Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL

Size: px
Start display at page:

Download "Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL"

Transcription

1 SABELA RAMOS, TORSTEN HOEFLER Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL spcl.inf.ethz.ch

2 Microarchitectures are becoming more and more complex CPU L1 CPU L1 CPU L1 CPU L1 L2 CPU L1 CPU L1 L2 CPU L1 CPU L1 L2 CPU L1 G5 CPU L1 L2 CPU L1 L2 G5 L2 L1 CPU L2 L1 CPU 2

3 How to optimize codes for these complex architectures? Performance engineering: encompasses the set of roles, skills, activities, practices, tools, and deliverables applied at every phase of the systems development life cycle which ensures that a solution will be designed, implemented, and operationally supported to meet the non-functional requirements for performance (such as throughput, latency, or memory usage). Manually profile codes and tune them to the given architecture Requires highly-skilled performance engineers Need familiarity with NUMA (topology, bandwidths etc.) Caches (associativity, sizes etc.) Microarchitecture (number of outstanding loads etc.) Trust me, I m an engineer! 3

4 An engineering example Tacoma Narrows Bridge 4

5 Scientific Performance Engineering 1) Observe 2) Model 3) Understand 4) Build 5

6 Modeling by example: KNL Architecture (mesh) MCDRAM MCDRAM PCIe MCDRAM MCDRAM EDC EDC IIO EDC EDC IMC IMC EDC EDC Misc EDC EDC Core 2 VPU 1 MB L2 CHA Core 2 VPU MCDRAM MCDRAM MCDRAM MCDRAM 6

7 KNL Architecture (memory: Flat & Cache) MCDRAM MCDRAM PCIe MCDRAM MCDRAM EDC EDC IIO EDC EDC IMC IMC EDC EDC Misc EDC EDC Core 2 VPU 1 MB L2 CHA Core 2 VPU MCDRAM MCDRAM MCDRAM MCDRAM 7

8 KNL Architecture (all to all mode) MCDRAM MCDRAM PCIe MCDRAM MCDRAM EDC EDC IIO EDC EDC IMC IMC EDC EDC Misc EDC EDC Core 2 VPU 1 MB L2 CHA Core 2 VPU MCDRAM MCDRAM MCDRAM MCDRAM 8

9 KNL Architecture (Quadrant or Hemisphere) MCDRAM MCDRAM PCIe MCDRAM MCDRAM EDC EDC IIO EDC EDC IMC IMC EDC EDC Misc EDC EDC Core 2 VPU 1 MB L2 CHA Core 2 VPU MCDRAM MCDRAM MCDRAM MCDRAM 9

10 KNL Architecture (SNC-4 or SNC-2) MCDRAM MCDRAM PCIe MCDRAM MCDRAM EDC EDC IIO EDC EDC IMC IMC EDC EDC Misc EDC EDC Core 2 VPU 1 MB L2 CHA Core 2 VPU MCDRAM MCDRAM MCDRAM MCDRAM 10

11 KNL Architecture MCDRAM MCDRAM PCIe MCDRAM MCDRAM EDC EDC IIO EDC EDC How much does this all matter? What is the real cost of accessing cache? IMC IMC What is the cost of accessing memory? EDC EDC Misc EDC EDC MCDRAM MCDRAM MCDRAM MCDRAM 11

12 Step 1: Understand core-to-core transfers MESIF cache coherence spcl.inf.ethz.ch Write back overhead Location: only 5-15% difference Contention effects? That is curious! All values are medians within 10% of the 95% nonparametric CI, cf. TH, RB: Scientific Benchmarking of Parallel Computing Systems, SC16 12

13 Step 2: Understand core-to-memory transfers DRAM and MCDRAM MCDRAM 20% slower! MCDRAM 4-6x faster! Need to read and write for full bandwidth Cache mode >20% slower Bandwidth suffers a bit All values are medians within 10% of the 95% nonparametric CI, cf. TH, RB: Scientific Benchmarking of Parallel Computing Systems, SC16 13

14 Performance engineers optimize your code! Are you kidding me? 14

15 A principled approach to designing cache-to-cache broadcast algorithms Multi-ary tree example 0 depth d = 2 Tree depth Level size 1 2 k 1 = k 2 = 3 Tree cost Reached threads S. Ramos, TH: Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi, ACM HPDC 13 S. Ramos, TH: Cache line aware optimizations for ccnuma systems (IEEE TPDS 17). 15

16 Model-driven performance engineering for broadcast Binary or binomial trees? Oh! But sure I can do that. 16

17 Model-driven performance engineering for broadcast Binary or binomial trees? 13x faster, lower variance Oh! But sure I can do that. 17

18 Easy to generalize to similar algorithms Barrier (7x faster than OpenMP) Reduce (5x faster then OpenMP) 18

19 Sorting in complex memories Triad Cache Mode SNC4 Check! Let s do something Big Data! Triad Flat Mode SNC4 We ll need a parallel sort on all cores, right? 19

20 Memory model: Bitonic Mergesort CPU0 CPU1 CPU0 Slices of 16 elements go through a bitonic network. Communication: CPU0 accesses data from local and remote caches. Synchronization: CPU0 waits for CPU1. Memory accesses: latency vs. bandwidth. 20

21 Modeling Bitonic Sorting L1 access cost memory access cost elements in L1 L2 access cost elements in L2 21

22 Bitonic Sort of 1 kib measurement model including synchronization cost Synchronization outweights memory costs for small data! So don t parallelize too much! model (just) memory costs 22

23 Bitonic Sort of 4 MiB model including synchronization cost parallelization boundary model (just) memory costs 23

24 Bitonic Sort of 1 GiB Always use all cores! synchronization negligible 24

25 The most surprising result last The model (and practical measurements) indicate that it does not matter. Hey, but which memory? DRAM or MCDRAM? Thesis: the higher bandwidth of MCDRAM did not help due to the higher latency (log 2 n depth). Disclaimer: this is NOT the best sorting algorithm for Xeon Phi KNL. It is the best we found with limited effort. We suspect that a combination of algorithms will perform best. 25

26 spcl.inf.ethz.ch Scientific performance engineering for complex memory systems Questions/Discussions? 26

Intel Xeon Phi архитектура, модели программирования, оптимизация.

Intel Xeon Phi архитектура, модели программирования, оптимизация. Нижний Новгород, 2017 Intel Xeon Phi архитектура, модели программирования, оптимизация. Дмитрий Прохоров, Дмитрий Рябцев, Intel Agenda What and Why Intel Xeon Phi Top 500 insights, roadmap, architecture

More information

IFS RAPS14 benchmark on 2 nd generation Intel Xeon Phi processor

IFS RAPS14 benchmark on 2 nd generation Intel Xeon Phi processor IFS RAPS14 benchmark on 2 nd generation Intel Xeon Phi processor D.Sc. Mikko Byckling 17th Workshop on High Performance Computing in Meteorology October 24 th 2016, Reading, UK Legal Disclaimer & Optimization

More information

Bei Wang, Dmitry Prohorov and Carlos Rosales

Bei Wang, Dmitry Prohorov and Carlos Rosales Bei Wang, Dmitry Prohorov and Carlos Rosales Aspects of Application Performance What are the Aspects of Performance Intel Hardware Features Omni-Path Architecture MCDRAM 3D XPoint Many-core Xeon Phi AVX-512

More information

Introduction to tuning on KNL platforms

Introduction to tuning on KNL platforms Introduction to tuning on KNL platforms Gilles Gouaillardet RIST gilles@rist.or.jp 1 Agenda Why do we need many core platforms? KNL architecture Single-thread optimization Parallelization Common pitfalls

More information

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA SUDHEER CHUNDURI, SCOTT PARKER, KEVIN HARMS, VITALI MOROZOV, CHRIS KNIGHT, KALYAN KUMARAN Performance Engineering Group Argonne Leadership Computing Facility

More information

Intel Xeon Phi архитектура, модели программирования, оптимизация.

Intel Xeon Phi архитектура, модели программирования, оптимизация. Нижний Новгород, 2016 Intel Xeon Phi архитектура, модели программирования, оптимизация. Дмитрий Прохоров, Intel Agenda What and Why Intel Xeon Phi Top 500 insights, roadmap, architecture How Programming

More information

Intel Many-Core Processor Architecture for High Performance Computing

Intel Many-Core Processor Architecture for High Performance Computing Intel Many-Core Processor Architecture for High Performance Computing Andrey Semin Principal Engineer, Intel IXPUG, Moscow June 1, 2017 Legal INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH

More information

Intel Architecture for HPC

Intel Architecture for HPC Intel Architecture for HPC Georg Zitzlsberger georg.zitzlsberger@vsb.cz 1st of March 2018 Agenda Salomon Architectures Intel R Xeon R processors v3 (Haswell) Intel R Xeon Phi TM coprocessor (KNC) Ohter

More information

Introduction to tuning on KNL platforms

Introduction to tuning on KNL platforms Introduction to tuning on KNL platforms Gilles Gouaillardet RIST gilles@rist.or.jp 1 Agenda Why do we need many core platforms? KNL architecture Post-K overview Single-thread optimization Parallelization

More information

Lecture 10: Cache Coherence. Parallel Computer Architecture and Programming CMU / 清华 大学, Summer 2017

Lecture 10: Cache Coherence. Parallel Computer Architecture and Programming CMU / 清华 大学, Summer 2017 Lecture 10: Cache Coherence Parallel Computer Architecture and Programming CMU / 清华 大学, Summer 2017 Course schedule (where we are) Week 1: How parallel hardware works: types of parallel execution in modern

More information

EN164: Design of Computing Systems Lecture 34: Misc Multi-cores and Multi-processors

EN164: Design of Computing Systems Lecture 34: Misc Multi-cores and Multi-processors EN164: Design of Computing Systems Lecture 34: Misc Multi-cores and Multi-processors Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering

More information

The Intel Xeon PHI Architecture

The Intel Xeon PHI Architecture The Intel Xeon PHI Architecture (codename Knights Landing ) Dr. Christopher Dahnken Senior Application Engineer Software and Services Group Legal Disclaimer & Optimization Notice INFORMATION IN THIS DOCUMENT

More information

TORSTEN HOEFLER

TORSTEN HOEFLER TORSTEN HOEFLER Performance Modeling for Future Computing Technologies Presentation at Tsinghua University, Beijing, China Part of the 60 th anniversary celebration of the Computer Science Department (#9)

More information

Dr Christopher Dahnken. SSG DRD EMEA Datacenter

Dr Christopher Dahnken. SSG DRD EMEA Datacenter Dr Christopher Dahnken SSG DRD EMEA Datacenter Legal Disclaimer & Optimization Notice INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Multi-core today: Intel Xeon 600v4 (016) Xeon E5-600v4 Broadwell

More information

Performance and Energy Usage of Workloads on KNL and Haswell Architectures

Performance and Energy Usage of Workloads on KNL and Haswell Architectures Performance and Energy Usage of Workloads on KNL and Haswell Architectures Tyler Allen 1 Christopher Daley 2 Doug Doerfler 2 Brian Austin 2 Nicholas Wright 2 1 Clemson University 2 National Energy Research

More information

Benchmark results on Knight Landing architecture

Benchmark results on Knight Landing architecture Benchmark results on Knight Landing architecture Domenico Guida, CINECA SCAI (Bologna) Giorgio Amati, CINECA SCAI (Roma) Milano, 21/04/2017 KNL vs BDW A1 BDW A2 KNL cores per node 2 x 18 @2.3 GHz 1 x 68

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson adrianj@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past, computers

More information

Modelling Communications in Cache Coherent Systems. Sabela Ramos Garea Torsten Hoefler

Modelling Communications in Cache Coherent Systems. Sabela Ramos Garea Torsten Hoefler Modelling Communications in Cache Coherent Systems Sabela Ramos Garea Torsten Hoefler March 8, 2013 Contents A Communication Model for Cache-Coherent Systems 2 1 Development of Simple Cache Models 4 1.1

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson a.jackson@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past,

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework and numa control Examples

More information

Overview: Shared Memory Hardware. Shared Address Space Systems. Shared Address Space and Shared Memory Computers. Shared Memory Hardware

Overview: Shared Memory Hardware. Shared Address Space Systems. Shared Address Space and Shared Memory Computers. Shared Memory Hardware Overview: Shared Memory Hardware Shared Address Space Systems overview of shared address space systems example: cache hierarchy of the Intel Core i7 cache coherency protocols: basic ideas, invalidate and

More information

Overview: Shared Memory Hardware

Overview: Shared Memory Hardware Overview: Shared Memory Hardware overview of shared address space systems example: cache hierarchy of the Intel Core i7 cache coherency protocols: basic ideas, invalidate and update protocols false sharing

More information

Deep Learning with Intel DAAL

Deep Learning with Intel DAAL Deep Learning with Intel DAAL on Knights Landing Processor David Ojika dave.n.ojika@cern.ch March 22, 2017 Outline Introduction and Motivation Intel Knights Landing Processor Intel Data Analytics and Acceleration

More information

1. Many Core vs Multi Core. 2. Performance Optimization Concepts for Many Core. 3. Performance Optimization Strategy for Many Core

1. Many Core vs Multi Core. 2. Performance Optimization Concepts for Many Core. 3. Performance Optimization Strategy for Many Core 1. Many Core vs Multi Core 2. Performance Optimization Concepts for Many Core 3. Performance Optimization Strategy for Many Core 4. Example Case Studies NERSC s Cori will begin to transition the workload

More information

Interconnection Networks

Interconnection Networks Lecture 15: Interconnection Networks Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2016 Credit: some slides created by Michael Papamichael, others based on slides from Onur Mutlu

More information

Benchmark results on Knight Landing (KNL) architecture

Benchmark results on Knight Landing (KNL) architecture Benchmark results on Knight Landing (KNL) architecture Domenico Guida, CINECA SCAI (Bologna) Giorgio Amati, CINECA SCAI (Roma) Roma 23/10/2017 KNL, BDW, SKL A1 BDW A2 KNL A3 SKL cores per node 2 x 18 @2.3

More information

COSC 6385 Computer Architecture - Multi Processor Systems

COSC 6385 Computer Architecture - Multi Processor Systems COSC 6385 Computer Architecture - Multi Processor Systems Fall 2006 Classification of Parallel Architectures Flynn s Taxonomy SISD: Single instruction single data Classical von Neumann architecture SIMD:

More information

Introduction to tuning on many core platforms. Gilles Gouaillardet RIST

Introduction to tuning on many core platforms. Gilles Gouaillardet RIST Introduction to tuning on many core platforms Gilles Gouaillardet RIST gilles@rist.or.jp Agenda Why do we need many core platforms? Single-thread optimization Parallelization Conclusions Why do we need

More information

Munara Tolubaeva Technical Consulting Engineer. 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries.

Munara Tolubaeva Technical Consulting Engineer. 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries. Munara Tolubaeva Technical Consulting Engineer 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries. notices and disclaimers Intel technologies features and benefits depend

More information

Intel Knights Landing Hardware

Intel Knights Landing Hardware Intel Knights Landing Hardware TACC KNL Tutorial IXPUG Annual Meeting 2016 PRESENTED BY: John Cazes Lars Koesterke 1 Intel s Xeon Phi Architecture Leverages x86 architecture Simpler x86 cores, higher compute

More information

Outline. Motivation Parallel k-means Clustering Intel Computing Architectures Baseline Performance Performance Optimizations Future Trends

Outline. Motivation Parallel k-means Clustering Intel Computing Architectures Baseline Performance Performance Optimizations Future Trends Collaborators: Richard T. Mills, Argonne National Laboratory Sarat Sreepathi, Oak Ridge National Laboratory Forrest M. Hoffman, Oak Ridge National Laboratory Jitendra Kumar, Oak Ridge National Laboratory

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

Welcome. Virtual tutorial starts at BST

Welcome. Virtual tutorial starts at BST Welcome Virtual tutorial starts at 15.00 BST Using KNL on ARCHER Adrian Jackson With thanks to: adrianj@epcc.ed.ac.uk @adrianjhpc Harvey Richardson from Cray Slides from Intel Xeon Phi Knights Landing

More information

Memory Footprint of Locality Information On Many-Core Platforms Brice Goglin Inria Bordeaux Sud-Ouest France 2018/05/25

Memory Footprint of Locality Information On Many-Core Platforms Brice Goglin Inria Bordeaux Sud-Ouest France 2018/05/25 ROME Workshop @ IPDPS Vancouver Memory Footprint of Locality Information On Many- Platforms Brice Goglin Inria Bordeaux Sud-Ouest France 2018/05/25 Locality Matters to HPC Applications Locality Matters

More information

arxiv: v1 [cs.dc] 15 Aug 2017

arxiv: v1 [cs.dc] 15 Aug 2017 Performance Characterization of Multi-threaded Graph Processing Applications on Intel Many-Integrated-Core Architecture Xu Liu, Langshi Chen, Jesun S. Firoz, Judy Qiu, Lei Jiang Department of Intelligent

More information

IHK/McKernel: A Lightweight Multi-kernel Operating System for Extreme-Scale Supercomputing

IHK/McKernel: A Lightweight Multi-kernel Operating System for Extreme-Scale Supercomputing : A Lightweight Multi-kernel Operating System for Extreme-Scale Supercomputing Balazs Gerofi Exascale System Software Team, RIKEN Center for Computational Science 218/Nov/15 SC 18 Intel Extreme Computing

More information

High-Performance Distributed RMA Locks

High-Performance Distributed RMA Locks High-Performance Distributed RMA Locks PATRICK SCHMID, MACIEJ BESTA, TORSTEN HOEFLER Presented at ARM Research, Austin, Texas, USA, Feb. 2017 NEED FOR EFFICIENT LARGE-SCALE SYNCHRONIZATION spcl.inf.ethz.ch

More information

Efficient Parallel Programming on Xeon Phi for Exascale

Efficient Parallel Programming on Xeon Phi for Exascale Efficient Parallel Programming on Xeon Phi for Exascale Eric Petit, Intel IPAG, Seminar at MDLS, Saclay, 29th November 2016 Legal Disclaimers Intel technologies features and benefits depend on system configuration

More information

The GeantV prototype on KNL. Federico Carminati, Andrei Gheata and Sofia Vallecorsa for the GeantV team

The GeantV prototype on KNL. Federico Carminati, Andrei Gheata and Sofia Vallecorsa for the GeantV team The GeantV prototype on KNL Federico Carminati, Andrei Gheata and Sofia Vallecorsa for the GeantV team Outline Introduction (Digression on vectorization approach) Geometry benchmarks: vectorization and

More information

Comparing Memory Systems for Chip Multiprocessors

Comparing Memory Systems for Chip Multiprocessors Comparing Memory Systems for Chip Multiprocessors Jacob Leverich Hideho Arakida, Alex Solomatnikov, Amin Firoozshahian, Mark Horowitz, Christos Kozyrakis Computer Systems Laboratory Stanford University

More information

Overview. Processor organizations Types of parallel machines. Real machines

Overview. Processor organizations Types of parallel machines. Real machines Course Outline Introduction in algorithms and applications Parallel machines and architectures Overview of parallel machines, trends in top-500, clusters, DAS Programming methods, languages, and environments

More information

Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System

Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System Center for Information ervices and High Performance Computing (ZIH) Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor ystem Parallel Architectures and Compiler Technologies

More information

Ravindra Babu Ganapathi Product Owner/ Technical Lead Omni Path Libraries, Intel Corp. Sayantan Sur Senior Software Engineer, Intel Corp.

Ravindra Babu Ganapathi Product Owner/ Technical Lead Omni Path Libraries, Intel Corp. Sayantan Sur Senior Software Engineer, Intel Corp. Ravindra Babu Ganapathi Product Owner/ Technical Lead Omni Path Libraries, Intel Corp. Sayantan Sur Senior Software Engineer, Intel Corp. Legal All information provided here is subject to change without

More information

Approaches to Performance Evaluation On Shared Memory and Cluster Architectures

Approaches to Performance Evaluation On Shared Memory and Cluster Architectures Approaches to Performance Evaluation On Shared Memory and Cluster Architectures Peter Strazdins (and the CC-NUMA Team), CC-NUMA Project, Department of Computer Science, The Australian National University

More information

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Elements of a Parallel Computer Hardware Multiple processors Multiple

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Computer Architecture ECE 568 Part 6 Input/Output Israel Koren ECE568/Koren Part.6. CPU performance keeps increasing 26 72-core Xeon

More information

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R. Alam, Thomas C. Schulthess, Torsten Hoefler Swiss National Supercomputing

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

Contents. Preface xvii Acknowledgments. CHAPTER 1 Introduction to Parallel Computing 1. CHAPTER 2 Parallel Programming Platforms 11

Contents. Preface xvii Acknowledgments. CHAPTER 1 Introduction to Parallel Computing 1. CHAPTER 2 Parallel Programming Platforms 11 Preface xvii Acknowledgments xix CHAPTER 1 Introduction to Parallel Computing 1 1.1 Motivating Parallelism 2 1.1.1 The Computational Power Argument from Transistors to FLOPS 2 1.1.2 The Memory/Disk Speed

More information

Introduction to Xeon Phi. Bill Barth January 11, 2013

Introduction to Xeon Phi. Bill Barth January 11, 2013 Introduction to Xeon Phi Bill Barth January 11, 2013 What is it? Co-processor PCI Express card Stripped down Linux operating system Dense, simplified processor Many power-hungry operations removed Wider

More information

Parallel Computing Using OpenMP/MPI. Presented by - Jyotsna 29/01/2008

Parallel Computing Using OpenMP/MPI. Presented by - Jyotsna 29/01/2008 Parallel Computing Using OpenMP/MPI Presented by - Jyotsna 29/01/2008 Serial Computing Serially solving a problem Parallel Computing Parallelly solving a problem Parallel Computer Memory Architecture Shared

More information

Nova Scheduler: Optimizing, Configuring and Deploying NFV VNF's on OpenStack

Nova Scheduler: Optimizing, Configuring and Deploying NFV VNF's on OpenStack Nova Scheduler: Optimizing, Configuring and Deploying NFV VNF's on OpenStack Ian Jolliffe, Chris Friesen WHEN IT MATTERS, IT RUNS ON WIND RIVER. 2017 WIND RIVER. ALL RIGHTS RESERVED. Ian Jolliffe 2 2017

More information

EECS 750: Advanced Operating Systems. 01/29 /2014 Heechul Yun

EECS 750: Advanced Operating Systems. 01/29 /2014 Heechul Yun EECS 750: Advanced Operating Systems 01/29 /2014 Heechul Yun 1 Administrative Next summary assignment Resource Containers: A New Facility for Resource Management in Server Systems, OSDI 99 due by 11:59

More information

Parallel Computing Platforms

Parallel Computing Platforms Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3054: Multicore Systems, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Spring 2010 Flynn s Taxonomy SISD:

More information

Evaluating On-Node GPU Interconnects for Deep Learning Workloads

Evaluating On-Node GPU Interconnects for Deep Learning Workloads Evaluating On-Node GPU Interconnects for Deep Learning Workloads NATHAN TALLENT, NITIN GAWANDE, CHARLES SIEGEL ABHINAV VISHNU, ADOLFY HOISIE Pacific Northwest National Lab PMBS 217 (@ SC) November 13,

More information

Multithreaded Architectures and The Sort Benchmark. Phil Garcia Hank Korth Dept. of Computer Science and Engineering Lehigh University

Multithreaded Architectures and The Sort Benchmark. Phil Garcia Hank Korth Dept. of Computer Science and Engineering Lehigh University Multithreaded Architectures and The Sort Benchmark Phil Garcia Hank Korth Dept. of Computer Science and Engineering Lehigh University About our Sort Benchmark Based on the benchmark proposed in A measure

More information

Achieving High Performance. Jim Cownie Principal Engineer SSG/DPD/TCAR Multicore Challenge 2013

Achieving High Performance. Jim Cownie Principal Engineer SSG/DPD/TCAR Multicore Challenge 2013 Achieving High Performance Jim Cownie Principal Engineer SSG/DPD/TCAR Multicore Challenge 2013 Does Instruction Set Matter? We find that ARM and x86 processors are simply engineering design points optimized

More information

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh Accelerating Pointer Chasing in 3D-Stacked : Challenges, Mechanisms, Evaluation Kevin Hsieh Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, Onur Mutlu Executive Summary

More information

A Cost Model for Data Stream Processing on Modern Hardware Constantin Pohl, Philipp Götze, Kai-Uwe Sattler

A Cost Model for Data Stream Processing on Modern Hardware Constantin Pohl, Philipp Götze, Kai-Uwe Sattler Processing on Modern Hardware Constantin Pohl, Philipp Götze, Kai-Uwe Sattler 31.08.17 Motivation and Introduction Main goals on Data Stream Processing Queries: High throughput & low latency Responsibility:

More information

INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT

INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT UPDATE ON OPENSWR: A SCALABLE HIGH- PERFORMANCE SOFTWARE RASTERIZER FOR SCIVIS Jefferson Amstutz Intel

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Edgar Gabriel Fall 2015 Flynn s Taxonomy

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

NUMA-Aware Shared-Memory Collective Communication for MPI

NUMA-Aware Shared-Memory Collective Communication for MPI NUMA-Aware Shared-Memory Collective Communication for MPI Shigang Li Torsten Hoefler Marc Snir Presented By: Shafayat Rahman Motivation Number of cores per node keeps increasing So it becomes important

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Portland State University ECE 588/688 Introduction to Parallel Computing Reference: Lawrence Livermore National Lab Tutorial https://computing.llnl.gov/tutorials/parallel_comp/ Copyright by Alaa Alameldeen

More information

arxiv: v2 [hep-lat] 3 Nov 2016

arxiv: v2 [hep-lat] 3 Nov 2016 MILC staggered conjugate gradient performance on Intel KNL arxiv:1611.00728v2 [hep-lat] 3 Nov 2016 Department of Physics, Indiana University, Bloomington IN 47405, USA E-mail: ruizli@umail.iu.edu Carleton

More information

Modelling and Evaluating Performance of Atomic Operations

Modelling and Evaluating Performance of Atomic Operations Modelling and Evaluating Performance of Atomic Operations Hermann Schweizer hermannschweizer@hotmail.com January 11 215 Advisors: Prof. Dr. T. Hoefler, Maciej Besta Department of Computer Science, ETH

More information

VLPL-S Optimization on Knights Landing

VLPL-S Optimization on Knights Landing VLPL-S Optimization on Knights Landing 英特尔软件与服务事业部 周姗 2016.5 Agenda VLPL-S 性能分析 VLPL-S 性能优化 总结 2 VLPL-S Workload Descriptions VLPL-S is the in-house code from SJTU, paralleled with MPI and written in C++.

More information

Performance of the AMD Opteron LS21 for IBM BladeCenter

Performance of the AMD Opteron LS21 for IBM BladeCenter August 26 Performance Analysis Performance of the AMD Opteron LS21 for IBM BladeCenter Douglas M. Pase and Matthew A. Eckl IBM Systems and Technology Group Page 2 Abstract In this paper we examine the

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Moore s law Intel Sandy Bridge EP: 2.3 billion Nvidia

More information

Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel Xeon Phi Processor

Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel Xeon Phi Processor * Some names and brands may be claimed as the property of others. Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel Xeon Phi Processor E.J. Bylaska 1, M. Jacquelin

More information

Hard Real-time Scheduling for Parallel Run-time Systems

Hard Real-time Scheduling for Parallel Run-time Systems Hard Real-time Scheduling for Parallel Run-time Systems Peter Dinda Xiaoyang Wang Jinghang Wang Chris Beauchene Conor Hetland Prescience Lab Department of EECS Northwestern University pdinda.org presciencelab.org

More information

Mapping MPI+X Applications to Multi-GPU Architectures

Mapping MPI+X Applications to Multi-GPU Architectures Mapping MPI+X Applications to Multi-GPU Architectures A Performance-Portable Approach Edgar A. León Computer Scientist San Jose, CA March 28, 2018 GPU Technology Conference This work was performed under

More information

Agenda. System Performance Scaling of IBM POWER6 TM Based Servers

Agenda. System Performance Scaling of IBM POWER6 TM Based Servers System Performance Scaling of IBM POWER6 TM Based Servers Jeff Stuecheli Hot Chips 19 August 2007 Agenda Historical background POWER6 TM chip components Interconnect topology Cache Coherence strategies

More information

Intel Xeon PhiTM Knights Landing (KNL) System Software Clark Snyder, Peter Hill, John Sygulla

Intel Xeon PhiTM Knights Landing (KNL) System Software Clark Snyder, Peter Hill, John Sygulla Intel Xeon PhiTM Knights Landing (KNL) System Software Clark Snyder, Peter Hill, John Sygulla Motivation The Intel Xeon Phi TM Knights Landing (KNL) has 20 different configurations 5 NUMA modes X 4 memory

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Shared Memory Multiprocessors. Symmetric Shared Memory Architecture (SMP) Cache Coherence. Cache Coherence Mechanism. Interconnection Network

Shared Memory Multiprocessors. Symmetric Shared Memory Architecture (SMP) Cache Coherence. Cache Coherence Mechanism. Interconnection Network Shared Memory Multis Processor Processor Processor i Processor n Symmetric Shared Memory Architecture (SMP) cache cache cache cache Interconnection Network Main Memory I/O System Cache Coherence Cache

More information

Lecture 24: Multiprocessing Computer Architecture and Systems Programming ( )

Lecture 24: Multiprocessing Computer Architecture and Systems Programming ( ) Systems Group Department of Computer Science ETH Zürich Lecture 24: Multiprocessing Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 Most of the rest of this

More information

Parallel Architectures

Parallel Architectures Parallel Architectures CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Parallel Architectures Spring 2018 1 / 36 Outline 1 Parallel Computer Classification Flynn s

More information

High-Performance Transaction Processing in Journaling File Systems Y. Son, S. Kim, H. Y. Yeom, and H. Han

High-Performance Transaction Processing in Journaling File Systems Y. Son, S. Kim, H. Y. Yeom, and H. Han High-Performance Transaction Processing in Journaling File Systems Y. Son, S. Kim, H. Y. Yeom, and H. Han Seoul National University, Korea Dongduk Women s University, Korea Contents Motivation and Background

More information

1. Memory technology & Hierarchy

1. Memory technology & Hierarchy 1 Memory technology & Hierarchy Caching and Virtual Memory Parallel System Architectures Andy D Pimentel Caches and their design cf Henessy & Patterson, Chap 5 Caching - summary Caches are small fast memories

More information

Why you should care about hardware locality and how.

Why you should care about hardware locality and how. Why you should care about hardware locality and how. Brice Goglin TADaaM team Inria Bordeaux Sud-Ouest Agenda Quick example as an introduction Bind your processes What's the actual problem? Convenient

More information

Simulation using MIC co-processor on Helios

Simulation using MIC co-processor on Helios Simulation using MIC co-processor on Helios Serhiy Mochalskyy, Roman Hatzky PRACE PATC Course: Intel MIC Programming Workshop High Level Support Team Max-Planck-Institut für Plasmaphysik Boltzmannstr.

More information

WORTMANN AG IT Made in Germany

WORTMANN AG IT Made in Germany 1009343 - TERRA PC-BUSINESS 7100 i3770/8/ssd/sil+/w8p>w7 SiSoftware Sandra Lite 2012.SP1 (2012.01.18.24) Processor Arithmetic Aggregate Arithmetic Performance : 110.3GOPS Dhrystone SSE4.2 : 129GIPS Whetstone

More information

Enhancing Application Performance using Heterogeneous Memory Architectures on the Many-core Platform

Enhancing Application Performance using Heterogeneous Memory Architectures on the Many-core Platform Enhancing Application Performance using Heterogeneous Memory Architectures on the Many-core Platform Shuo Li, Karthik Raman, Ruchira Sasanka, Andrey Semin Presented by James Tullos IXPUG US Annual Meeting

More information

Introduction to Multiprocessors (Part I) Prof. Cristina Silvano Politecnico di Milano

Introduction to Multiprocessors (Part I) Prof. Cristina Silvano Politecnico di Milano Introduction to Multiprocessors (Part I) Prof. Cristina Silvano Politecnico di Milano Outline Key issues to design multiprocessors Interconnection network Centralized shared-memory architectures Distributed

More information

KNIGHTS LANDING:SECOND- GENERATION INTEL XEON PHI PRODUCT

KNIGHTS LANDING:SECOND- GENERATION INTEL XEON PHI PRODUCT ... KNIGHTS LANDING:SECOND- GENERATION INTEL XEON PHI PRODUCT... THE KNIGHTS LANDING PROCESSOR TARGETS HIGH-PERFORMANCE COMPUTING AND OTHER PARALLEL WORKLOADS.IT PROVIDES SIGNIFICANTLY HIGHER PERFORMANCE

More information

Computer parallelism Flynn s categories

Computer parallelism Flynn s categories 04 Multi-processors 04.01-04.02 Taxonomy and communication Parallelism Taxonomy Communication alessandro bogliolo isti information science and technology institute 1/9 Computer parallelism Flynn s categories

More information

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1 Introduction to parallel computers and parallel programming Introduction to parallel computersand parallel programming p. 1 Content A quick overview of morden parallel hardware Parallelism within a chip

More information

HPCG on Intel Xeon Phi 2 nd Generation, Knights Landing. Alexander Kleymenov and Jongsoo Park Intel Corporation SC16, HPCG BoF

HPCG on Intel Xeon Phi 2 nd Generation, Knights Landing. Alexander Kleymenov and Jongsoo Park Intel Corporation SC16, HPCG BoF HPCG on Intel Xeon Phi 2 nd Generation, Knights Landing Alexander Kleymenov and Jongsoo Park Intel Corporation SC16, HPCG BoF 1 Outline KNL results Our other work related to HPCG 2 ~47 GF/s per KNL ~10

More information

Performance and Optimization Issues in Multicore Computing

Performance and Optimization Issues in Multicore Computing Performance and Optimization Issues in Multicore Computing Minsoo Ryu Department of Computer Science and Engineering 2 Multicore Computing Challenges It is not easy to develop an efficient multicore program

More information

HPC Innovation in the FSI Market

HPC Innovation in the FSI Market 1 April 3, 2017. HPC Innovation in the FSI Market HPE Keynote Session HPC on Wall St. Lacee McGee, Sr. FSI Vertical Manager, HPE Table of Contents How HPC impacts Financial Services and HPE s Strategy

More information

Performance analysis tools: Intel VTuneTM Amplifier and Advisor. Dr. Luigi Iapichino

Performance analysis tools: Intel VTuneTM Amplifier and Advisor. Dr. Luigi Iapichino Performance analysis tools: Intel VTuneTM Amplifier and Advisor Dr. Luigi Iapichino luigi.iapichino@lrz.de Which tool do I use in my project? A roadmap to optimisation After having considered the MPI layer,

More information

How to scale Nested OpenMP Applications on the ScaleMP vsmp Architecture

How to scale Nested OpenMP Applications on the ScaleMP vsmp Architecture How to scale Nested OpenMP Applications on the ScaleMP vsmp Architecture Dirk Schmidl, Christian Terboven, Andreas Wolf, Dieter an Mey, Christian Bischof IEEE Cluster 2010 / Heraklion September 21, 2010

More information

Portland State University ECE 588/688. Cray-1 and Cray T3E

Portland State University ECE 588/688. Cray-1 and Cray T3E Portland State University ECE 588/688 Cray-1 and Cray T3E Copyright by Alaa Alameldeen 2014 Cray-1 A successful Vector processor from the 1970s Vector instructions are examples of SIMD Contains vector

More information

Optimized Scientific Computing:

Optimized Scientific Computing: Optimized Scientific Computing: Coding Efficiently for Real Computing Architectures Noah Kurinsky SASS Talk, November 11 2015 Introduction Components of a CPU Architecture Design Choices Why Is This Relevant

More information

IXPUG 16. Dmitry Durnov, Intel MPI team

IXPUG 16. Dmitry Durnov, Intel MPI team IXPUG 16 Dmitry Durnov, Intel MPI team Agenda - Intel MPI 2017 Beta U1 product availability - New features overview - Competitive results - Useful links - Q/A 2 Intel MPI 2017 Beta U1 is available! Key

More information

Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI T. Hoefler 1,2, A. Lumsdaine 1 and W. Rehm 2 1 Open Systems Lab 2 Computer Architecture Group Indiana University Technical

More information