stack Interface in Java

Abstract Data Types (ADTs) Stacks. The Stack ADT ( 4.2) Stack Interface in Java Abstract Data Types (ADTs) tacks A abstract data type (ADT) is a abstractio of a data structure A ADT specifies: Data stored Operatios o the data Error coditios associated with operatios Example: ADT modelig

More information

Civil Engineering Computation

Civil Engineering Computation Civil Egieerig Computatio Fidig Roots of No-Liear Equatios March 14, 1945 World War II The R.A.F. first operatioal use of the Grad Slam bomb, Bielefeld, Germay. Cotets 2 Root basics Excel solver Newto-Raphso

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

Abstract. Chapter 4 Computation. Overview 8/13/18. Bjarne Stroustrup Note:

Abstract. Chapter 4 Computation. Overview 8/13/18. Bjarne Stroustrup   Note: Chapter 4 Computatio Bjare Stroustrup www.stroustrup.com/programmig Abstract Today, I ll preset the basics of computatio. I particular, we ll discuss expressios, how to iterate over a series of values

More information

Data Structures and Algorithms. Analysis of Algorithms

Data Structures and Algorithms. Analysis of Algorithms Data Structures ad Algorithms Aalysis of Algorithms Outlie Ruig time Pseudo-code Big-oh otatio Big-theta otatio Big-omega otatio Asymptotic algorithm aalysis Aalysis of Algorithms Iput Algorithm Output

More information

Intro to Scientific Computing: Solutions

Intro to Scientific Computing: Solutions Itro to Scietific Computig: Solutios Dr. David M. Goulet. How may steps does it take to separate 3 objects ito groups of 4? We start with 5 objects ad apply 3 steps of the algorithm to reduce the pile

More information

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016 CS 111: Program Desig I Lecture 15: Objects, Padas, Modules Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago October 13, 2016 OBJECTS AND DOT NOTATION Objects (Implicit i Chapter 2, Variables,

More information

Lecture 18. Optimization in n dimensions

Lecture 18. Optimization in n dimensions Lecture 8 Optimizatio i dimesios Itroductio We ow cosider the problem of miimizig a sigle scalar fuctio of variables, f x, where x=[ x, x,, x ]T. The D case ca be visualized as fidig the lowest poit of

More information

Matrix representation of a solution of a combinatorial problem of the group theory

Matrix representation of a solution of a combinatorial problem of the group theory Matrix represetatio of a solutio of a combiatorial problem of the group theory Krasimir Yordzhev, Lilyaa Totia Faculty of Mathematics ad Natural Scieces South-West Uiversity 66 Iva Mihailov Str, 2700 Blagoevgrad,

More information

1. (a) Write a C program to display the texts Hello, World! on the screen. (2 points)

1. (a) Write a C program to display the texts Hello, World! on the screen. (2 points) 1. (a) Write a C program to display the texts Hello, World! o the scree. (2 poits) Solutio 1: pritf("hello, World!\"); Solutio 2: void mai() { pritf("hello, World!\"); (b) Write a C program to output a

More information

5.3 Recursive definitions and structural induction

5.3 Recursive definitions and structural induction /8/05 5.3 Recursive defiitios ad structural iductio CSE03 Discrete Computatioal Structures Lecture 6 A recursively defied picture Recursive defiitios e sequece of powers of is give by a = for =0,,, Ca

More information

Homework 1 Solutions MA 522 Fall 2017

Homework 1 Solutions MA 522 Fall 2017 Homework 1 Solutios MA 5 Fall 017 1. Cosider the searchig problem: Iput A sequece of umbers A = [a 1,..., a ] ad a value v. Output A idex i such that v = A[i] or the special value NIL if v does ot appear

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Cocurrecy Threads ad Cocurrecy i Java: Part 1 What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Lecture 9: Exam I Review

Lecture 9: Exam I Review CS 111 (Law): Program Desig I Lecture 9: Exam I Review Robert H. Sloa & Richard Warer Uiversity of Illiois, Chicago September 22, 2016 This Class Discuss midterm topics Go over practice examples Aswer

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Threads ad Cocurrecy i Java: Part 1 1 Cocurrecy What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

COP4020 Programming Languages. Subroutines and Parameter Passing Prof. Robert van Engelen

COP4020 Programming Languages. Subroutines and Parameter Passing Prof. Robert van Engelen COP4020 Programmig Laguages Subrouties ad Parameter Passig Prof. Robert va Egele Overview Parameter passig modes Subroutie closures as parameters Special-purpose parameters Fuctio returs COP4020 Fall 2016

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

CS 111: Program Design I Lecture 15: Modules, Pandas again. Robert H. Sloan & Richard Warner University of Illinois at Chicago March 8, 2018

CS 111: Program Design I Lecture 15: Modules, Pandas again. Robert H. Sloan & Richard Warner University of Illinois at Chicago March 8, 2018 CS 111: Program Desig I Lecture 15: Modules, Padas agai Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago March 8, 2018 PYTHON STANDARD LIBRARY & BEYOND: MODULES Extedig Pytho Every moder

More information

Programming with Shared Memory PART II. HPC Spring 2017 Prof. Robert van Engelen

Programming with Shared Memory PART II. HPC Spring 2017 Prof. Robert van Engelen Programmig with Shared Memory PART II HPC Sprig 2017 Prof. Robert va Egele Overview Sequetial cosistecy Parallel programmig costructs Depedece aalysis OpeMP Autoparallelizatio Further readig HPC Sprig

More information

CSE 111 Bio: Program Design I Lecture 17: software development, list methods

CSE 111 Bio: Program Design I Lecture 17: software development, list methods CSE 111 Bio: Program Desig I Lecture 17: software developmet, list methods Robert H. Sloa(CS) & Rachel Poretsky(Bio) Uiversity of Illiois, Chicago October 19, 2017 NESTED LOOPS: REVIEW Geerate times table

More information

n Maurice Wilkes, 1949 n Organize software to minimize errors. n Eliminate most of the errors we made anyway.

n Maurice Wilkes, 1949 n Organize software to minimize errors. n Eliminate most of the errors we made anyway. Bjare Stroustrup www.stroustrup.com/programmig Chapter 5 Errors Abstract Whe we program, we have to deal with errors. Our most basic aim is correctess, but we must deal with icomplete problem specificatios,

More information

Chapter 3. More Flow of Control. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 3. More Flow of Control. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 3 More Flow of Cotrol Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 3.1 Usig Boolea Expressios 3.2 Multiway Braches 3.3 More about C++ Loop Statemets 3.4 Desigig Loops Copyright

More information

Classes and Objects. Again: Distance between points within the first quadrant. José Valente de Oliveira 4-1

Classes and Objects. Again: Distance between points within the first quadrant. José Valente de Oliveira 4-1 Classes ad Objects jvo@ualg.pt José Valete de Oliveira 4-1 Agai: Distace betwee poits withi the first quadrat Sample iput Sample output 1 1 3 4 2 jvo@ualg.pt José Valete de Oliveira 4-2 1 The simplest

More information

Computers and Scientific Thinking

Computers and Scientific Thinking Computers ad Scietific Thikig David Reed, Creighto Uiversity Chapter 15 JavaScript Strigs 1 Strigs as Objects so far, your iteractive Web pages have maipulated strigs i simple ways use text box to iput

More information

A log n lower bound to compute any function in parallel Reduction and broadcast in O(log n) time Parallel prefix (scan) in O(log n) time

A log n lower bound to compute any function in parallel Reduction and broadcast in O(log n) time Parallel prefix (scan) in O(log n) time CS 267 Tricks with Trees Outlie A log lower boud to compute ay fuctio i parallel Reductio ad broadcast i O(log ) time Parallel prefix (sca) i O(log ) time Addig two -bit itegers i O(log ) time Multiplyig

More information

NAG Library Function Document nag_fft_hermitian (c06ebc)

NAG Library Function Document nag_fft_hermitian (c06ebc) c06 Fourier Trasforms NAG Library Fuctio Documet ag_fft_hermitia () 1 Purpose ag_fft_hermitia () calculates the discrete Fourier trasform of a Hermitia sequece of complex data values. (No extra workspace

More information

CS475 Parallel Programming

CS475 Parallel Programming CS475 Parallel Programmig Dese Matrix Multiply Wim Bohm, Colorado State Uiversity Except as otherwise oted, the cotet of this presetatio is licesed uder the Creative Commos Attributio 2.5 licese. Block

More information

Goals of the Lecture Object Constraint Language

Goals of the Lecture Object Constraint Language Goals of the Lecture Object Costrait Laguage Object-Orieted Aalysis ad Desig - Fall 1998 Preset the Object Costrait Laguage Ð As best as possible, with the limited iformatio available from UML i a Nutshell

More information

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 5. Functions for All Subtasks. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 5 Fuctios for All Subtasks Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 5.1 void Fuctios 5.2 Call-By-Referece Parameters 5.3 Usig Procedural Abstractio 5.4 Testig ad Debuggig

More information

ENGR 132. Fall Exam 1

ENGR 132. Fall Exam 1 ENGR 3 Fall 03 Exam INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work. Keep your work covered at all times.. Each studet is resposible for followig directios. Read carefully.. MATLAB ad Excel

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

Project 2.5 Improved Euler Implementation

Project 2.5 Improved Euler Implementation Project 2.5 Improved Euler Implemetatio Figure 2.5.10 i the text lists TI-85 ad BASIC programs implemetig the improved Euler method to approximate the solutio of the iitial value problem dy dx = x+ y,

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 1 Computers ad Programs 1 Objectives To uderstad the respective roles of hardware ad software i a computig system. To lear what computer scietists

More information

Recursion. A problem solving technique where an algorithm is defined in terms of itself. A recursive method is a method that calls itself

Recursion. A problem solving technique where an algorithm is defined in terms of itself. A recursive method is a method that calls itself Recursio 1 A probem sovig techique where a agorithm is defied i terms of itsef A recursive method is a method that cas itsef A recursive agorithm breaks dow the iput or the search space ad appies the same

More information

Data Structures and Algorithms Part 1.4

Data Structures and Algorithms Part 1.4 1 Data Structures ad Algorithms Part 1.4 Werer Nutt 2 DSA, Part 1: Itroductio, syllabus, orgaisatio Algorithms Recursio (priciple, trace, factorial, Fiboacci) Sortig (bubble, isertio, selectio) 3 Sortig

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen

COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen COP4020 Programmig Laguages Fuctioal Programmig Prof. Robert va Egele Overview What is fuctioal programmig? Historical origis of fuctioal programmig Fuctioal programmig today Cocepts of fuctioal programmig

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Part A Datapath Design

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Part A Datapath Design COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter The Processor Part A path Desig Itroductio CPU performace factors Istructio cout Determied by ISA ad compiler. CPI ad

More information

LU Decomposition Method

LU Decomposition Method SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS LU Decompositio Method Jamie Traha, Autar Kaw, Kevi Marti Uiversity of South Florida Uited States of America kaw@eg.usf.edu http://umericalmethods.eg.usf.edu Itroductio

More information

CMSC Computer Architecture Lecture 3: ISA and Introduction to Microarchitecture. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 3: ISA and Introduction to Microarchitecture. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 3: ISA ad Itroductio to Microarchitecture Prof. Yajig Li Uiversity of Chicago Lecture Outlie ISA uarch (hardware implemetatio of a ISA) Logic desig basics Sigle-cycle

More information

Chapter 10. Defining Classes. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 10. Defining Classes. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 10 Defiig Classes Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 10.1 Structures 10.2 Classes 10.3 Abstract Data Types 10.4 Itroductio to Iheritace Copyright 2015 Pearso Educatio,

More information

Introduction to Computing Systems: From Bits and Gates to C and Beyond 2 nd Edition

Introduction to Computing Systems: From Bits and Gates to C and Beyond 2 nd Edition Lecture Goals Itroductio to Computig Systems: From Bits ad Gates to C ad Beyod 2 d Editio Yale N. Patt Sajay J. Patel Origial slides from Gregory Byrd, North Carolia State Uiversity Modified slides by

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 )

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 ) EE26: Digital Desig, Sprig 28 3/6/8 EE 26: Itroductio to Digital Desig Combiatioal Datapath Yao Zheg Departmet of Electrical Egieerig Uiversity of Hawaiʻi at Māoa Combiatioal Logic Blocks Multiplexer Ecoders/Decoders

More information

EE University of Minnesota. Midterm Exam #1. Prof. Matthew O'Keefe TA: Eric Seppanen. Department of Electrical and Computer Engineering

EE University of Minnesota. Midterm Exam #1. Prof. Matthew O'Keefe TA: Eric Seppanen. Department of Electrical and Computer Engineering EE 4363 1 Uiversity of Miesota Midterm Exam #1 Prof. Matthew O'Keefe TA: Eric Seppae Departmet of Electrical ad Computer Egieerig Uiversity of Miesota Twi Cities Campus EE 4363 Itroductio to Microprocessors

More information

Chapter 2: Non-hierarchical Coloured Petri Nets. 1`(1,"COL")++ 1`(2,"OUR")++ 1`(3,"ED ")++ 1`(4,"PET")++ 1`(5,"RI ")++ 1`(6,"NET") (n,d) AllPackets

Chapter 2: Non-hierarchical Coloured Petri Nets. 1`(1,COL)++ 1`(2,OUR)++ 1`(3,ED )++ 1`(4,PET)++ 1`(5,RI )++ 1`(6,NET) (n,d) AllPackets Modellig ad Validatio of ocurret Systems hapter 2: No-hierarchical Kurt Jese & Lars Michael Kristese {jese,lmristese} @cs.au.d lls s To Sed Sed NextSed 6 `(,"OL")++ `(2,"OUR")++ `(3,"E ")++ `(4,"PET")++

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures Uiversity of Waterloo Departmet of Electrical ad Computer Egieerig ECE 250 Algorithms ad Data Structures Midterm Examiatio ( pages) Istructor: Douglas Harder February 7, 2004 7:30-9:00 Name (last, first)

More information

First Exam/Second Test 19/6/2010

First Exam/Second Test 19/6/2010 Instituto Superior Técnico Programação Avançada First Exam/Second Test 19/6/2010 Name: Number: Write your number on every page. Your answers should not be longer than the available space. You can use the

More information

Behavioral Modeling in Verilog

Behavioral Modeling in Verilog Behavioral Modelig i Verilog COE 202 Digital Logic Desig Dr. Muhamed Mudawar Kig Fahd Uiversity of Petroleum ad Mierals Presetatio Outlie Itroductio to Dataflow ad Behavioral Modelig Verilog Operators

More information

CSE 417: Algorithms and Computational Complexity

CSE 417: Algorithms and Computational Complexity Time CSE 47: Algorithms ad Computatioal Readig assigmet Read Chapter of The ALGORITHM Desig Maual Aalysis & Sortig Autum 00 Paul Beame aalysis Problem size Worst-case complexity: max # steps algorithm

More information

Structuring Redundancy for Fault Tolerance. CSE 598D: Fault Tolerant Software

Structuring Redundancy for Fault Tolerance. CSE 598D: Fault Tolerant Software Structurig Redudacy for Fault Tolerace CSE 598D: Fault Tolerat Software What do we wat to achieve? Versios Damage Assessmet Versio 1 Error Detectio Iputs Versio 2 Voter Outputs State Restoratio Cotiued

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

why study sorting? Sorting is a classic subject in computer science. There are three reasons for studying sorting algorithms.

why study sorting? Sorting is a classic subject in computer science. There are three reasons for studying sorting algorithms. Chapter 5 Sortig IST311 - CIS65/506 Clevelad State Uiversity Prof. Victor Matos Adapted from: Itroductio to Java Programmig: Comprehesive Versio, Eighth Editio by Y. Daiel Liag why study sortig? Sortig

More information

Java Expressions & Flow Control

Java Expressions & Flow Control Java Expressios & Flow Cotrol Rui Moreira Expressio Separators:. [ ] ( ), ; Dot used as decimal separator or to access attributes ad methods double d = 2.6; Poto poto = ew Poto(2, 3); it i = poto.x; it

More information

The Open University, Walton Hall, Milton Keynes, MK7 6AA First published 2004

The Open University, Walton Hall, Milton Keynes, MK7 6AA First published 2004 8 Programs ad data This publicatio forms part of a Ope Uiversity course M150 Data, Computig ad Iformatio. Details of this ad other Ope Uiversity courses ca be obtaied from the Course Iformatio ad Advice

More information

Parallelizing The Matrix Multiplication. 6/10/2013 LONI Parallel Programming Workshop

Parallelizing The Matrix Multiplication. 6/10/2013 LONI Parallel Programming Workshop Parallelizing The Matrix Multiplication 6/10/2013 LONI Parallel Programming Workshop 2013 1 Serial version 6/10/2013 LONI Parallel Programming Workshop 2013 2 X = A md x B dn = C mn d c i,j = a i,k b k,j

More information