Automatic Speech Recognition (ASR)

Size: px
Start display at page:

Download "Automatic Speech Recognition (ASR)"

Transcription

1 Automatic Speech Recognition (ASR) February 2018 Reza Yazdani Aminabadi Universitat Politecnica de Catalunya (UPC)

2 State-of-the-art State-of-the-art ASR system: DNN+HMM Speech (words) Sound Signal Graph Search ASR bottleneck: Graph Search (Viterbi) 1% 0% Feature Extraction Likelihood Computation 13% 10% 86% 20% 30% 40% 50% 60% 70% 80% Graph Search Likelihood Computation 90% 100%

3 Speech Graph Weighted-Finite-State-Transducer (WFST) - Acoustic Model - Language Model - Language Dictionary

4 Viterbi Search Frame 0 1.0

5 Viterbi Search Frame Frame

6 Viterbi Search Frame Frame Frame Pruning! Pruning! Pruning!

7 Viterbi Search Frame Frame Frame Frame Pruning! THREE Pruning! Pruning!

8 Viterbi Hardware Accelerator (Micro'49)

9 Accelerated ASR System Memory CPU Audio Frames Acoustic Scores GPU Word Lattice Viterbi Accelerator DNN 0 DNN 1 Vit 0 DNN 2 Vit 1 DNN 3 Vit 2

10 Accelerator's Architecture

11 Accelerator's Challenges The pipeline's main source of stalls: Misses at the Arc cache Increased Hash access time Unpredictable access pattern to the WFST's arcs 25K active arc per frame out of 34M arcs Due to overflows & collisions High memory bandwidth To fetch states and arcs of different tokens

12 Improved Arc Cache Decoupled access-execute pattern Issue the memory requests in advance After pruning, the addresses are clear and computable Respect timeliness, through a reorder buffer

13 Memory Bandwidth Reduction Change the pattern of arc's data in memory Sorting state's arcs based on the number of arcs Direct address computation for states with 1 to 4 arcs

14 Experimental Results Gains in performance speedup and energy-saving Area: mm x Speedup 48.4x Reduction 628x Reduction 22.24x Speedup

15 UNFOLD: Memory-Efficient Design (Micro'50)

16 Viterbi Accelerator's Pitfalls The main challenges of the previous design Working on a huge graph: more than 1 GB Requiring high memory Bandwidth: ~10 GBps High power consumption: ~ 1 W

17 On-the-fly Composition Separating fully-composed into several WFSTs Do the composition on-the-fly rather than offline Acoustic Model Language Model

18 Viterbi+Composition Frame 0 (0,0)

19 Viterbi+Composition Frame 0 Frame 1 (1,0) S1/e (0,0) S4/e (4,0) S6/e (6,0)

20 Viterbi+Composition Frame 0 Frame 1 (1,0) Frame 2 S2/e (2,0) S1/e (0,0) S4/e S5/TWO (4,0) S6/e (5,2) S7/e (6,0) (7,0)

21 Compression Techniques Compressing based on graph characteristics Fully-composed, Acoustic Model WFSTs Language Model Compressed representation of word-lattice AM, Fully-composed Most of arcs with no word ID Arc's destination state ID: Remove epsilon-word transitions Relative distance of -1,0,1 to the previous state LM Predictable destinations from backoff state 3.6x compression

22 Accelerator's Design

23 Offset Lookup Table Cross-word transition: triggering a search on LM Linear search: 10x slowdown Binary search: 3x slowdown Exploit locality: keep track of the recent search Tag LM Arc Offset Hit LM State Word ID Hash Func Miss Update Binary Search LM Arc Cache

24 Experimental Results Memory Footprint Reduction

25 Experimental Results Power Reduction 1200 Power dissipation (mw) Address Lookup Table Main Memory Pipeline LM Cache Graph Cache List of States UNFOLD Micro'49

26 DNN Pruning Negative Effects

27 DNN Pruning Side-effects Low confidence in classifying the top-1 In spite of accurately choosing the best class

28 Impact on Viterbi Search Viterbi Expansion under the pruned DNN

29 Workload Increase Viterbi slowdown due to the DNN pruning

30 Solution Choosing smaller number of paths to explore N-Best hypotheses expansion Challenge: Sort tokens on each frame: so expensive O(M2) Our approach: choose the loosely N-Best Use of Hash table to select best paths: On replacement, keep the hypotheses with high likelihood Increase the hash associativity: reduce replacement rate Replacement is done with the worst path

31 Accuracy vs Explored Hypotheses

32 Experimental Results ASR performance: DNN + Viterbi Normalized decoding Time 160 Dnn 140 Viterbi Baseline 70%Pruning 80%Pruning 90%Pruning

33 Experimental Results Normalized ASR energy-consumption ASR energy-consumption: DNN + Viterbi 120 Dnn Viterbi Baseline 70%Pruning 80%Pruning 90%Pruning

34 Locality-Aware Scheme (LAWS) For Automatic Speech Recognition

An Ultra Low-Power Hardware Accelerator for Automatic Speech Recognition

An Ultra Low-Power Hardware Accelerator for Automatic Speech Recognition An Ultra Low-Power Hardware Accelerator for Automatic Speech Recognition Reza Yazdani, Albert Segura, Jose-Maria Arnau, Antonio Gonzalez Computer Architecture Department, Universitat Politecnica de Catalunya

More information

Memory-Efficient Heterogeneous Speech Recognition Hybrid in GPU-Equipped Mobile Devices

Memory-Efficient Heterogeneous Speech Recognition Hybrid in GPU-Equipped Mobile Devices Memory-Efficient Heterogeneous Speech Recognition Hybrid in GPU-Equipped Mobile Devices Alexei V. Ivanov, CTO, Verbumware Inc. GPU Technology Conference, San Jose, March 17, 2015 Autonomous Speech Recognition

More information

Characterization of Speech Recognition Systems on GPU Architectures

Characterization of Speech Recognition Systems on GPU Architectures Facultat d Informàtica de Barcelona Master in Innovation and Research in Informatics High Performance Computing Master Thesis Characterization of Speech Recognition Systems on GPU Architectures Author:

More information

A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models

A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models and Voice-Activated Power Gating Michael Price*, James Glass, Anantha Chandrakasan MIT, Cambridge, MA * now at Analog Devices, Cambridge,

More information

Overview. Search and Decoding. HMM Speech Recognition. The Search Problem in ASR (1) Today s lecture. Steve Renals

Overview. Search and Decoding. HMM Speech Recognition. The Search Problem in ASR (1) Today s lecture. Steve Renals Overview Search and Decoding Steve Renals Automatic Speech Recognition ASR Lecture 10 January - March 2012 Today s lecture Search in (large vocabulary) speech recognition Viterbi decoding Approximate search

More information

Lattice Rescoring for Speech Recognition Using Large Scale Distributed Language Models

Lattice Rescoring for Speech Recognition Using Large Scale Distributed Language Models Lattice Rescoring for Speech Recognition Using Large Scale Distributed Language Models ABSTRACT Euisok Chung Hyung-Bae Jeon Jeon-Gue Park and Yun-Keun Lee Speech Processing Research Team, ETRI, 138 Gajeongno,

More information

Speech Technology Using in Wechat

Speech Technology Using in Wechat Speech Technology Using in Wechat FENG RAO Powered by WeChat Outline Introduce Algorithm of Speech Recognition Acoustic Model Language Model Decoder Speech Technology Open Platform Framework of Speech

More information

arxiv: v1 [cs.cl] 30 Jan 2018

arxiv: v1 [cs.cl] 30 Jan 2018 ACCELERATING RECURRENT NEURAL NETWORK LANGUAGE MODEL BASED ONLINE SPEECH RECOGNITION SYSTEM Kyungmin Lee, Chiyoun Park, Namhoon Kim, and Jaewon Lee DMC R&D Center, Samsung Electronics, Seoul, Korea {k.m.lee,

More information

Lexicographic Semirings for Exact Automata Encoding of Sequence Models

Lexicographic Semirings for Exact Automata Encoding of Sequence Models Lexicographic Semirings for Exact Automata Encoding of Sequence Models Brian Roark, Richard Sproat, and Izhak Shafran {roark,rws,zak}@cslu.ogi.edu Abstract In this paper we introduce a novel use of the

More information

Knowledge-Based Word Lattice Rescoring in a Dynamic Context. Todd Shore, Friedrich Faubel, Hartmut Helmke, Dietrich Klakow

Knowledge-Based Word Lattice Rescoring in a Dynamic Context. Todd Shore, Friedrich Faubel, Hartmut Helmke, Dietrich Klakow Knowledge-Based Word Lattice Rescoring in a Dynamic Context Todd Shore, Friedrich Faubel, Hartmut Helmke, Dietrich Klakow Section I Motivation Motivation Problem: difficult to incorporate higher-level

More information

Advanced Memory Organizations

Advanced Memory Organizations CSE 3421: Introduction to Computer Architecture Advanced Memory Organizations Study: 5.1, 5.2, 5.3, 5.4 (only parts) Gojko Babić 03-29-2018 1 Growth in Performance of DRAM & CPU Huge mismatch between CPU

More information

Weighted Finite State Transducers in Automatic Speech Recognition

Weighted Finite State Transducers in Automatic Speech Recognition Weighted Finite State Transducers in Automatic Speech Recognition ZRE lecture 10.04.2013 Mirko Hannemann Slides provided with permission, Daniel Povey some slides from T. Schultz, M. Mohri and M. Riley

More information

GPU Accelerated Model Combination for Robust Speech Recognition and Keyword Search

GPU Accelerated Model Combination for Robust Speech Recognition and Keyword Search GPU Accelerated Model Combination for Robust Speech Recognition and Keyword Search Wonkyum Lee Jungsuk Kim Ian Lane Electrical and Computer Engineering Carnegie Mellon University March 26, 2014 @GTC2014

More information

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI CMPE 655- MULTIPLE PROCESSOR SYSTEMS OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI What is MULTI PROCESSING?? Multiprocessing is the coordinated processing

More information

Why DNN Works for Speech and How to Make it More Efficient?

Why DNN Works for Speech and How to Make it More Efficient? Why DNN Works for Speech and How to Make it More Efficient? Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering, York University, CANADA Joint work with Y.

More information

Alexandria University

Alexandria University Alexandria University Faculty of Engineering Computer and Communications Department CC322: CC423: Advanced Computer Architecture Sheet 3: Instruction- Level Parallelism and Its Exploitation 1. What would

More information

Demand Code Paging for NAND Flash in MMU-less Embedded Systems. Jose Baiocchi and Bruce Childers

Demand Code Paging for NAND Flash in MMU-less Embedded Systems. Jose Baiocchi and Bruce Childers Demand Code Paging for NAND Flash in MMU-less Embedded Systems Jose Baiocchi and Pittsburgh PA USA childers@cs.pitt.edu Memory Shadowing Range of embedded systems commonly have both main memory and storage

More information

ChunkStash: Speeding Up Storage Deduplication using Flash Memory

ChunkStash: Speeding Up Storage Deduplication using Flash Memory ChunkStash: Speeding Up Storage Deduplication using Flash Memory Biplob Debnath +, Sudipta Sengupta *, Jin Li * * Microsoft Research, Redmond (USA) + Univ. of Minnesota, Twin Cities (USA) Deduplication

More information

Ping-pong decoding Combining forward and backward search

Ping-pong decoding Combining forward and backward search Combining forward and backward search Research Internship 09/ - /0/0 Mirko Hannemann Microsoft Research, Speech Technology (Redmond) Supervisor: Daniel Povey /0/0 Mirko Hannemann / Beam Search Search Errors

More information

Computer Architectures for Deep Learning. Ethan Dell and Daniyal Iqbal

Computer Architectures for Deep Learning. Ethan Dell and Daniyal Iqbal Computer Architectures for Deep Learning Ethan Dell and Daniyal Iqbal Agenda Introduction to Deep Learning Challenges Architectural Solutions Hardware Architectures CPUs GPUs Accelerators FPGAs SOCs ASICs

More information

ELE 375 Final Exam Fall, 2000 Prof. Martonosi

ELE 375 Final Exam Fall, 2000 Prof. Martonosi ELE 375 Final Exam Fall, 2000 Prof. Martonosi Question Score 1 /10 2 /20 3 /15 4 /15 5 /10 6 /20 7 /20 8 /25 9 /30 10 /30 11 /30 12 /15 13 /10 Total / 250 Please write your answers clearly in the space

More information

Memory Hierarchies. Instructor: Dmitri A. Gusev. Fall Lecture 10, October 8, CS 502: Computers and Communications Technology

Memory Hierarchies. Instructor: Dmitri A. Gusev. Fall Lecture 10, October 8, CS 502: Computers and Communications Technology Memory Hierarchies Instructor: Dmitri A. Gusev Fall 2007 CS 502: Computers and Communications Technology Lecture 10, October 8, 2007 Memories SRAM: value is stored on a pair of inverting gates very fast

More information

Memory Hierarchy Basics

Memory Hierarchy Basics Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Memory Hierarchy Basics Six basic cache optimizations: Larger block size Reduces compulsory misses Increases

More information

Lucida Sirius and DjiNN Tutorial

Lucida Sirius and DjiNN Tutorial Lucida Sirius and DjiNN Tutorial Speakers: Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang Organizers: Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Lingjia Tang, Jason Mars Before We Begin

More information

Weighted Finite State Transducers in Automatic Speech Recognition

Weighted Finite State Transducers in Automatic Speech Recognition Weighted Finite State Transducers in Automatic Speech Recognition ZRE lecture 15.04.2015 Mirko Hannemann Slides provided with permission, Daniel Povey some slides from T. Schultz, M. Mohri, M. Riley and

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Large and Fast: Exploiting Memory Hierarchy The Basic of Caches Measuring & Improving Cache Performance Virtual Memory A Common

More information

Storage Efficient Hardware Prefetching using Delta Correlating Prediction Tables

Storage Efficient Hardware Prefetching using Delta Correlating Prediction Tables Storage Efficient Hardware Prefetching using Correlating Prediction Tables Marius Grannaes Magnus Jahre Lasse Natvig Norwegian University of Science and Technology HiPEAC European Network of Excellence

More information

Tutorial 11. Final Exam Review

Tutorial 11. Final Exam Review Tutorial 11 Final Exam Review Introduction Instruction Set Architecture: contract between programmer and designers (e.g.: IA-32, IA-64, X86-64) Computer organization: describe the functional units, cache

More information

PageForge: A Near-Memory Content- Aware Page-Merging Architecture

PageForge: A Near-Memory Content- Aware Page-Merging Architecture PageForge: A Near-Memory Content- Aware Page-Merging Architecture Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrellas University of Illinois at Urbana-Champaign MICRO-50 @ Boston Motivation: Server

More information

CS3350B Computer Architecture

CS3350B Computer Architecture CS335B Computer Architecture Winter 25 Lecture 32: Exploiting Memory Hierarchy: How? Marc Moreno Maza wwwcsduwoca/courses/cs335b [Adapted from lectures on Computer Organization and Design, Patterson &

More information

Column Stores vs. Row Stores How Different Are They Really?

Column Stores vs. Row Stores How Different Are They Really? Column Stores vs. Row Stores How Different Are They Really? Daniel J. Abadi (Yale) Samuel R. Madden (MIT) Nabil Hachem (AvantGarde) Presented By : Kanika Nagpal OUTLINE Introduction Motivation Background

More information

Caches. Hiding Memory Access Times

Caches. Hiding Memory Access Times Caches Hiding Memory Access Times PC Instruction Memory 4 M U X Registers Sign Ext M U X Sh L 2 Data Memory M U X C O N T R O L ALU CTL INSTRUCTION FETCH INSTR DECODE REG FETCH EXECUTE/ ADDRESS CALC MEMORY

More information

Column-Stores vs. Row-Stores. How Different are they Really? Arul Bharathi

Column-Stores vs. Row-Stores. How Different are they Really? Arul Bharathi Column-Stores vs. Row-Stores How Different are they Really? Arul Bharathi Authors Daniel J.Abadi Samuel R. Madden Nabil Hachem 2 Contents Introduction Row Oriented Execution Column Oriented Execution Column-Store

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

A Case for Core-Assisted Bottleneck Acceleration in GPUs Enabling Flexible Data Compression with Assist Warps

A Case for Core-Assisted Bottleneck Acceleration in GPUs Enabling Flexible Data Compression with Assist Warps A Case for Core-Assisted Bottleneck Acceleration in GPUs Enabling Flexible Data Compression with Assist Warps Nandita Vijaykumar Gennady Pekhimenko, Adwait Jog, Abhishek Bhowmick, Rachata Ausavarangnirun,

More information

CACHE OPTIMIZATION. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah

CACHE OPTIMIZATION. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah CACHE OPTIMIZATION Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 4 is due on Mar. 27 th This lecture Cache

More information

Show Me the $... Performance And Caches

Show Me the $... Performance And Caches Show Me the $... Performance And Caches 1 CPU-Cache Interaction (5-stage pipeline) PCen 0x4 Add bubble PC addr inst hit? Primary Instruction Cache IR D To Memory Control Decode, Register Fetch E A B MD1

More information

GNSDK for Entourage Release Notes (Android)

GNSDK for Entourage Release Notes (Android) Version: 2.3.1 Published: 10-Jul-2015 15:16 Gracenote, Inc. 2000 Powell Street, Suite 1500 Emeryville, California 94608-1804 www.gracenote.com Table of Contents Overview 2 Contents of SDK 2 Requirements

More information

Mo Money, No Problems: Caches #2...

Mo Money, No Problems: Caches #2... Mo Money, No Problems: Caches #2... 1 Reminder: Cache Terms... Cache: A small and fast memory used to increase the performance of accessing a big and slow memory Uses temporal locality: The tendency to

More information

Computer Architecture Sample Test 1

Computer Architecture Sample Test 1 Computer Architecture Sample Test 1 Question 1. Suppose we have 32-bit memory addresses, a byte-addressable memory, and a 512 KB (2 19 bytes) cache with 32 (2 5 ) bytes per block. a) How many total lines

More information

arxiv: v1 [cs.ne] 20 Nov 2017

arxiv: v1 [cs.ne] 20 Nov 2017 E-PUR: An Energy-Efficient Processing Unit for Recurrent Neural Networks arxiv:1711.748v1 [cs.ne] 2 Nov 217 ABSTRACT Franyell Silfa, Gem Dot, Jose-Maria Arnau, Antonio Gonzalez Computer Architecture Deparment,

More information

Chapter 5 (Part II) Large and Fast: Exploiting Memory Hierarchy. Baback Izadi Division of Engineering Programs

Chapter 5 (Part II) Large and Fast: Exploiting Memory Hierarchy. Baback Izadi Division of Engineering Programs Chapter 5 (Part II) Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Virtual Machines Host computer emulates guest operating system and machine resources Improved isolation of multiple

More information

Modern Processor Architectures. L25: Modern Compiler Design

Modern Processor Architectures. L25: Modern Compiler Design Modern Processor Architectures L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant minimising the number of instructions

More information

Agenda. EE 260: Introduction to Digital Design Memory. Naive Register File. Agenda. Memory Arrays: SRAM. Memory Arrays: Register File

Agenda. EE 260: Introduction to Digital Design Memory. Naive Register File. Agenda. Memory Arrays: SRAM. Memory Arrays: Register File EE 260: Introduction to Digital Design Technology Yao Zheng Department of Electrical Engineering University of Hawaiʻi at Mānoa 2 Technology Naive Register File Write Read clk Decoder Read Write 3 4 Arrays:

More information

Final Exam Fall 2007

Final Exam Fall 2007 ICS 233 - Computer Architecture & Assembly Language Final Exam Fall 2007 Wednesday, January 23, 2007 7:30 am 10:00 am Computer Engineering Department College of Computer Sciences & Engineering King Fahd

More information

Advanced Caching Techniques (2) Department of Electrical Engineering Stanford University

Advanced Caching Techniques (2) Department of Electrical Engineering Stanford University Lecture 4: Advanced Caching Techniques (2) Department of Electrical Engineering Stanford University http://eeclass.stanford.edu/ee282 Lecture 4-1 Announcements HW1 is out (handout and online) Due on 10/15

More information

Cisco Ultra Packet Core High Performance AND Features. Aeneas Dodd-Noble, Principal Engineer Daniel Walton, Director of Engineering October 18, 2018

Cisco Ultra Packet Core High Performance AND Features. Aeneas Dodd-Noble, Principal Engineer Daniel Walton, Director of Engineering October 18, 2018 Cisco Ultra Packet Core High Performance AND Features Aeneas Dodd-Noble, Principal Engineer Daniel Walton, Director of Engineering October 18, 2018 The World s Top Networks Rely On Cisco Ultra 90+ 300M

More information

Two-Level Address Storage and Address Prediction

Two-Level Address Storage and Address Prediction Two-Level Address Storage and Address Prediction Enric Morancho, José María Llabería and Àngel Olivé Computer Architecture Department - Universitat Politècnica de Catalunya (Spain) 1 Abstract. : The amount

More information

An Oracle White Paper April 2010

An Oracle White Paper April 2010 An Oracle White Paper April 2010 In October 2009, NEC Corporation ( NEC ) established development guidelines and a roadmap for IT platform products to realize a next-generation IT infrastructures suited

More information

15-740/ Computer Architecture Lecture 20: Main Memory II. Prof. Onur Mutlu Carnegie Mellon University

15-740/ Computer Architecture Lecture 20: Main Memory II. Prof. Onur Mutlu Carnegie Mellon University 15-740/18-740 Computer Architecture Lecture 20: Main Memory II Prof. Onur Mutlu Carnegie Mellon University Today SRAM vs. DRAM Interleaving/Banking DRAM Microarchitecture Memory controller Memory buses

More information

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley,

More information

Shared Memory Multiprocessors. Symmetric Shared Memory Architecture (SMP) Cache Coherence. Cache Coherence Mechanism. Interconnection Network

Shared Memory Multiprocessors. Symmetric Shared Memory Architecture (SMP) Cache Coherence. Cache Coherence Mechanism. Interconnection Network Shared Memory Multis Processor Processor Processor i Processor n Symmetric Shared Memory Architecture (SMP) cache cache cache cache Interconnection Network Main Memory I/O System Cache Coherence Cache

More information

Low-Complexity Reorder Buffer Architecture*

Low-Complexity Reorder Buffer Architecture* Low-Complexity Reorder Buffer Architecture* Gurhan Kucuk, Dmitry Ponomarev, Kanad Ghose Department of Computer Science State University of New York Binghamton, NY 13902-6000 http://www.cs.binghamton.edu/~lowpower

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Processor-Memory Performance Gap 10000 µproc 55%/year (2X/1.5yr) Performance 1000 100 10 1 1980 1983 1986 1989 Moore s Law Processor-Memory Performance

More information

Deep Learning Accelerators

Deep Learning Accelerators Deep Learning Accelerators Abhishek Srivastava (as29) Samarth Kulshreshtha (samarth5) University of Illinois, Urbana-Champaign Submitted as a requirement for CS 433 graduate student project Outline Introduction

More information

Processors. Young W. Lim. May 12, 2016

Processors. Young W. Lim. May 12, 2016 Processors Young W. Lim May 12, 2016 Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Lecture 6: Texturing Part II: Texture Compression and GPU Latency Hiding Mechanisms. Visual Computing Systems CMU , Fall 2014

Lecture 6: Texturing Part II: Texture Compression and GPU Latency Hiding Mechanisms. Visual Computing Systems CMU , Fall 2014 Lecture 6: Texturing Part II: Texture Compression and GPU Latency Hiding Mechanisms Visual Computing Systems Review: mechanisms to reduce aliasing in the graphics pipeline When sampling visibility?! -

More information

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Transparent Offloading and Mapping () Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O Connor, Nandita Vijaykumar,

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture Cache Organization Prof. Michel A. Kinsy The course has 4 modules Module 1 Instruction Set Architecture (ISA) Simple Pipelining and Hazards Module 2 Superscalar Architectures

More information

Mesocode: Optimizations for Improving Fetch Bandwidth of Future Itanium Processors

Mesocode: Optimizations for Improving Fetch Bandwidth of Future Itanium Processors : Optimizations for Improving Fetch Bandwidth of Future Itanium Processors Marsha Eng, Hong Wang, Perry Wang Alex Ramirez, Jim Fung, and John Shen Overview Applications of for Itanium Improving fetch bandwidth

More information

Chapter 5. Memory Technology

Chapter 5. Memory Technology Chapter 5 Large and Fast: Exploiting Memory Hierarchy Memory Technology Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic RAM (DRAM) 50ns 70ns, $20 $75 per GB Magnetic disk 5ms 20ms, $0.20 $2 per

More information

Pipelining to Superscalar

Pipelining to Superscalar Pipelining to Superscalar ECE/CS 752 Fall 207 Prof. Mikko H. Lipasti University of Wisconsin-Madison Pipelining to Superscalar Forecast Limits of pipelining The case for superscalar Instruction-level parallel

More information

Memory Hierarchy. Slides contents from:

Memory Hierarchy. Slides contents from: Memory Hierarchy Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing, NPTEL Memory Performance Gap Memory

More information

ANALYSIS OF A PARALLEL LEXICAL-TREE-BASED SPEECH DECODER FOR MULTI-CORE PROCESSORS

ANALYSIS OF A PARALLEL LEXICAL-TREE-BASED SPEECH DECODER FOR MULTI-CORE PROCESSORS 17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009 ANALYSIS OF A PARALLEL LEXICAL-TREE-BASED SPEECH DECODER FOR MULTI-CORE PROCESSORS Naveen Parihar Dept. of

More information

Thread to Strand Binding of Parallel Network Applications in Massive Multi-Threaded Systems

Thread to Strand Binding of Parallel Network Applications in Massive Multi-Threaded Systems Thread to Strand Binding of Parallel Network Applications in Massive Multi-Threaded Systems Petar Radojković Vladimir Čakarević Javier Verdú Alex Pajuelo Francisco J. Cazorla Mario Nemirovsky Mateo Valero

More information

15-740/ Computer Architecture Lecture 19: Main Memory. Prof. Onur Mutlu Carnegie Mellon University

15-740/ Computer Architecture Lecture 19: Main Memory. Prof. Onur Mutlu Carnegie Mellon University 15-740/18-740 Computer Architecture Lecture 19: Main Memory Prof. Onur Mutlu Carnegie Mellon University Last Time Multi-core issues in caching OS-based cache partitioning (using page coloring) Handling

More information

Introduction. Introduction. Router Architectures. Introduction. Recent advances in routing architecture including

Introduction. Introduction. Router Architectures. Introduction. Recent advances in routing architecture including Router Architectures By the end of this lecture, you should be able to. Explain the different generations of router architectures Describe the route lookup process Explain the operation of PATRICIA algorithm

More information

Scalable Parallelization of Automatic Speech Recognition

Scalable Parallelization of Automatic Speech Recognition 1 Scalable Parallelization of Automatic Speech Recognition Jike Chong, Ekaterina Gonina, Kisun You, Kurt Keutzer 1.1 Introduction 3 1.1 Introduction Automatic speech recognition (ASR) allows multimedia

More information

A DEDUPLICATION-INSPIRED FAST DELTA COMPRESSION APPROACH W EN XIA, HONG JIANG, DA N FENG, LEI T I A N, M I N FU, YUKUN Z HOU

A DEDUPLICATION-INSPIRED FAST DELTA COMPRESSION APPROACH W EN XIA, HONG JIANG, DA N FENG, LEI T I A N, M I N FU, YUKUN Z HOU A DEDUPLICATION-INSPIRED FAST DELTA COMPRESSION APPROACH W EN XIA, HONG JIANG, DA N FENG, LEI T I A N, M I N FU, YUKUN Z HOU PRESENTED BY ROMAN SHOR Overview Technics of data reduction in storage systems:

More information

Why memory hierarchy

Why memory hierarchy Why memory hierarchy (3 rd Ed: p.468-487, 4 th Ed: p. 452-470) users want unlimited fast memory fast memory expensive, slow memory cheap cache: small, fast memory near CPU large, slow memory (main memory,

More information

Hakam Zaidan Stephen Moore

Hakam Zaidan Stephen Moore Hakam Zaidan Stephen Moore Outline Vector Architectures Properties Applications History Westinghouse Solomon ILLIAC IV CDC STAR 100 Cray 1 Other Cray Vector Machines Vector Machines Today Introduction

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Processor-Memory Performance Gap 10000 µproc 55%/year (2X/1.5yr) Performance 1000 100 10 1 1980 1983 1986 1989 Moore s Law Processor-Memory Performance

More information

Memory Hierarchy Basics. Ten Advanced Optimizations. Small and Simple

Memory Hierarchy Basics. Ten Advanced Optimizations. Small and Simple Memory Hierarchy Basics Six basic cache optimizations: Larger block size Reduces compulsory misses Increases capacity and conflict misses, increases miss penalty Larger total cache capacity to reduce miss

More information

EN2910A: Advanced Computer Architecture Topic 02: Review of classical concepts

EN2910A: Advanced Computer Architecture Topic 02: Review of classical concepts EN2910A: Advanced Computer Architecture Topic 02: Review of classical concepts Prof. Sherief Reda School of Engineering Brown University S. Reda EN2910A FALL'15 1 Classical concepts (prerequisite) 1. Instruction

More information

Administrivia. HW0 scores, HW1 peer-review assignments out. If you re having Cython trouble with HW2, let us know.

Administrivia. HW0 scores, HW1 peer-review assignments out. If you re having Cython trouble with HW2, let us know. Administrivia HW0 scores, HW1 peer-review assignments out. HW2 out, due Nov. 2. If you re having Cython trouble with HW2, let us know. Review on Wednesday: Post questions on Piazza Introduction to GPUs

More information

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY 1 Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored

More information

Write only as much as necessary. Be brief!

Write only as much as necessary. Be brief! 1 CIS371 Computer Organization and Design Midterm Exam Prof. Martin Thursday, March 15th, 2012 This exam is an individual-work exam. Write your answers on these pages. Additional pages may be attached

More information

ENGN 2910A Homework 03 (140 points) Due Date: Oct 3rd 2013

ENGN 2910A Homework 03 (140 points) Due Date: Oct 3rd 2013 ENGN 2910A Homework 03 (140 points) Due Date: Oct 3rd 2013 Professor: Sherief Reda School of Engineering, Brown University 1. [from Debois et al. 30 points] Consider the non-pipelined implementation of

More information

Chapter 03. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1

Chapter 03. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1 Chapter 03 Authors: John Hennessy & David Patterson Copyright 2011, Elsevier Inc. All rights Reserved. 1 Figure 3.3 Comparison of 2-bit predictors. A noncorrelating predictor for 4096 bits is first, followed

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

ECE/CS 552: Pipelining to Superscalar Prof. Mikko Lipasti

ECE/CS 552: Pipelining to Superscalar Prof. Mikko Lipasti ECE/CS 552: Pipelining to Superscalar Prof. Mikko Lipasti Lecture notes based in part on slides created by Mark Hill, David Wood, Guri Sohi, John Shen and Jim Smith Pipelining to Superscalar Forecast Real

More information

c. What are the machine cycle times (in nanoseconds) of the non-pipelined and the pipelined implementations?

c. What are the machine cycle times (in nanoseconds) of the non-pipelined and the pipelined implementations? Brown University School of Engineering ENGN 164 Design of Computing Systems Professor Sherief Reda Homework 07. 140 points. Due Date: Monday May 12th in B&H 349 1. [30 points] Consider the non-pipelined

More information

Caching Basics. Memory Hierarchies

Caching Basics. Memory Hierarchies Caching Basics CS448 1 Memory Hierarchies Takes advantage of locality of reference principle Most programs do not access all code and data uniformly, but repeat for certain data choices spatial nearby

More information

Lecture 12. Memory Design & Caches, part 2. Christos Kozyrakis Stanford University

Lecture 12. Memory Design & Caches, part 2. Christos Kozyrakis Stanford University Lecture 12 Memory Design & Caches, part 2 Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b 1 Announcements HW3 is due today PA2 is available on-line today Part 1 is due on 2/27

More information

CSE 2021: Computer Organization

CSE 2021: Computer Organization CSE 2021: Computer Organization Lecture-12a Caches-1 The basics of caches Shakil M. Khan Memory Technology Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic RAM (DRAM) 50ns 70ns, $20 $75 per GB

More information

EITF20: Computer Architecture Part4.1.1: Cache - 2

EITF20: Computer Architecture Part4.1.1: Cache - 2 EITF20: Computer Architecture Part4.1.1: Cache - 2 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Cache performance optimization Bandwidth increase Reduce hit time Reduce miss penalty Reduce miss

More information

SRAMs to Memory. Memory Hierarchy. Locality. Low Power VLSI System Design Lecture 10: Low Power Memory Design

SRAMs to Memory. Memory Hierarchy. Locality. Low Power VLSI System Design Lecture 10: Low Power Memory Design SRAMs to Memory Low Power VLSI System Design Lecture 0: Low Power Memory Design Prof. R. Iris Bahar October, 07 Last lecture focused on the SRAM cell and the D or D memory architecture built from these

More information

Superscalar Processor Design

Superscalar Processor Design Superscalar Processor Design Superscalar Organization Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 26 SE-273: Processor Design Super-scalar Organization Fetch Instruction

More information

Evaluation of a High Performance Code Compression Method

Evaluation of a High Performance Code Compression Method Evaluation of a High Performance Code Compression Method Charles Lefurgy, Eva Piccininni, and Trevor Mudge Advanced Computer Architecture Laboratory Electrical Engineering and Computer Science Dept. The

More information

High-Performance Data Loading and Augmentation for Deep Neural Network Training

High-Performance Data Loading and Augmentation for Deep Neural Network Training High-Performance Data Loading and Augmentation for Deep Neural Network Training Trevor Gale tgale@ece.neu.edu Steven Eliuk steven.eliuk@gmail.com Cameron Upright c.upright@samsung.com Roadmap 1. The General-Purpose

More information

Scalable GPU Graph Traversal!

Scalable GPU Graph Traversal! Scalable GPU Graph Traversal Duane Merrill, Michael Garland, and Andrew Grimshaw PPoPP '12 Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming Benwen Zhang

More information

The Reuse Cache Downsizing the Shared Last-Level Cache! Jorge Albericio 1, Pablo Ibáñez 2, Víctor Viñals 2, and José M. Llabería 3!!!

The Reuse Cache Downsizing the Shared Last-Level Cache! Jorge Albericio 1, Pablo Ibáñez 2, Víctor Viñals 2, and José M. Llabería 3!!! The Reuse Cache Downsizing the Shared Last-Level Cache! Jorge Albericio 1, Pablo Ibáñez 2, Víctor Viñals 2, and José M. Llabería 3!!! 1 2 3 Modern CMPs" Intel e5 2600 (2013)! SLLC" AMD Orochi (2012)! SLLC"

More information

Tracking Acceleration with FPGAs. Future Tracking, CMS Week 4/12/17 Sioni Summers

Tracking Acceleration with FPGAs. Future Tracking, CMS Week 4/12/17 Sioni Summers Tracking Acceleration with FPGAs Future Tracking, CMS Week 4/12/17 Sioni Summers Contents Introduction FPGAs & 'DataFlow Engines' for computing Device architecture Maxeler HLT Tracking Acceleration 2 Introduction

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Principle of Locality Programs access a small proportion of their address space at any time Temporal locality Items accessed recently are likely to

More information

SEESAW: Set Enhanced Superpage Aware caching

SEESAW: Set Enhanced Superpage Aware caching SEESAW: Set Enhanced Superpage Aware caching http://synergy.ece.gatech.edu/ Set Associativity Mayank Parasar, Abhishek Bhattacharjee Ω, Tushar Krishna School of Electrical and Computer Engineering Georgia

More information

The check bits are in bit numbers 8, 4, 2, and 1.

The check bits are in bit numbers 8, 4, 2, and 1. The University of Western Australia Department of Electrical and Electronic Engineering Computer Architecture 219 (Tutorial 8) 1. [Stallings 2000] Suppose an 8-bit data word is stored in memory is 11000010.

More information

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed)

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed) Computing Systems & Performance Memory Hierarchy MSc Informatics Eng. 2011/12 A.J.Proença Memory Hierarchy (most slides are borrowed) AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 1 2

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 22: Direct Mapped Cache Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Intel 8-core i7-5960x 3 GHz, 8-core, 20 MB of cache, 140

More information

Introduction. Introduction. Motivation. Main Contributions. Issue Logic - Motivation. Power- and Performance -Aware Architectures.

Introduction. Introduction. Motivation. Main Contributions. Issue Logic - Motivation. Power- and Performance -Aware Architectures. Introduction Power- and Performance -Aware Architectures PhD. candidate: Ramon Canal Corretger Advisors: Antonio onzález Colás (UPC) James E. Smith (U. Wisconsin-Madison) Departament d Arquitectura de

More information

PacketShader: A GPU-Accelerated Software Router

PacketShader: A GPU-Accelerated Software Router PacketShader: A GPU-Accelerated Software Router Sangjin Han In collaboration with: Keon Jang, KyoungSoo Park, Sue Moon Advanced Networking Lab, CS, KAIST Networked and Distributed Computing Systems Lab,

More information