TU Wien. Shortened by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet. H Kopetz TU Wien December H. Kopetz 12.

Size: px
Start display at page:

Download "TU Wien. Shortened by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet. H Kopetz TU Wien December H. Kopetz 12."

Transcription

1 TU Wien 1 Shortened by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet H Kopetz TU Wien December 2008

2 Properties of a Successful Protocol 2 A successful real-time protocol must have the following properties: Sound theoretical foundations w.r.t. time, determinism, security, and composability. Support for all types of real-time applications, from multimedia to safety-critical control systems. Support error containment of failing nodes Economically competitive--a hardware SoC protocol controller should cost less than 1. Compatibility with the Ethernet standard that is widely used in the non-real-time world will reduce the software and human effort.

3 Time 3 Whenever we use the term time we mean physical time as defined by the international standard of time TAI. If the occurrence of events is restricted to some active intervals on the timeline with duration π with an interval of silence of duration Δ between any two active intervals, then we call the time base π/δ-sparse, or sparse for short, and events that occur during the active intervals sparse events Time π Δ π Δ π Events are only allowed to occur at subintervals of the timeline

4 Cyclic Representation of the Sparse Time 4 Real-Time Occurrence of Sparse Events Silence

5 5 A component is a hardware/software unit that accepts input messages, provides a useful service, maintains internal state, and produces after some elapsed time output messages containing the results. A component is thus an identifiable functional unit of data transformation and comprehension and forms an abstract high-level concept in the mental model of system behavior. Application Software Module API Operating System and Middleware Hardware Communication Network Interface I O Application Software Module FPGA Block API Operating System and Middleware Hardware Communication Network Interface I O Application Software Module Custom Hardware API Operating System and Middleware Hardware Communication Network Interface I O

6 Sparse Time and State 6 Real-Time Occurrence of Sparse Events Silence, when State is defined

7 Determinism II (sparse time base) 7 We therefore need a revised, more pragmatic, definition of determinism in a distributed real-time computer system that takes account of the finite synchronization of clocks and the digital nature of the time base: A model of a distributed computer system (hardware, software, communication) is said to behave deterministically if and only if, given a sparse time-base with an infinite sequence of active intervals t j, the state of the system Σ(t 0 ) at t 0 (now), and a set of future sparse Input Messages IM 1 (t i1 ), IM 2 (t i2 ),..., IM n (t in ), then the set of future Output Messages OM 1 (t o1 ), OM 2 (t o2 ),.., OM n (t on ) and the state of System Σ(t x ) at all future t x is entailed.

8 Mitigation at the Architecture Level: TMR 8 Triple Modular Redundancy (TMR) is the generally accepted technique for the mitigation of component failures at the system level: A B

9 Fault-Handling at the Architectural Level: TMR 9 Triple Modular Redundancy (TMR) is the generally accepted technique for the mitigation of component failures at the system level: V O T E R A/1 V O T E R B/1 A B V O T E R A/2 V O T E R B/2 V O T E R A/3 V O T E R B/3

10 Purpose of TT Ethernet 10 The purpose of TT Ethernet is to provide a uniform communication system for all types of distributed nonreal-time and real-time applications, from very simple uncritical data acquisition tasks, to multimedia systems and up to safety-critical control applications, such as flyby-wire or drive-by wire. It should be possible to upgrade an application from standard TT- Ethernet to a safety-critical configuration with minimal changes to the application software.

11 Legacy Integration 11 TT-Ethernet is required to be fully compatible with existing Ethernet systems in hardware and software: Message format in full conformance with Ethernet standard Standard Ethernet traffic must be supported in all configurations Existing Ethernet controller hardware must support TT Ethernet traffic. IEEE 1588 standard for global time representation is supported

12 Distinguish between two Categories of Messages 12 ET-Messages: Standard Ethernet Messages Open World Assumption No Guarantee of Timeliness and No Determinism TT-Messages: Scheduled Time-Triggered Messages Closed World Assumption Guaranteed a priori known latency Determinism

13 TT and ET Ethernet Message Formats are Alike 13 Preamble (7 bytes) Start Frame Delimiter (1 byte) Destination MAC Address ( 6 bytes) Source MAC Address (6 bytes) Tag Type Field (88d7 if TT) Standard Ethernet Message Header Client Data (0 to n bytes) PAD (0 to 64 bytes) Frame Check Sequence (4 bytes)

14 Conflict Resolution in TT Ethernet 14 TT versus ET: TT message wins, ET message is interrupted (preempted). The switch will retransmit the preempted ET message autonomously TT versus TT: Failure, since TT messages assumed to be properly scheduled (closed world system) ET versus ET: One has to wait until the other is finished (standard Ethernet policy). There is no guarantee of timeliness and determinism for ET messages!

15 Global Time 15 TT Messages are used to build a global time base TT Ethernet time format is a sparse binary time format. Fractions of a second are represented as 24 negative powers of two (down to about 60 nanoseconds), and full seconds are presented in 40 positive powers of two (up to about years) of the physical second. This binary time-format has been standardized by the OMG and IEEE TT Ethernet gives the user the option to make a tradeoff between dependability and cost of the global time.

16 TT Ethernet Periods 16 The TT Ethernet recommends to restrict the period durations to the positive and negative powers of two of the second, i.e. a period can be either 1 second, 2 seconds, 4 seconds, and so forth, or 1/2 second, 1/4 second, 1/8 second and so forth. The duration of each period can then be characterized by the corresponding bit (period bit) in the binary time format. The phase of a period, i.e. the offset to the start instant of the selected duration in the global time format, is designated by the specification of a pattern of twelve bits (the phase bits) to the right of the period bit. We then can represent a cycle with two Bytes (four period bits i.e. 16 periods, and twelve phase bits).

17 TT Ethernet Periods--Example 17 5 Bytes Period bit Phase of the Period 2 39 seconds 1 sec bit sec Specification of a period of 1/2 4 (i.e 1/16) second with a phase (i.e. the offset from the periodic 1/16 second instant) of 1/2 6 +1/2 11 = µseconds.

18 TT Ethernet Protocol Family 18 TT Ethernet forms of an upward compatible family of protocols, starting with low-cost low-function controllers and going up to safety critical configurations with faulttolerant time base, supported by certification: Low-level TT Ethernet system which is not time-aware and provides no or minimal error containment. Professional TT Ethernet system which is time-aware and contains configuration state to perform error containment of failing nodes. Advanced TT Ethernet system with multiple switches that supports fault-tolerant clock synchronization and triple modular redundancy.

19 Integrity-Level of Application Domains 19 Application Low- Integrity Moderate- Integrity High- Integrity Safety- Critical System MTTF w.r.t. permanent failures (in years) System MTTF w.r.t transient failures (in years) Dataintegrity requirement Market volume Examples > 10 > 1 low huge Consumer Electronics > 100 > 10 moderate large Present-day automotive > 1000 > 100 very high moderate Enterprise server > > very high small Flight control

20 Fault Hypothesis in the TT-Ethernet 20 i. A Node Computer forms a single FCR that can fail in an arbitrary failure mode. ii. A communication channel including the central guardian in the TT Ethernet switch forms a single FCR that can fail to distribute messages iii. The central guardian within an appropriate Ethernet switch transforms non-fail-silent failures to fail-silent failures. iv. Error detection can be performed by a membership and clique avoidance algorithms in advanced TT Ethernet systems. v. The system can recover from a single failure within two TDMA rounds.

21 Approach to Safety: The Swiss-Cheese Model 21 Subsystem Failure From Reason, J! Managing the Risk of Organizational Accidents! 1997! Normal Operation On-Chip TMR Off-Chip TMR NGU Strategy Multiple Layers of Defenses Catastrophic System Event

22 Configuration with off-chip TMR 22 Red DAS Voting Actuator Voting Actuator Green DAS TNA (Trusted Network Authority) TNA (Trusted Network Authority) TNA (Trusted Network Authority) TNA (Trusted Network Authority) Gigabyte Time-triggered Interconnect Gigabyte Time-triggered Interconnect Gigabyte Time-triggered Interconnect Gigabyte Time-triggered Interconnect Processing FPGA Cromponent Cromponent near Processing FPGA Cromponent Cromponent near Processing FPGA Cromponent Cromponent near Processing FPGA Cromponent Cromponent near Bus Bus Bus Bus Large External Large External Large External Large External TT Ethernet Switch Blue Switch Brown TT Ethernet Standard Ethernet

23 Example: TMR Configuration 23 Voting Actuator Voting Actuator TNA (Trusted Network Authority) TNA (Trusted Network Authority) TNA (Trusted Network Authority) TNA (Trusted Network Authority) Gigabyte Time-triggered Interconnect Gigabyte Time-triggered Interconnect Gigabyte Time-triggered Interconnect Gigabyte Time-triggered Interconnect Processing FPGA Cromponent Cromponent near Processing FPGA Cromponent Cromponent near Processing FPGA Cromponent Cromponent near Processing FPGA Cromponent Cromponent near Bus Bus Bus Bus Large External Large External Large External Large External TT Ethernet Switch Blue Switch Red TT Ethernet Standard Ethernet

24 Conclusions 24 TT Ethernet provides a uniform communication infrastructure for all types of real-time and non real-time applications--from simple data acquisition systems, to multimedia systems up to safety-critical control applications. is based on sound theoretical concepts concerning time and determinism is fully compatible with the existing Ethernet standard. can be introduced in a modular fashion, integrating existing Ethernet hardware and software with modules that support the new services.

TU Wien. Excerpt by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet. H Kopetz TU Wien December H. Kopetz 12.

TU Wien. Excerpt by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet. H Kopetz TU Wien December H. Kopetz 12. TU Wien 1 Excerpt by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet H Kopetz TU Wien December 2008 Time 2 Whenever we use the term time we mean physical time as defined by the international

More information

TU Wien. Fault Isolation and Error Containment in the TT-SoC. H. Kopetz. TU Wien. July 2007

TU Wien. Fault Isolation and Error Containment in the TT-SoC. H. Kopetz. TU Wien. July 2007 TU Wien 1 Fault Isolation and Error Containment in the TT-SoC H. Kopetz TU Wien July 2007 This is joint work with C. El.Salloum, B.Huber and R.Obermaisser Outline 2 Introduction The Concept of a Distributed

More information

Diagnosis in the Time-Triggered Architecture

Diagnosis in the Time-Triggered Architecture TU Wien 1 Diagnosis in the Time-Triggered Architecture H. Kopetz June 2010 Embedded Systems 2 An Embedded System is a Cyber-Physical System (CPS) that consists of two subsystems: A physical subsystem the

More information

The Time-Triggered Ethernet (TTE) Design

The Time-Triggered Ethernet (TTE) Design The Time-Triggered Ethernet (TTE) Design Hermann Kopetz Astrit Ademaj Petr Grillinger Klaus Steinhammer Vienna University of Technology Real-Time Systems Group Treitlstr. 3/182-1, A-1040 Vienna, Austria

More information

CORBA in the Time-Triggered Architecture

CORBA in the Time-Triggered Architecture 1 CORBA in the Time-Triggered Architecture H. Kopetz TU Wien July 2003 Outline 2 Hard Real-Time Computing Event and State Messages The Time Triggered Architecture The Marriage of CORBA with the TTA Conclusion

More information

An Encapsulated Communication System for Integrated Architectures

An Encapsulated Communication System for Integrated Architectures An Encapsulated Communication System for Integrated Architectures Architectural Support for Temporal Composability Roman Obermaisser Overview Introduction Federated and Integrated Architectures DECOS Architecture

More information

Chapter 39: Concepts of Time-Triggered Communication. Wenbo Qiao

Chapter 39: Concepts of Time-Triggered Communication. Wenbo Qiao Chapter 39: Concepts of Time-Triggered Communication Wenbo Qiao Outline Time and Event Triggered Communication Fundamental Services of a Time-Triggered Communication Protocol Clock Synchronization Periodic

More information

Real-Time Communication

Real-Time Communication TU Wien 1 Real-Time Communication Importance of Real-Time Communication 2 For the following reasons, distributed systems are the dominant architectural choice for many real-time applications: Composability:

More information

Distributed Embedded Systems and realtime networks

Distributed Embedded Systems and realtime networks STREAM01 / Mastère SE Distributed Embedded Systems and realtime networks Embedded network TTP Marie-Agnès Peraldi-Frati AOSTE Project UNSA- CNRS-INRIA January 2008 1 Abstract Requirements for TT Systems

More information

Dependable Computer Systems

Dependable Computer Systems Dependable Computer Systems Part 6b: System Aspects Contents Synchronous vs. Asynchronous Systems Consensus Fault-tolerance by self-stabilization Examples Time-Triggered Ethernet (FT Clock Synchronization)

More information

Systems. Roland Kammerer. 10. November Institute of Computer Engineering Vienna University of Technology. Communication Protocols for Embedded

Systems. Roland Kammerer. 10. November Institute of Computer Engineering Vienna University of Technology. Communication Protocols for Embedded Communication Roland Institute of Computer Engineering Vienna University of Technology 10. November 2010 Overview 1. Definition of a protocol 2. Protocol properties 3. Basic Principles 4. system communication

More information

Developing deterministic networking technology for railway applications using TTEthernet software-based end systems

Developing deterministic networking technology for railway applications using TTEthernet software-based end systems Developing deterministic networking technology for railway applications using TTEthernet software-based end systems Project n 100021 Astrit Ademaj, TTTech Computertechnik AG Outline GENESYS requirements

More information

16 Time Triggered Protocol

16 Time Triggered Protocol 16 Time Triggered Protocol [TTtech04] (TTP) 18-549 Distributed Embedded Systems Philip Koopman October 25, 2004 Significant material drawn from: Prof. H. Kopetz [Kopetz] TTP Specification v 1.1 [TTTech]

More information

OMG Smart Transducer Specification (I)

OMG Smart Transducer Specification (I) 1 OMG Smart Transducer Specification (I) H. Kopetz TU Wien July 2003 The Time-Triggered Architecture 2 Take Time from the Problem Domain And move it into the Solution Domain Basic Concepts 3 RT System

More information

A Comparison of TTP/C and FlexRay

A Comparison of TTP/C and FlexRay 1 A Comparison of TTP/C and FlexRay Research Report 10/2001 5 10 H. Kopetz hk@vmars.tuwien.ac.at Institut für Technische Informatik Technische Universität Wien, Austria May 9, 2001 15 20 25 30 Abstract:

More information

The Time-Triggered Architecture

The Time-Triggered Architecture The Time-Triggered Architecture HERMANN KOPETZ, FELLOW, IEEE AND GÜNTHER BAUER Invited Paper The time-triggered architecture (TTA) provides a computing infrastructure for the design and implementation

More information

A Fault Management Protocol for TTP/C

A Fault Management Protocol for TTP/C A Fault Management Protocol for TTP/C Juan R. Pimentel Teodoro Sacristan Kettering University Dept. Ingenieria y Arquitecturas Telematicas 1700 W. Third Ave. Polytechnic University of Madrid Flint, Michigan

More information

A Look Ahead. Dependable Embedded Systems. Outline. H. Kopetz. July Encapsulated Execution Environments. Automotive Requirements

A Look Ahead. Dependable Embedded Systems. Outline. H. Kopetz. July Encapsulated Execution Environments. Automotive Requirements Dependable Embedded Systems A Look Ahead 1 H. Kopetz July 2003 Outline 2 Introduction Hardware Developments Automotive Requirements Encapsulated Execution Environments Conclusion Introduction 3 Dependable

More information

A CAN-Based Architecture for Highly Reliable Communication Systems

A CAN-Based Architecture for Highly Reliable Communication Systems A CAN-Based Architecture for Highly Reliable Communication Systems H. Hilmer Prof. Dr.-Ing. H.-D. Kochs Gerhard-Mercator-Universität Duisburg, Germany E. Dittmar ABB Network Control and Protection, Ladenburg,

More information

A Time-Triggered Ethernet (TTE) Switch

A Time-Triggered Ethernet (TTE) Switch A Time-Triggered Ethernet () Switch Klaus Steinhammer Petr Grillinger Astrit Ademaj Hermann Kopetz Vienna University of Technology Real-Time Systems Group Treitlstr. 3/182-1, A-1040 Vienna, Austria E-mail:{klaus,grilling,ademaj,hk}@vmars.tuwien.ac.at

More information

Page 1. Real-Time Communication. TU Wien. Outline. Example of the Networks onboar a Car. Requirements on RT Communication Protocols

Page 1. Real-Time Communication. TU Wien. Outline. Example of the Networks onboar a Car. Requirements on RT Communication Protocols TU Wien utline eal-time Communication Flow Control ET versus TT Protocols Protocol verview The Time-Triggered Protocols Example of the Networks onboar a Car equirements on T Communication Protocols 4 Small

More information

DISTRIBUTED REAL-TIME SYSTEMS

DISTRIBUTED REAL-TIME SYSTEMS Distributed Systems Fö 11/12-1 Distributed Systems Fö 11/12-2 DISTRIBUTED REAL-TIME SYSTEMS What is a Real-Time System? 1. What is a Real-Time System? 2. Distributed Real Time Systems 3. Predictability

More information

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner Real-Time Component Software slide credits: H. Kopetz, P. Puschner Overview OS services Task Structure Task Interaction Input/Output Error Detection 2 Operating System and Middleware Application Software

More information

Introduction to the Distributed Real-Time System

Introduction to the Distributed Real-Time System Introduction to the Distributed Real-Time System Insup Lee Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania www.cis.upenn.edu/~lee/ CIS

More information

Real-Time System Modeling. slide credits: H. Kopetz, P. Puschner

Real-Time System Modeling. slide credits: H. Kopetz, P. Puschner Real-Time System Modeling slide credits: H. Kopetz, P. Puschner Overview Model Construction Real-time clusters & components Interfaces Real-time interfaces and observations Real-time images and temporal

More information

ESA ADCSS Deterministic Ethernet in Space Avionics

ESA ADCSS Deterministic Ethernet in Space Avionics ESA ADCSS 2015 Deterministic Ethernet in Space Avionics Bülent Altan Strategic Advisor with Jean-Francois Dufour, Christian Fidi and Matthias Mäke-Kail Copyright TTTech Computertechnik AG. All rights reserved.

More information

Time-Triggered Ethernet

Time-Triggered Ethernet Time-Triggered Ethernet Chapters 42 in the Textbook Professor: HONGWEI ZHANG CSC8260 Winter 2016 Presented By: Priyank Baxi (fr0630) fr0630@wayne.edu Outline History Overview TTEthernet Traffic Classes

More information

Redes de Computadores. Medium Access Control

Redes de Computadores. Medium Access Control Redes de Computadores Medium Access Control Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto 1 » How to control the access of computers to a communication medium?» What is the ideal Medium

More information

Modeling and Verification of Distributed Real-Time Systems using Periodic Finite State Machines

Modeling and Verification of Distributed Real-Time Systems using Periodic Finite State Machines 1 Modeling and Verification of Distributed Real-Time Systems using Periodic Finite State Machines R. Obermaisser, C. El-Salloum, B. Huber, H. Kopetz Vienna University of Technology Abstract: Finite State

More information

Issues in Programming Language Design for Embedded RT Systems

Issues in Programming Language Design for Embedded RT Systems CSE 237B Fall 2009 Issues in Programming Language Design for Embedded RT Systems Reliability and Fault Tolerance Exceptions and Exception Handling Rajesh Gupta University of California, San Diego ES Characteristics

More information

SPIDER: A Fault-Tolerant Bus Architecture

SPIDER: A Fault-Tolerant Bus Architecture Formal Methods Group NASA Langley Research Center lee.s.pike@nasa.gov May 11, 2005 Motivation Safety-critical distributed x-by-wire applications are being deployed in inhospitable environments. Failure

More information

Failure Models. Fault Tolerance. Failure Masking by Redundancy. Agreement in Faulty Systems

Failure Models. Fault Tolerance. Failure Masking by Redundancy. Agreement in Faulty Systems Fault Tolerance Fault cause of an error that might lead to failure; could be transient, intermittent, or permanent Fault tolerance a system can provide its services even in the presence of faults Requirements

More information

In modern computers data is usually stored in files, that can be small or very, very large. One might assume that, when we transfer a file from one

In modern computers data is usually stored in files, that can be small or very, very large. One might assume that, when we transfer a file from one In modern computers data is usually stored in files, that can be small or very, very large. One might assume that, when we transfer a file from one computer to another, the whole file is sent as a continuous

More information

A Framework for the Formal Verification of Time-Triggered Systems

A Framework for the Formal Verification of Time-Triggered Systems A Framework for the Formal Verification of Time-Triggered Systems Lee Pike leepike@galois.com Indiana University, Bloomington Department of Computer Science Advisor: Prof. Steven D. Johnson December 12,

More information

Fault Tolerance Part I. CS403/534 Distributed Systems Erkay Savas Sabanci University

Fault Tolerance Part I. CS403/534 Distributed Systems Erkay Savas Sabanci University Fault Tolerance Part I CS403/534 Distributed Systems Erkay Savas Sabanci University 1 Overview Basic concepts Process resilience Reliable client-server communication Reliable group communication Distributed

More information

MicroCore Labs. MCL51 Application Note. Lockstep. Quad Modular Redundant System

MicroCore Labs. MCL51 Application Note. Lockstep. Quad Modular Redundant System MicroCore Labs MCL51 Application Note Lockstep Quad Modular Redundant System Introduction: This application note describes a Lockstep Quad Modular Redundant (QMR) system that employs the microsequencer-based

More information

Computer Networks Medium Access Control. Mostafa Salehi Fall 2008

Computer Networks Medium Access Control. Mostafa Salehi Fall 2008 Computer Networks Medium Access Control Mostafa Salehi Fall 2008 2008 1 Outline Issues ALOHA Network Ethernet Token Ring Wireless 2 Main Issues Local Area Network (LAN) : Three or more machines are physically

More information

Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing

Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing Authors: Robert L Akamine, Robert F. Hodson, Brock J. LaMeres, and Robert E. Ray www.nasa.gov Contents Introduction to the

More information

High Accuracy Time Synchronization over SpaceWire Networks - update

High Accuracy Time Synchronization over SpaceWire Networks - update High Accuracy Time Synchronization over SpaceWire Networks - update Aeroflex Gaisler AB Kungsgatan 12, SE-41119 Göteborg, Sweden sales@gaisler.com +46 31 775 86 50 www.aeroflex.com/gaisler 1 Overview Standard

More information

Communication Networks for the Next-Generation Vehicles

Communication Networks for the Next-Generation Vehicles Communication Networks for the, Ph.D. Electrical and Computer Engg. Dept. Wayne State University Detroit MI 48202 (313) 577-3855, smahmud@eng.wayne.edu January 13, 2005 4 th Annual Winter Workshop U.S.

More information

SWE 760 Lecture 1: Introduction to Analysis & Design of Real-Time Embedded Systems

SWE 760 Lecture 1: Introduction to Analysis & Design of Real-Time Embedded Systems SWE 760 Lecture 1: Introduction to Analysis & Design of Real-Time Embedded Systems Hassan Gomaa References: H. Gomaa, Chapters 1, 2, 3 - Real-Time Software Design for Embedded Systems, Cambridge University

More information

Communication in Avionics

Communication in Avionics Communication in Avionics 1 Outline Basic Overview Communication architectures Event Triggered Time Triggered Communication architecture examples Case Study: How Data Communication Affects Scheduling 2

More information

Communication (III) Kai Huang

Communication (III) Kai Huang Communication (III) Kai Huang Ethernet Turns 40 12/17/2013 Kai.Huang@tum 2 Outline Bus basics Multiple Master Bus Network-on-Chip Examples o SPI o CAN o FlexRay o Ethernet Basic OSI model Real-Time Ethernet

More information

2. REAL-TIME CONTROL SYSTEM AND REAL-TIME NETWORKS

2. REAL-TIME CONTROL SYSTEM AND REAL-TIME NETWORKS 2. REAL-TIME CONTROL SYSTEM AND REAL-TIME NETWORKS 2.1 Real-Time and Control Computer based digital controllers typically have the ability to monitor a number of discrete and analog inputs, perform complex

More information

Distributed IMA with TTEthernet

Distributed IMA with TTEthernet Distributed IMA with thernet ARINC 653 Integration of thernet Georg Gaderer, Product Manager Georg.Gaderer@tttech.com October 30, 2012 Copyright TTTech Computertechnik AG. All rights reserved. Introduction

More information

Fault Tolerance. Distributed Software Systems. Definitions

Fault Tolerance. Distributed Software Systems. Definitions Fault Tolerance Distributed Software Systems Definitions Availability: probability the system operates correctly at any given moment Reliability: ability to run correctly for a long interval of time Safety:

More information

FlexRay International Workshop. Protocol Overview

FlexRay International Workshop. Protocol Overview FlexRay International Workshop 4 th March 2003 Detroit Protocol Overview Dr. Christopher Temple - Motorola FlexRay principles Provide a communication infrastructure for future generation highspeed control

More information

CS4514 Real-Time Systems and Modeling

CS4514 Real-Time Systems and Modeling CS4514 Real-Time Systems and Modeling Fall 2015 José M. Garrido Department of Computer Science College of Computing and Software Engineering Kennesaw State University Real-Time Systems RTS are computer

More information

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur Module 5 Broadcast Communication Networks Lesson 5 High Speed LANs Token Ring Based Specific Instructional Objectives On completion, the student will be able to: Explain different categories of High Speed

More information

Field buses (part 2): time triggered protocols

Field buses (part 2): time triggered protocols Field buses (part 2): time triggered protocols Nico Fritz Universität des Saarlandes Embedded Systems 2002/2003 (c) Daniel Kästner. 1 CAN and LIN LIN CAN Type Arbitration Transfer rate Serial communication

More information

Automotive Networks Are New Busses and Gateways the Answer or Just Another Challenge? ESWEEK Panel Oct. 3, 2007

Automotive Networks Are New Busses and Gateways the Answer or Just Another Challenge? ESWEEK Panel Oct. 3, 2007 Automotive Networks Are New Busses and Gateways the Answer or Just Another Challenge? ESWEEK Panel Oct. 3, 2007 Automotive Networks complex networks hundreds of functions 50+ ECUs (Electronic Control Unit)

More information

Real-Time (Paradigms) (47)

Real-Time (Paradigms) (47) Real-Time (Paradigms) (47) Memory: Memory Access Protocols Tasks competing for exclusive memory access (critical sections, semaphores) become interdependent, a common phenomenon especially in distributed

More information

Operating Systems, Concurrency and Time. real-time communication and CAN. Johan Lukkien

Operating Systems, Concurrency and Time. real-time communication and CAN. Johan Lukkien Operating Systems, Concurrency and Time real-time communication and CAN Johan Lukkien (Courtesy: Damir Isovic, Reinder Bril) Question Which requirements to communication arise from real-time systems? How

More information

Do I need Supporting TSN in my Equipment: Why, What and How?

Do I need Supporting TSN in my Equipment: Why, What and How? SoCe Tech Use-Cases Do I need Supporting in my Equipment: Why, What and How? SoCe Team https://soc-e.com ABSTRACT Time Sensitive Networking () is an standard, interoperable and deterministic Ethernet based

More information

Compositional Design of RT Systems: A Conceptual Basis for Specification of Linking Interfaces

Compositional Design of RT Systems: A Conceptual Basis for Specification of Linking Interfaces Compositional Design of RT Systems: A Conceptual Basis for Specification of Linking Interfaces Hermann Kopetz Real-Time Systems Group TU-Vienna, Austria hk@vmars.tuwien.ac.at Neeraj Suri Dependable Embedded

More information

A Design of Fail-safe Gateway-embedded System for In-vehicle Networks

A Design of Fail-safe Gateway-embedded System for In-vehicle Networks A Design of Fail-safe Gateway-embedded System for In-vehicle Networks Sukhyun Seo, Junsu Kim, *Su Min Kim Department of Electronics Engineering, Korea Polytechnic University, 15073 Siheung, Republic of

More information

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory Commercial Real-time Operating Systems An Introduction Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory swamis@iastate.edu Outline Introduction RTOS Issues and functionalities LynxOS

More information

A TIME-TRIGGERED NETWORK-ON-CHIP. Martin Schoeberl

A TIME-TRIGGERED NETWORK-ON-CHIP. Martin Schoeberl A TIME-TRIGGERED NETWORK-ON-CHIP Martin Schoeberl Institute of Computer Engineering Vienna University of Technology, Austria mschoebe@mail.tuwien.ac.at ABSTRACT In this paper we propose a time-triggered

More information

Component-Based Design of Large Distributed Real-Time Systems

Component-Based Design of Large Distributed Real-Time Systems Component-Based Design of Large Distributed Real-Time Systems H. Kopetz Technical University of Vienna, Austria hk@vmars.tuwien.ac.at Abstract: Large distributed real-time systems can be built effectively

More information

Real-Time Communications. LS 12, TU Dortmund

Real-Time Communications. LS 12, TU Dortmund Real-Time Communications Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 20, Jan., 2016 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 29 Random Access no access control; requires low medium utilization Prof.

More information

Deterministic Ethernet as Reliable Communication Infrastructure for Distributed Dependable Systems

Deterministic Ethernet as Reliable Communication Infrastructure for Distributed Dependable Systems Deterministic Ethernet as Reliable Communication Infrastructure for Distributed Dependable Systems DREAM Seminar UC Berkeley, January 21 st, 2014 Wilfried Steiner, Corporate Scientist wilfried.steiner@tttech.com

More information

FlexRay The Hardware View

FlexRay The Hardware View A White Paper Presented by IPextreme FlexRay The Hardware View Stefan Schmechtig / Jens Kjelsbak February 2006 FlexRay is an upcoming networking standard being established to raise the data rate, reliability,

More information

Avnu Alliance Introduction

Avnu Alliance Introduction Avnu Alliance Introduction Announcing a Liaison between Edge Computing Consortium and Avnu Alliance + What is Avnu Alliance? Creating a certified ecosystem to bring precise timing, reliability and compatibility

More information

Data Acquisition in High Speed Ethernet & Fibre Channel Avionics Systems

Data Acquisition in High Speed Ethernet & Fibre Channel Avionics Systems Data Acquisition in High Speed Ethernet & Fibre Channel Avionics Systems Troy Troshynski Avionics Interface Technologies (A Division of Teradyne) Omaha, NE U.S.A. troyt@aviftech.com http://www.aviftech.com/aggregator

More information

Lecture 2. Basics of networking in automotive systems: Network. topologies, communication principles and standardised protocols

Lecture 2. Basics of networking in automotive systems: Network. topologies, communication principles and standardised protocols Lecture 2. Basics of networking in automotive systems: Network topologies, communication principles and standardised protocols Objectives Introduce basic concepts used in building networks for automotive

More information

High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers

High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers R. Bannatyne, D. Gifford, K. Klein, C. Merritt VORAGO Technologies 2028 E. Ben White Blvd., Suite #220, Austin, Texas, 78741,

More information

Fault Tolerance. Basic Concepts

Fault Tolerance. Basic Concepts COP 6611 Advanced Operating System Fault Tolerance Chi Zhang czhang@cs.fiu.edu Dependability Includes Availability Run time / total time Basic Concepts Reliability The length of uninterrupted run time

More information

Jaringan Komputer. Broadcast Network. Outline. MAC (Medium Access Control) Channel Allocation Problem. Dynamic Channel Allocation

Jaringan Komputer. Broadcast Network. Outline. MAC (Medium Access Control) Channel Allocation Problem. Dynamic Channel Allocation Broadcast Network Jaringan Komputer Medium Access Control Sublayer 2 network categories: point-to-point connections broadcast channels Key issue in broadcast network: how to determine who gets to use the

More information

2. Introduction to Software for Embedded Systems

2. Introduction to Software for Embedded Systems 2. Introduction to Software for Embedded Systems Lothar Thiele ETH Zurich, Switzerland 2-1 Contents of Lectures (Lothar Thiele) 1. Introduction to Embedded System Design 2. Software for Embedded Systems

More information

A Byzantine Fault-Tolerant Key-Value Store for Safety-Critical Distributed Real-Time Systems

A Byzantine Fault-Tolerant Key-Value Store for Safety-Critical Distributed Real-Time Systems Work in progress A Byzantine Fault-Tolerant Key-Value Store for Safety-Critical Distributed Real-Time Systems December 5, 2017 CERTS 2017 Malte Appel, Arpan Gujarati and Björn B. Brandenburg Distributed

More information

RELIABILITY and RELIABLE DESIGN. Giovanni De Micheli Centre Systèmes Intégrés

RELIABILITY and RELIABLE DESIGN. Giovanni De Micheli Centre Systèmes Intégrés RELIABILITY and RELIABLE DESIGN Giovanni Centre Systèmes Intégrés Outline Introduction to reliable design Design for reliability Component redundancy Communication redundancy Data encoding and error correction

More information

SAE AS5643 and IEEE1394 Deliver Flexible Deterministic Solution for Aerospace and Defense Applications

SAE AS5643 and IEEE1394 Deliver Flexible Deterministic Solution for Aerospace and Defense Applications SAE AS5643 and IEEE1394 Deliver Flexible Deterministic Solution for Aerospace and Defense Applications Richard Mourn, Dap USA Inc. AS5643 coupled with IEEE-1394 Asynchronous Stream capability provides

More information

Functional Safety and Safety Standards: Challenges and Comparison of Solutions AA309

Functional Safety and Safety Standards: Challenges and Comparison of Solutions AA309 June 25th, 2007 Functional Safety and Safety Standards: Challenges and Comparison of Solutions AA309 Christopher Temple Automotive Systems Technology Manager Overview Functional Safety Basics Functional

More information

STEVEN R. BAGLEY PACKETS

STEVEN R. BAGLEY PACKETS STEVEN R. BAGLEY PACKETS INTRODUCTION Talked about how data is split into packets Allows it to be multiplexed onto the network with data from other machines But exactly how is it split into packets and

More information

Distributed Systems. Fault Tolerance. Paul Krzyzanowski

Distributed Systems. Fault Tolerance. Paul Krzyzanowski Distributed Systems Fault Tolerance Paul Krzyzanowski Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 License. Faults Deviation from expected

More information

Distributed Systems. 19. Fault Tolerance Paul Krzyzanowski. Rutgers University. Fall 2013

Distributed Systems. 19. Fault Tolerance Paul Krzyzanowski. Rutgers University. Fall 2013 Distributed Systems 19. Fault Tolerance Paul Krzyzanowski Rutgers University Fall 2013 November 27, 2013 2013 Paul Krzyzanowski 1 Faults Deviation from expected behavior Due to a variety of factors: Hardware

More information

Part 2: Basic concepts and terminology

Part 2: Basic concepts and terminology Part 2: Basic concepts and terminology Course: Dependable Computer Systems 2012, Stefan Poledna, All rights reserved part 2, page 1 Def.: Dependability (Verlässlichkeit) is defined as the trustworthiness

More information

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Five Problems Encoding/decoding Framing Error Detection Error Correction Media Access Five Problems Encoding/decoding Framing

More information

Fault Tolerance. Distributed Systems. September 2002

Fault Tolerance. Distributed Systems. September 2002 Fault Tolerance Distributed Systems September 2002 Basics A component provides services to clients. To provide services, the component may require the services from other components a component may depend

More information

Troubleshooting Ethernet Problems with Your Oscilloscope APPLICATION NOTE

Troubleshooting Ethernet Problems with Your Oscilloscope APPLICATION NOTE Troubleshooting Ethernet Problems with Your Oscilloscope Introduction Ethernet is a family of frame-based computer networking technologies for local area networks (LANs), initially developed at Xerox PARC

More information

An Orthogonal and Fault-Tolerant Subsystem for High-Precision Clock Synchronization in CAN Networks *

An Orthogonal and Fault-Tolerant Subsystem for High-Precision Clock Synchronization in CAN Networks * An Orthogonal and Fault-Tolerant Subsystem for High-Precision Clock Synchronization in Networks * GUILLERMO RODRÍGUEZ-NAVAS and JULIÁN PROENZA Departament de Matemàtiques i Informàtica Universitat de les

More information

Reducing SpaceWire Time-code Jitter

Reducing SpaceWire Time-code Jitter Reducing SpaceWire Time-code Jitter Barry M Cook 4Links Limited The Mansion, Bletchley Park, Milton Keynes, MK3 6ZP, UK Email: barry@4links.co.uk INTRODUCTION Standards ISO/IEC 14575[1] and IEEE 1355[2]

More information

The Link Layer and LANs. Chapter 6: Link layer and LANs

The Link Layer and LANs. Chapter 6: Link layer and LANs The Link Layer and LANs EECS3214 2018-03-14 4-1 Chapter 6: Link layer and LANs our goals: understand principles behind link layer services: error detection, correction sharing a broadcast channel: multiple

More information

GUIDELINES FOR USING DEVICE LEVEL RING (DLR) WITH ETHERNET/IP. PUB00316R ODVA, Inc. Page 1 of 18

GUIDELINES FOR USING DEVICE LEVEL RING (DLR) WITH ETHERNET/IP. PUB00316R ODVA, Inc. Page 1 of 18 GUIDELINES FOR USING DEVICE LEVEL RING (DLR) WITH ETHERNET/IP PUB00316R2 2017-2018 ODVA, Inc. Page 1 of 18 Guidelines for Using Device Level Ring (DLR) with EtherNet/IP Contents 1. Introduction... 3 2.

More information

Amrita Vishwa Vidyapeetham. ES623 Networked Embedded Systems Answer Key

Amrita Vishwa Vidyapeetham. ES623 Networked Embedded Systems Answer Key Time: Two Hours Amrita Vishwa Vidyapeetham M.Tech Second Assessment February 2013 Second Semester Embedded Systems Roll No: ES623 Networked Embedded Systems Answer Key Answer all Questions Maximum: 50

More information

Mixed Critical Architecture Requirements (MCAR)

Mixed Critical Architecture Requirements (MCAR) Superior Products Through Innovation Approved for Public Release; distribution is unlimited. (PIRA AER200905019) Mixed Critical Architecture Requirements (MCAR) Copyright 2009 Lockheed Martin Corporation

More information

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 1. Introduction

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 1. Introduction DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 1 Introduction Modified by: Dr. Ramzi Saifan Definition of a Distributed System (1) A distributed

More information

4. Hardware Platform: Real-Time Requirements

4. Hardware Platform: Real-Time Requirements 4. Hardware Platform: Real-Time Requirements Contents: 4.1 Evolution of Microprocessor Architecture 4.2 Performance-Increasing Concepts 4.3 Influences on System Architecture 4.4 A Real-Time Hardware Architecture

More information

Mixed-Criticality Systems based on a CAN Router with Support for Fault Isolation and Selective Fault-Tolerance

Mixed-Criticality Systems based on a CAN Router with Support for Fault Isolation and Selective Fault-Tolerance IFAC 2014 Mixed-Criticality Systems based on a Router with Support for Fault Isolation and Selective Fault-Tolerance Roland Kammerer 1, Roman Obermaisser², Mino Sharkhawy 1 1 Vienna University of Technology,

More information

BOSCH. CAN Specification. Version , Robert Bosch GmbH, Postfach , D Stuttgart

BOSCH. CAN Specification. Version , Robert Bosch GmbH, Postfach , D Stuttgart CAN Specification Version 2.0 1991, Robert Bosch GmbH, Postfach 30 02 40, D-70442 Stuttgart CAN Specification 2.0 page 1 Recital The acceptance and introduction of serial communication to more and more

More information

End-to-end Real-time Guarantees in Wireless Cyber-physical Systems

End-to-end Real-time Guarantees in Wireless Cyber-physical Systems End-to-end Real-time Guarantees in Wireless Cyber-physical Systems Romain Jacob Marco Zimmerling Pengcheng Huang Jan Beutel Lothar Thiele RTSS 16 - IoT and Networking Session December 1, 2016 Predictability

More information

DeviceNet - CIP on CAN Technology

DeviceNet - CIP on CAN Technology The CIP Advantage Technology Overview Series DeviceNet - CIP on CAN Technology DeviceNet has been solving manufacturing automation applications since the mid-1990's, and today boasts an installed base

More information

An Introduction to TTEthernet

An Introduction to TTEthernet An Introduction to thernet TU Vienna, Apr/26, 2013 Guest Lecture in Deterministic Networking (DetNet) Wilfried Steiner, Corporate Scientist wilfried.steiner@tttech.com Copyright TTTech Computertechnik

More information

Safety and Reliability of Software-Controlled Systems Part 14: Fault mitigation

Safety and Reliability of Software-Controlled Systems Part 14: Fault mitigation Safety and Reliability of Software-Controlled Systems Part 14: Fault mitigation Prof. Dr.-Ing. Stefan Kowalewski Chair Informatik 11, Embedded Software Laboratory RWTH Aachen University Summer Semester

More information

Evaluation of numerical bus systems used in rocket engine test facilities

Evaluation of numerical bus systems used in rocket engine test facilities www.dlr.de Chart 1 > Numerical bus systems > V. Schmidt 8971_151277.pptx > 13.06.2013 Evaluation of numerical bus systems used in rocket engine test facilities Volker Schmidt Pavel Georgiev Harald Horn

More information

Lecture 11: Networks & Networking

Lecture 11: Networks & Networking Lecture 11: Networks & Networking Contents Distributed systems Network types Network standards ISO and TCP/IP network models Internet architecture IP addressing IP datagrams AE4B33OSS Lecture 11 / Page

More information

Boeing 777. Boeing 777. Paper: Triple-Triple Redundant 777 Primary Flight Computer. Primary Flight Control Surfaces

Boeing 777. Boeing 777. Paper: Triple-Triple Redundant 777 Primary Flight Computer. Primary Flight Control Surfaces u Primary Flight Computer Paper: Triple-Triple Redundant 777 Primary Flight Computer» Y.C. Yeh» 1996 IEEE Aerospace Applications Conference» pg 293-307 2003 A.W. Krings Page: 1 Primary Flight Control Surfaces

More information

Dep. Systems Requirements

Dep. Systems Requirements Dependable Systems Dep. Systems Requirements Availability the system is ready to be used immediately. A(t) = probability system is available for use at time t MTTF/(MTTF+MTTR) If MTTR can be kept small

More information

This chapter provides the background knowledge about Multistage. multistage interconnection networks are explained. The need, objectives, research

This chapter provides the background knowledge about Multistage. multistage interconnection networks are explained. The need, objectives, research CHAPTER 1 Introduction This chapter provides the background knowledge about Multistage Interconnection Networks. Metrics used for measuring the performance of various multistage interconnection networks

More information

FOUNDATION Fieldbus Fieldbus Basics & its Benefits

FOUNDATION Fieldbus Fieldbus Basics & its Benefits FOUNDATION Fieldbus Fieldbus Basics & its Benefits James Loh Yokogawa Engineering Asia On behalf of Fieldbus Foundation TM Vietnam FF Seminar Fieldbus Basics - Agenda 1. H1 Basic Review. 2. H1 Benefits.

More information