ANALYSIS OF AN AREA EFFICIENT VLSI ARCHITECTURE FOR FLOATING POINT MULTIPLIER AND GALOIS FIELD MULTIPLIER*

Size: px
Start display at page:

Download "ANALYSIS OF AN AREA EFFICIENT VLSI ARCHITECTURE FOR FLOATING POINT MULTIPLIER AND GALOIS FIELD MULTIPLIER*"

Transcription

1 IJVD: 3(1), 2012, pp ANALYSIS OF AN AREA EFFICIENT VLSI ARCHITECTURE FOR FLOATING POINT MULTIPLIER AND GALOIS FIELD MULTIPLIER* Anbuselvi M. and Salivahanan S. Department of Electronics and Communication Engineering, SSN College of Engineering, Rajiv Gandhi Salai, Kalavakkam , India This article deals with the VLSI architecture of the Floating point and Galois field multiplier, using a technique called Wave-pipelining. Wave -pipelining is a circuit design technique that allows digital synchronous systems to be clocked at rates higher than conventional pipelining techniques. Wave pipelining can improve the throughput of a logic circuit while avoiding some of the overheads of traditional pipelining. Multiplication plays a very important role in the signal processing applications. In the VLSI platform, the area consumption is judged with the number of gates required to realize the logic. Accordingly, the multiplier structures, which we have traditionally, are computation intensive thereby involves larger usage of flipflops and slices in terms of architecture realization. To reduce the area consumption, the technique of wave pipelining has been incorporated, which also paves way for the low power architecture. The concept has been verified with the other kind of multiplier namely, Galois field multiplier, which has its existence in coding theory and cryptography analysis. The analysis of the designed architectures is done in Xilinx and Synopsys, targeted to 90nm technology. Keywords: Digital design, Floating point, Galois field, Maximum rate pipelining, Multiplier, VLSI architecture, Wave-pipelining. 1. INTRODUCTION With the advent of the signal processing techniques and technologies, the computation complexity of the individual blocks of any application has been optimized. In general, the most common operation involved in any signal processing application is the multiplication operation. As a fact, the process of multiplication is computation intensive, which consumes more power and area, when compared to the other arithmetic operations. In an effort to improve the throughput of digital systems, the architecture for multipliers has been optimized using the pipelining technique. When a logic network is pipelined, synchronizing elements, either latches or registers, are inserted to partition the network into stages. Pipelining of a circuit into N stages can result in speedup in throughput upto a factor of N. The inserted synchronizing elements increase the area and power consumption of the logic. Thereby the additional overheads are increase in latency and cycle time. Conventional pipelined systems allow data to propagate from a register through the combinational network to another register prior to initiating the subsequent data transfer. Thus, the maximum operating frequency is determined by the maximum propagation delay through the longest pipeline stage. Wave-Pipelining or maximum rate pipelining is a circuit design that allows digital systems to be clocked at rates higher than that can be achieved with conventional pipelining techniques. Wave-pipelining relies on the predictable finite signal propagation delay through combinational logic for virtual data storage. Wave pipelining of combinational circuits has been shown to achieve clock rates 2 to 7-times those possible for the same circuits with conventional pipelining. Rather, knowledge of the signal propagation delay characteristics of the logic network is used at design time to manage the signal delays so as to ensure that operations do not interfere with their predecessor nor successor computations [1, 2]. Unlike ordinary pipelining, wave pipelining does not require internal clock elements to increase throughput. The synchronization of internal computations is achieved by balancing inherent RC delays of combinational logic elements, thus allowing circuits to be pipelined at a very fine grain level. The rate at which logic can

2 22 Anbuselvi M. and Salivahanan S. propagate through the circuit depends not on the longest path delay but on the difference between the longest and shortest path delays [3]. 2. WAVE-PIPELINING While improving the throughput of a logic circuit, traditional pipelining of VLSI systems results in overheads in latency, cycle time, area, and power consumption. Cycle time overhead results from the time required for signals to propagate out of the synchronizing elements, from the time required for signals to set up to the synchronizing elements prior to their being stored in the synchronizing elements, and for the unintentional clock skew in the arrival of the synchronizer clock signal. Instead, in wavepipelining, cycle time is determined by the variation in the propagation delay of the signals through the logic, the input and output register delays. Latency through the traditional pipeline is defined as the total elapsed time from the time of introduction of data, at the input to the first stage of the pipeline, to the time the results of computations performed on that data arrive at the output of the final stage of the pipeline. Area and power overhead results from the additional transistors and wires used to implement the synchronizing latches or registers, and from the increased clock buffer area and power needed to drive the clock inputs to the synchronizers. The area and power overheads of a traditional pipeline are avoided in the wave pipelining since there are no separate synchronizers [4]. Figure 1: Model of a Wave-pipelined Circuit Figure 1 shows the model of a wave-pipelined circuit. There is no internal registers inside the logic block. There are only flip-flops inserted at the input and output side of the logic block. For the designed logic, the maximum and minimum delay is calculated. The technique of buffer insertion can be used to equalize the delay inside the logic element. TCK ( DMAX DMIN ) TS T H 2 CK (1) According to the equation (1), the clock period is directly proportional to the difference between the maximum and minimum delay. Reducing the difference in delay, by buffer insertion, the clock speed can be increased, thereby realizing the wavepipelined circuit. 3. FLOATING POINT MULTIPLIER IEEE 754 single precision is the standard defined for the floating point representation. The floatingpoint representation is one way to represent real numbers. A floating-point number n is represented with an exponent e and a mantissa m, so that: n = be m, where b is the base number (also called radix). The three basic components are the sign, exponent, and mantissa as shown in Figure 2. IEEE 754 standard defines the sign representation with a single bit, exponent with 8 bits and mantissa part with 22 bits. Figure 2: The Storage Layout for Single-precision Floatingpoint Binary The floating-point format can represent a wide range of scale without losing precision, while the fixed-point format has a fixed window of representation. Hence, for example in a 32-bit floating-point representation, numbers from to can be represented with ease. This is one of the reasons why floating-point representation is the most common solution. Floating-point representations also include special values like infinity, Not-a-Number (NaN) (e.g. result of square root of a negative number). The architecture of the floating point multiplier is shown in figure 3. According to that, the sign bit of the multiplicand and multiplier are xored. The exponent part of the multiplicand and the multiplier are added and normalized to get the exponent part of the result. The mantissa part of the multiplicand and multiplier are multiplied and normalized to find the product term. Normalization is done to compensate the loss in precision. At the product term, the overflow effect is take care by the rounding logic. The parallel architecture for speeding up the computation has been addressed in the literature [5].

3 Analysis of an Area Efficient VLSI Architecture for Floating Point Multiplier and Galois Field Multiplier* 23 Figure 3: Floating Point Multiplier Architecture 4. GALOIS FIELD MULTIPLIER The need for portable circuits able to communicate with high bandwidths pushes the development of high speed and low-power circuits. In this context, efficient Galois field GF (2 m ) arithmetic blocks are desired in many fields like error-control coding and cryptosystems. In error-control coding, the Galois field GF (2 m ) arithmetic, mainly the field addition and multiplication is the basis of Reed-Solomon encoding and decoding [6, 7]. In cryptographic applications, the GF (2m) arithmetic is largely used in elliptic-curve cryptosystems. In these applications, the building blocks that greatly influence system complexity and timing performance are the ones implementing the algebraic blocks. The addition operation in GF (2m) is equivalent to a simple bitwise XOR operation. On the other hand, the multiplication operation requires a larger and a slower hardware. The multiplier design presents a good area which is suitable for elliptic curve crypto processor design. Therefore elliptic curve crypto system can be used in applications that require small area and low consumption power such as smart cards and cellular telephones. The different kind of architectures of Galois field multiplier is addressed in the literature [8]. But the trade off between area and speed always exists with respect to the various architectures. This paper presents efficient hardware implementations for Galois field multiplier. Figure 4 shows a basic 4-bit multiplier structure. The operands are as shown, with the multiplier residing in a 4-bit shift register, the multiplicand in a 4-bit register, the result in the middle (R (3) R (0)), and an irreducible polynomial at the bottom. It is possible to load the multiplier and multiplicand serially, and have the irreducible polynomial arrive as part of the power on initialization process. As the operation occurs, there will be a common clock shifting the multiplier and the result registers. The irreducible polynomial and the multiplicand remain static. Generally all numbers in a Galois Field will be 1s and 0s and for GF (2 m ), there will be 2 m distinct symbols. For m = 4, there will be 16 distinct symbols. When we multiply, we will use what is called polynomial form, so the arithmetic will be similar to standard arithmetic multiplication, except that if the results overflow the four bit limit, we must adjust the result by subtracting the modulus, m. The irreducible polynomial we used is, x 4 + x + 1, which will be represented by in binary [9]. The value of the multiplier (in bold) is incrementally placed in front of the parenthetic multiplicand, so successive bits of the multiplier can be read down that position from row to row. They arrive most significant bit first. Also, multiplying number times one preserves the number. Multiplying by zero will produce a zero, as well. Due to the large number of partial results that have 0000 in them, we don ft see the effect of intermediate shifting.

4 24 Anbuselvi M. and Salivahanan S. Figure 4: A Basic 4-bit Galois Field Multiplier 5. SYNTHESIS The architecture of the floating point multiplier and Galois field multiplier is realized using VHDL description language. The logic verification has been performed using Modelsim. The designed structure is synthesized using XILINX 9.1 ISE Tool. The synthesis report with respect to Spartan 3e FPGA, is analyzed for the device utilization by the designed architecture. The floating point multiplier architecture shown above is designed with different stages of pipelining. Table 1 Device Utilization Summary for Floating Point Multiplier Device Utilized Logic utilization Logic distribution No. of slice flip flops No. of 4 input luts 2,481 2,491 2,494 2,409 No. of occupied slices 1,548 1,614 1,645 1,463 No. of Slices 1,548 1,614 1,645 1,463 Total Number of 2,658 2,669 2,660 2,594 4 input luts Gate count 24,115 25,366 26,080 22,505 The wave-pipelined architecture of the multiplier is designed by, computing the maximum and minimum delay along the different paths inside the logic. The non-critical path having the minimum delay is considered for delay equalization. The buffers are inserted at the appropriate paths, thereby reducing the difference between the maximum and minimum delay of the logic block. The synthesis report for floating point multiplier with different pipelining stages has been shown in Table 1. The detailed synthesis report speaks about the device utilization, timing involved and the total memory usage. Considering the device utilization report, the logic utilization in terms of number of flip-flops, number of lookup table and finally the total gate count is analyzed. The floating point multiplier is analyzed with the different stages of pipelining and compared with the wave-pipelined structure. The above result proves that the area consumption of the multipliers gets reduced with the wave-pipelining technique in terms of number of flip flops or LUTs. The above analysis has been strengthened with the Synopsys tool, targeted to the 90nm technology.

5 Analysis of an Area Efficient VLSI Architecture for Floating Point Multiplier and Galois Field Multiplier* 25 Table 2 Area Analysis for Floating Point Multiplier in Synopsys Tool Area Combinational area (µm 2 ) Noncombinational Area (µm 2 ) Net Interconnect (µm 2 ) Total cell area (µm 2 ) Total area (µm 2 ) We infer from Table 2 that the total area occupied by the logic increases with the increase in the stages of pipelining. But with the use of wavepipelining technique, the throughput, latency and also the total area gets reduced compared with the initial single stage architecture. The synthesis report for Galois field multiplier with different pipelining stages has been shown in Table 3. The above result proves that the architecture when targeted to Xilinx FPGA, the area consumption of the multipliers gets reduced with the wave-pipelining in terms of number of flip flops or LUTs. The above analysis has been strengthened with the Synopsys tool, targeted to the 90nm technology. The analysis of the Galois field multiplier with different stages of pipelining has been done in the Synopsys tool also. The inference from the Table 4, is that the area and also power gets reduced for the wavepipelined architecture, when compared to the different architectures of GF multiplier. Thus the designed architecture is area efficient and power efficient. Table 3 Device Utilization Summary for Galois Field Multiplier Device Utilized Logic utilization Logic distribution No. of slice No. of slice flip flops No. of occupied slices No. of Slices Total Number of input luts Gate count 1,712 1,902 2,074 1,528 Table 2 Area Analysis for Floating Point Multiplier in Synopsys Tool Area Combinational area (µm 2 ) Noncombinational Area (µm 2 ) Net Interconnect (µm 2 ) Total cell area (µm 2 ) Total area (µm 2 ) Power µw µw 1.23mW µw

6 26 Anbuselvi M. and Salivahanan S. 6. CONCLUSION This paper aims at analyzing the performance of floating point and Galois field multipliers with the effect of wave-pipelining. Both the architectures have been studied and different stages of pipelining have been implemented. The different architectures of both floating point and GF multiplier is also synthesized using the Synopsys tool, targeted to 90nm. It is found that the GF multiplier with wavepipelined structure is both area and power efficient. Hence wave-pipelining is found to be more superior in terms of area and power when compared with other pipelining stages. The same architectures can be designed with other wave-pipelining methods, such as logic restructuring and node collapsing. REFERENCES [1] Donald A. Joy and Maciej J. Ciesielski, Clock Period Minimization with Wave Pipelining, IEEE Transaction On Computer Aided Design of Integrated Circuits and Systems, 12(14), April [2] Fabian Klass, Maciji Ciesielski, Wayne P. Burleson and Wental Liu, Wave -Pipelining: A Tutorial and Research Survey, IEEE Transactions on Very Large Scale Integration (VLSI) System, 6(3), September [3] G. Lakshminarayanan and B. Venkataramanai, Optimization Techniques for FPGA-Based Wavepipelined DSP Blocks, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(7), July [4] Ramalingam Sridhar and Xuguang Zhang, Synchronization of Wave Pipelined Circuits, IEEE [5] Sanjiv Kumar Mangal, Raghavendra B. Deshmukh, M. Badghare and R.M. Patrikar, FPGA Implementation of Low Power Parallel Multiplier, 20th International Conference on VLSI Design (VLSID 07). [6] Nick Iliev, James Stine, and Nathan Jachimiec, Digital Finite-Field Multiplier for Reed-Solomon Channel Codes in GF (2^8) with Programmable Basis Polynomial, IIT VLSI Lab. [7] R. Lidl, and H. Niederreiter, Introduction to Finite Fields and Their Applica tions, Cambridge Univ. Press [8] Joes Luis Imana, Bit-Parallel Arithmetic Implementations Over Finite Fields GF (2m) with Reconfigurable Hardware, pp , Kluwer Academic, [9] C. Yeh, I. S. Reed, and T.K. Trouong, Systolic Multipliers for Finite Fields GF (2m), IEEE Trans. On Computers, C-33, pp. 357, 1984.

Pipelined Quadratic Equation based Novel Multiplication Method for Cryptographic Applications

Pipelined Quadratic Equation based Novel Multiplication Method for Cryptographic Applications , Vol 7(4S), 34 39, April 204 ISSN (Print): 0974-6846 ISSN (Online) : 0974-5645 Pipelined Quadratic Equation based Novel Multiplication Method for Cryptographic Applications B. Vignesh *, K. P. Sridhar

More information

Compact Clock Skew Scheme for FPGA based Wave- Pipelined Circuits

Compact Clock Skew Scheme for FPGA based Wave- Pipelined Circuits International Journal of Communication Engineering and Technology. ISSN 2277-3150 Volume 3, Number 1 (2013), pp. 13-22 Research India Publications http://www.ripublication.com Compact Clock Skew Scheme

More information

ARCHITECTURAL DESIGN OF 8 BIT FLOATING POINT MULTIPLICATION UNIT

ARCHITECTURAL DESIGN OF 8 BIT FLOATING POINT MULTIPLICATION UNIT ARCHITECTURAL DESIGN OF 8 BIT FLOATING POINT MULTIPLICATION UNIT Usha S. 1 and Vijaya Kumar V. 2 1 VLSI Design, Sathyabama University, Chennai, India 2 Department of Electronics and Communication Engineering,

More information

PERFORMANCE ANALYSIS OF HIGH EFFICIENCY LOW DENSITY PARITY-CHECK CODE DECODER FOR LOW POWER APPLICATIONS

PERFORMANCE ANALYSIS OF HIGH EFFICIENCY LOW DENSITY PARITY-CHECK CODE DECODER FOR LOW POWER APPLICATIONS American Journal of Applied Sciences 11 (4): 558-563, 2014 ISSN: 1546-9239 2014 Science Publication doi:10.3844/ajassp.2014.558.563 Published Online 11 (4) 2014 (http://www.thescipub.com/ajas.toc) PERFORMANCE

More information

VLSI Design and Implementation of High Speed and High Throughput DADDA Multiplier

VLSI Design and Implementation of High Speed and High Throughput DADDA Multiplier VLSI Design and Implementation of High Speed and High Throughput DADDA Multiplier U.V.N.S.Suhitha Student Department of ECE, BVC College of Engineering, AP, India. Abstract: The ever growing need for improved

More information

University, Patiala, Punjab, India 1 2

University, Patiala, Punjab, India 1 2 1102 Design and Implementation of Efficient Adder based Floating Point Multiplier LOKESH BHARDWAJ 1, SAKSHI BAJAJ 2 1 Student, M.tech, VLSI, 2 Assistant Professor,Electronics and Communication Engineering

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering An Efficient Implementation of Double Precision Floating Point Multiplier Using Booth Algorithm Pallavi Ramteke 1, Dr. N. N. Mhala 2, Prof. P. R. Lakhe M.Tech [IV Sem], Dept. of Comm. Engg., S.D.C.E, [Selukate],

More information

Comparison of pipelined IEEE-754 standard floating point multiplier with unpipelined multiplier

Comparison of pipelined IEEE-754 standard floating point multiplier with unpipelined multiplier Journal of Scientific & Industrial Research Vol. 65, November 2006, pp. 900-904 Comparison of pipelined IEEE-754 standard floating point multiplier with unpipelined multiplier Kavita Khare 1, *, R P Singh

More information

Design and Implementation of VLSI 8 Bit Systolic Array Multiplier

Design and Implementation of VLSI 8 Bit Systolic Array Multiplier Design and Implementation of VLSI 8 Bit Systolic Array Multiplier Khumanthem Devjit Singh, K. Jyothi MTech student (VLSI & ES), GIET, Rajahmundry, AP, India Associate Professor, Dept. of ECE, GIET, Rajahmundry,

More information

VHDL IMPLEMENTATION OF FLOATING POINT MULTIPLIER USING VEDIC MATHEMATICS

VHDL IMPLEMENTATION OF FLOATING POINT MULTIPLIER USING VEDIC MATHEMATICS VHDL IMPLEMENTATION OF FLOATING POINT MULTIPLIER USING VEDIC MATHEMATICS I.V.VAIBHAV 1, K.V.SAICHARAN 1, B.SRAVANTHI 1, D.SRINIVASULU 2 1 Students of Department of ECE,SACET, Chirala, AP, India 2 Associate

More information

VHDL for Synthesis. Course Description. Course Duration. Goals

VHDL for Synthesis. Course Description. Course Duration. Goals VHDL for Synthesis Course Description This course provides all necessary theoretical and practical know how to write an efficient synthesizable HDL code through VHDL standard language. The course goes

More information

Prachi Sharma 1, Rama Laxmi 2, Arun Kumar Mishra 3 1 Student, 2,3 Assistant Professor, EC Department, Bhabha College of Engineering

Prachi Sharma 1, Rama Laxmi 2, Arun Kumar Mishra 3 1 Student, 2,3 Assistant Professor, EC Department, Bhabha College of Engineering A Review: Design of 16 bit Arithmetic and Logical unit using Vivado 14.7 and Implementation on Basys 3 FPGA Board Prachi Sharma 1, Rama Laxmi 2, Arun Kumar Mishra 3 1 Student, 2,3 Assistant Professor,

More information

A Low Power Asynchronous FPGA with Autonomous Fine Grain Power Gating and LEDR Encoding

A Low Power Asynchronous FPGA with Autonomous Fine Grain Power Gating and LEDR Encoding A Low Power Asynchronous FPGA with Autonomous Fine Grain Power Gating and LEDR Encoding N.Rajagopala krishnan, k.sivasuparamanyan, G.Ramadoss Abstract Field Programmable Gate Arrays (FPGAs) are widely

More information

Hardware Implementation of Cryptosystem by AES Algorithm Using FPGA

Hardware Implementation of Cryptosystem by AES Algorithm Using FPGA Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 6.017 IJCSMC,

More information

Verilog for High Performance

Verilog for High Performance Verilog for High Performance Course Description This course provides all necessary theoretical and practical know-how to write synthesizable HDL code through Verilog standard language. The course goes

More information

ISSN Vol.02, Issue.11, December-2014, Pages:

ISSN Vol.02, Issue.11, December-2014, Pages: ISSN 2322-0929 Vol.02, Issue.11, December-2014, Pages:1208-1212 www.ijvdcs.org Implementation of Area Optimized Floating Point Unit using Verilog G.RAJA SEKHAR 1, M.SRIHARI 2 1 PG Scholar, Dept of ECE,

More information

Assignment 1. ECSE-487 Computer archecture Lab. Due date: September 21, 2007, Trottier Assignment Box by 14:30

Assignment 1. ECSE-487 Computer archecture Lab. Due date: September 21, 2007, Trottier Assignment Box by 14:30 Assignment 1 ECSE-487 Computer archecture Lab Due date: September 21, 2007, Trottier Assignment Box by 14:30 1 Introduction The purpose of this assignment is to re-familiarize the student with VHDL and

More information

A Library of Parameterized Floating-point Modules and Their Use

A Library of Parameterized Floating-point Modules and Their Use A Library of Parameterized Floating-point Modules and Their Use Pavle Belanović and Miriam Leeser Department of Electrical and Computer Engineering Northeastern University Boston, MA, 02115, USA {pbelanov,mel}@ece.neu.edu

More information

FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed

FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed Vijaya Kumar. B.1 #1, T. Thammi Reddy.2 #2 #1. Dept of Electronics and Communication, G.P.R.Engineering College,

More information

An Efficient FPGA Implementation of the Advanced Encryption Standard (AES) Algorithm Using S-Box

An Efficient FPGA Implementation of the Advanced Encryption Standard (AES) Algorithm Using S-Box Volume 5 Issue 2 June 2017 ISSN: 2320-9984 (Online) International Journal of Modern Engineering & Management Research Website: www.ijmemr.org An Efficient FPGA Implementation of the Advanced Encryption

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Configuring Floating Point Multiplier on Spartan 2E Hardware

More information

Volume 5, Issue 5 OCT 2016

Volume 5, Issue 5 OCT 2016 DESIGN AND IMPLEMENTATION OF REDUNDANT BASIS HIGH SPEED FINITE FIELD MULTIPLIERS Vakkalakula Bharathsreenivasulu 1 G.Divya Praneetha 2 1 PG Scholar, Dept of VLSI & ES, G.Pullareddy Eng College,kurnool

More information

DESIGN AND IMPLEMENTATION OF SDR SDRAM CONTROLLER IN VHDL. Shruti Hathwalia* 1, Meenakshi Yadav 2

DESIGN AND IMPLEMENTATION OF SDR SDRAM CONTROLLER IN VHDL. Shruti Hathwalia* 1, Meenakshi Yadav 2 ISSN 2277-2685 IJESR/November 2014/ Vol-4/Issue-11/799-807 Shruti Hathwalia et al./ International Journal of Engineering & Science Research DESIGN AND IMPLEMENTATION OF SDR SDRAM CONTROLLER IN VHDL ABSTRACT

More information

Optimized Design and Implementation of a 16-bit Iterative Logarithmic Multiplier

Optimized Design and Implementation of a 16-bit Iterative Logarithmic Multiplier Optimized Design and Implementation a 16-bit Iterative Logarithmic Multiplier Laxmi Kosta 1, Jaspreet Hora 2, Rupa Tomaskar 3 1 Lecturer, Department Electronic & Telecommunication Engineering, RGCER, Nagpur,India,

More information

VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT

VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT K.Sandyarani 1 and P. Nirmal Kumar 2 1 Research Scholar, Department of ECE, Sathyabama

More information

Design and Implementation of 3-D DWT for Video Processing Applications

Design and Implementation of 3-D DWT for Video Processing Applications Design and Implementation of 3-D DWT for Video Processing Applications P. Mohaniah 1, P. Sathyanarayana 2, A. S. Ram Kumar Reddy 3 & A. Vijayalakshmi 4 1 E.C.E, N.B.K.R.IST, Vidyanagar, 2 E.C.E, S.V University

More information

A Low-Power Field Programmable VLSI Based on Autonomous Fine-Grain Power Gating Technique

A Low-Power Field Programmable VLSI Based on Autonomous Fine-Grain Power Gating Technique A Low-Power Field Programmable VLSI Based on Autonomous Fine-Grain Power Gating Technique P. Durga Prasad, M. Tech Scholar, C. Ravi Shankar Reddy, Lecturer, V. Sumalatha, Associate Professor Department

More information

Double Precision Floating-Point Multiplier using Coarse-Grain Units

Double Precision Floating-Point Multiplier using Coarse-Grain Units Double Precision Floating-Point Multiplier using Coarse-Grain Units Rui Duarte INESC-ID/IST/UTL. rduarte@prosys.inesc-id.pt Mário Véstias INESC-ID/ISEL/IPL. mvestias@deetc.isel.ipl.pt Horácio Neto INESC-ID/IST/UTL

More information

Fig.1. Floating point number representation of single-precision (32-bit). Floating point number representation in double-precision (64-bit) format:

Fig.1. Floating point number representation of single-precision (32-bit). Floating point number representation in double-precision (64-bit) format: 1313 DESIGN AND PERFORMANCE ANALYSIS OF DOUBLE- PRECISION FLOATING POINT MULTIPLIER USING URDHVA TIRYAGBHYAM SUTRA Y SRINIVASA RAO 1, T SUBHASHINI 2, K RAMBABU 3 P.G Student 1, Assistant Professor 2, Assistant

More information

Implementation of IEEE754 Floating Point Multiplier

Implementation of IEEE754 Floating Point Multiplier Implementation of IEEE754 Floating Point Multiplier A Kumutha 1 Shobha. P 2 1 MVJ College of Engineering, Near ITPB, Channasandra, Bangalore-67. 2 MVJ College of Engineering, Near ITPB, Channasandra, Bangalore-67.

More information

Evaluation of High Speed Hardware Multipliers - Fixed Point and Floating point

Evaluation of High Speed Hardware Multipliers - Fixed Point and Floating point International Journal of Electrical and Computer Engineering (IJECE) Vol. 3, No. 6, December 2013, pp. 805~814 ISSN: 2088-8708 805 Evaluation of High Speed Hardware Multipliers - Fixed Point and Floating

More information

Parallelized Radix-4 Scalable Montgomery Multipliers

Parallelized Radix-4 Scalable Montgomery Multipliers Parallelized Radix-4 Scalable Montgomery Multipliers Nathaniel Pinckney and David Money Harris 1 1 Harvey Mudd College, 301 Platt. Blvd., Claremont, CA, USA e-mail: npinckney@hmc.edu ABSTRACT This paper

More information

Pipelined High Speed Double Precision Floating Point Multiplier Using Dadda Algorithm Based on FPGA

Pipelined High Speed Double Precision Floating Point Multiplier Using Dadda Algorithm Based on FPGA RESEARCH ARTICLE OPEN ACCESS Pipelined High Speed Double Precision Floating Point Multiplier Using Dadda Algorithm Based on FPGA J.Rupesh Kumar, G.Ram Mohan, Sudershanraju.Ch M. Tech Scholar, Dept. of

More information

HIGH-THROUGHPUT FINITE FIELD MULTIPLIERS USING REDUNDANT BASIS FOR FPGA AND ASIC IMPLEMENTATIONS

HIGH-THROUGHPUT FINITE FIELD MULTIPLIERS USING REDUNDANT BASIS FOR FPGA AND ASIC IMPLEMENTATIONS HIGH-THROUGHPUT FINITE FIELD MULTIPLIERS USING REDUNDANT BASIS FOR FPGA AND ASIC IMPLEMENTATIONS Shaik.Sooraj, Jabeena shaik,m.tech Department of Electronics and communication Engineering, Quba College

More information

An Efficient Implementation of Floating Point Multiplier

An Efficient Implementation of Floating Point Multiplier An Efficient Implementation of Floating Point Multiplier Mohamed Al-Ashrafy Mentor Graphics Mohamed_Samy@Mentor.com Ashraf Salem Mentor Graphics Ashraf_Salem@Mentor.com Wagdy Anis Communications and Electronics

More information

U k-2. U k-1 V 1. V k-1. W k-1 W 1 P 1. P k-1

U k-2. U k-1 V 1. V k-1. W k-1 W 1 P 1. P k-1 A Super-Serial Galois Fields Multiplier for FPGAs and its Application to Public-Key Algorithms Gerardo Orlando Christof Paar GTE Government Systems ECE Department 77 A. St. Worcester Polytechnic Institute

More information

A High Speed Binary Floating Point Multiplier Using Dadda Algorithm

A High Speed Binary Floating Point Multiplier Using Dadda Algorithm 455 A High Speed Binary Floating Point Multiplier Using Dadda Algorithm B. Jeevan, Asst. Professor, Dept. of E&IE, KITS, Warangal. jeevanbs776@gmail.com S. Narender, M.Tech (VLSI&ES), KITS, Warangal. narender.s446@gmail.com

More information

Analysis of Different Multiplication Algorithms & FPGA Implementation

Analysis of Different Multiplication Algorithms & FPGA Implementation IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 2, Ver. I (Mar-Apr. 2014), PP 29-35 e-issn: 2319 4200, p-issn No. : 2319 4197 Analysis of Different Multiplication Algorithms & FPGA

More information

2016 Maxwell Scientific Publication Corp. Submitted: August 21, 2015 Accepted: September 11, 2015 Published: January 05, 2016

2016 Maxwell Scientific Publication Corp. Submitted: August 21, 2015 Accepted: September 11, 2015 Published: January 05, 2016 Research Journal of Applied Sciences, Engineering and Technology 12(1): 52-62, 2016 DOI:10.19026/rjaset.12.2303 ISSN: 2040-7459; e-issn: 2040-7467 2016 Maxwell Scientific Publication Corp. Submitted: August

More information

Design of a Floating-Point Fused Add-Subtract Unit Using Verilog

Design of a Floating-Point Fused Add-Subtract Unit Using Verilog International Journal of Electronics and Computer Science Engineering 1007 Available Online at www.ijecse.org ISSN- 2277-1956 Design of a Floating-Point Fused Add-Subtract Unit Using Verilog Mayank Sharma,

More information

Architecture and Design of Generic IEEE-754 Based Floating Point Adder, Subtractor and Multiplier

Architecture and Design of Generic IEEE-754 Based Floating Point Adder, Subtractor and Multiplier Architecture and Design of Generic IEEE-754 Based Floating Point Adder, Subtractor and Multiplier Sahdev D. Kanjariya VLSI & Embedded Systems Design Gujarat Technological University PG School Ahmedabad,

More information

Designing and Characterization of koggestone, Sparse Kogge stone, Spanning tree and Brentkung Adders

Designing and Characterization of koggestone, Sparse Kogge stone, Spanning tree and Brentkung Adders Vol. 3, Issue. 4, July-august. 2013 pp-2266-2270 ISSN: 2249-6645 Designing and Characterization of koggestone, Sparse Kogge stone, Spanning tree and Brentkung Adders V.Krishna Kumari (1), Y.Sri Chakrapani

More information

INTRODUCTION TO FPGA ARCHITECTURE

INTRODUCTION TO FPGA ARCHITECTURE 3/3/25 INTRODUCTION TO FPGA ARCHITECTURE DIGITAL LOGIC DESIGN (BASIC TECHNIQUES) a b a y 2input Black Box y b Functional Schematic a b y a b y a b y 2 Truth Table (AND) Truth Table (OR) Truth Table (XOR)

More information

Run-Time Reconfigurable multi-precision floating point multiplier design based on pipelining technique using Karatsuba-Urdhva algorithms

Run-Time Reconfigurable multi-precision floating point multiplier design based on pipelining technique using Karatsuba-Urdhva algorithms Run-Time Reconfigurable multi-precision floating point multiplier design based on pipelining technique using Karatsuba-Urdhva algorithms 1 Shruthi K.H., 2 Rekha M.G. 1M.Tech, VLSI design and embedded system,

More information

Implementation of Double Precision Floating Point Multiplier in VHDL

Implementation of Double Precision Floating Point Multiplier in VHDL ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Implementation of Double Precision Floating Point Multiplier in VHDL 1 SUNKARA YAMUNA

More information

Field Programmable Gate Array (FPGA)

Field Programmable Gate Array (FPGA) Field Programmable Gate Array (FPGA) Lecturer: Krébesz, Tamas 1 FPGA in general Reprogrammable Si chip Invented in 1985 by Ross Freeman (Xilinx inc.) Combines the advantages of ASIC and uc-based systems

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK DESIGN AND VERIFICATION OF FAST 32 BIT BINARY FLOATING POINT MULTIPLIER BY INCREASING

More information

Systolic Super Summation with Reduced Hardware

Systolic Super Summation with Reduced Hardware Systolic Super Summation with Reduced Hardware Willard L. Miranker Mathematical Sciences Department IBM T.J. Watson Research Center Route 134 & Kitichwan Road Yorktown Heights, NY 10598 Abstract A principal

More information

Design and Optimized Implementation of Six-Operand Single- Precision Floating-Point Addition

Design and Optimized Implementation of Six-Operand Single- Precision Floating-Point Addition 2011 International Conference on Advancements in Information Technology With workshop of ICBMG 2011 IPCSIT vol.20 (2011) (2011) IACSIT Press, Singapore Design and Optimized Implementation of Six-Operand

More information

Overview. CSE372 Digital Systems Organization and Design Lab. Hardware CAD. Two Types of Chips

Overview. CSE372 Digital Systems Organization and Design Lab. Hardware CAD. Two Types of Chips Overview CSE372 Digital Systems Organization and Design Lab Prof. Milo Martin Unit 5: Hardware Synthesis CAD (Computer Aided Design) Use computers to design computers Virtuous cycle Architectural-level,

More information

FPGA BASED ADAPTIVE RESOURCE EFFICIENT ERROR CONTROL METHODOLOGY FOR NETWORK ON CHIP

FPGA BASED ADAPTIVE RESOURCE EFFICIENT ERROR CONTROL METHODOLOGY FOR NETWORK ON CHIP FPGA BASED ADAPTIVE RESOURCE EFFICIENT ERROR CONTROL METHODOLOGY FOR NETWORK ON CHIP 1 M.DEIVAKANI, 2 D.SHANTHI 1 Associate Professor, Department of Electronics and Communication Engineering PSNA College

More information

Design of Flash Controller for Single Level Cell NAND Flash Memory

Design of Flash Controller for Single Level Cell NAND Flash Memory Design of Flash Controller for Single Level Cell NAND Flash Memory Ashwin Bijoor 1, Sudharshana 2 P.G Student, Department of Electronics and Communication, NMAMIT, Nitte, Karnataka, India 1 Assistant Professor,

More information

FPGA Implementation of Multiplier for Floating- Point Numbers Based on IEEE Standard

FPGA Implementation of Multiplier for Floating- Point Numbers Based on IEEE Standard FPGA Implementation of Multiplier for Floating- Point Numbers Based on IEEE 754-2008 Standard M. Shyamsi, M. I. Ibrahimy, S. M. A. Motakabber and M. R. Ahsan Dept. of Electrical and Computer Engineering

More information

High Speed Cryptoprocessor for η T Pairing on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields

High Speed Cryptoprocessor for η T Pairing on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields High Speed Cryptoprocessor for η T Pairing on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields Santosh Ghosh, Dipanwita Roy Chowdhury, and Abhijit Das Computer Science and Engineering

More information

Reconfigurable PLL for Digital System

Reconfigurable PLL for Digital System International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 3 (2013), pp. 285-291 International Research Publication House http://www.irphouse.com Reconfigurable PLL for

More information

Implementation of Floating Point Multiplier Using Dadda Algorithm

Implementation of Floating Point Multiplier Using Dadda Algorithm Implementation of Floating Point Multiplier Using Dadda Algorithm Abstract: Floating point multiplication is the most usefull in all the computation application like in Arithematic operation, DSP application.

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE COMPUTER ORGANIZATION AND ARCHITECTURE For COMPUTER SCIENCE COMPUTER ORGANIZATION. SYLLABUS AND ARCHITECTURE Machine instructions and addressing modes, ALU and data-path, CPU control design, Memory interface,

More information

A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier using Modified CSA

A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier using Modified CSA RESEARCH ARTICLE OPEN ACCESS A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier using Nishi Pandey, Virendra Singh Sagar Institute of Research & Technology Bhopal Abstract Due to

More information

Lecture #1: Introduction

Lecture #1: Introduction Lecture #1: Introduction Kunle Olukotun Stanford EE183 January 8, 20023 What is EE183? EE183 is continuation of EE121 Digital Logic Design is a a minute to learn, a lifetime to master Programmable logic

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Implementation of Floating Point Multiplier on Reconfigurable

More information

An FPGA Based Floating Point Arithmetic Unit Using Verilog

An FPGA Based Floating Point Arithmetic Unit Using Verilog An FPGA Based Floating Point Arithmetic Unit Using Verilog T. Ramesh 1 G. Koteshwar Rao 2 1PG Scholar, Vaagdevi College of Engineering, Telangana. 2Assistant Professor, Vaagdevi College of Engineering,

More information

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression Design and Implementation of FPGA- based Systolic Array for LZ Data Compression Mohamed A. Abd El ghany Electronics Dept. German University in Cairo Cairo, Egypt E-mail: mohamed.abdel-ghany@guc.edu.eg

More information

Embedded Soc using High Performance Arm Core Processor D.sridhar raja Assistant professor, Dept. of E&I, Bharath university, Chennai

Embedded Soc using High Performance Arm Core Processor D.sridhar raja Assistant professor, Dept. of E&I, Bharath university, Chennai Embedded Soc using High Performance Arm Core Processor D.sridhar raja Assistant professor, Dept. of E&I, Bharath university, Chennai Abstract: ARM is one of the most licensed and thus widespread processor

More information

Binary Adders. Ripple-Carry Adder

Binary Adders. Ripple-Carry Adder Ripple-Carry Adder Binary Adders x n y n x y x y c n FA c n - c 2 FA c FA c s n MSB position Longest delay (Critical-path delay): d c(n) = n d carry = 2n gate delays d s(n-) = (n-) d carry +d sum = 2n

More information

Vendor Agnostic, High Performance, Double Precision Floating Point Division for FPGAs

Vendor Agnostic, High Performance, Double Precision Floating Point Division for FPGAs Vendor Agnostic, High Performance, Double Precision Floating Point Division for FPGAs Xin Fang and Miriam Leeser Dept of Electrical and Computer Eng Northeastern University Boston, Massachusetts 02115

More information

PINE TRAINING ACADEMY

PINE TRAINING ACADEMY PINE TRAINING ACADEMY Course Module A d d r e s s D - 5 5 7, G o v i n d p u r a m, G h a z i a b a d, U. P., 2 0 1 0 1 3, I n d i a Digital Logic System Design using Gates/Verilog or VHDL and Implementation

More information

DESIGN AND IMPLEMENTATION OF VLSI SYSTOLIC ARRAY MULTIPLIER FOR DSP APPLICATIONS

DESIGN AND IMPLEMENTATION OF VLSI SYSTOLIC ARRAY MULTIPLIER FOR DSP APPLICATIONS International Journal of Computing Academic Research (IJCAR) ISSN 2305-9184 Volume 2, Number 4 (August 2013), pp. 140-146 MEACSE Publications http://www.meacse.org/ijcar DESIGN AND IMPLEMENTATION OF VLSI

More information

ISSN Vol.08,Issue.12, September-2016, Pages:

ISSN Vol.08,Issue.12, September-2016, Pages: ISSN 2348 2370 Vol.08,Issue.12, September-2016, Pages:2273-2277 www.ijatir.org G. DIVYA JYOTHI REDDY 1, V. ROOPA REDDY 2 1 PG Scholar, Dept of ECE, TKR Engineering College, Hyderabad, TS, India, E-mail:

More information

Design and Simulation of Pipelined Double Precision Floating Point Adder/Subtractor and Multiplier Using Verilog

Design and Simulation of Pipelined Double Precision Floating Point Adder/Subtractor and Multiplier Using Verilog Design and Simulation of Pipelined Double Precision Floating Point Adder/Subtractor and Multiplier Using Verilog Onkar Singh (1) Kanika Sharma (2) Dept. ECE, Arni University, HP (1) Dept. ECE, NITTTR Chandigarh

More information

IEEE-754 compliant Algorithms for Fast Multiplication of Double Precision Floating Point Numbers

IEEE-754 compliant Algorithms for Fast Multiplication of Double Precision Floating Point Numbers International Journal of Research in Computer Science ISSN 2249-8257 Volume 1 Issue 1 (2011) pp. 1-7 White Globe Publications www.ijorcs.org IEEE-754 compliant Algorithms for Fast Multiplication of Double

More information

High speed Integrated Circuit Hardware Description Language), RTL (Register transfer level). Abstract:

High speed Integrated Circuit Hardware Description Language), RTL (Register transfer level). Abstract: based implementation of 8-bit ALU of a RISC processor using Booth algorithm written in VHDL language Paresh Kumar Pasayat, Manoranjan Pradhan, Bhupesh Kumar Pasayat Abstract: This paper explains the design

More information

WORD LEVEL FINITE FIELD MULTIPLIERS USING NORMAL BASIS

WORD LEVEL FINITE FIELD MULTIPLIERS USING NORMAL BASIS WORD LEVEL FINITE FIELD MULTIPLIERS USING NORMAL BASIS 1 B.SARGUNAM, 2 Dr.R.DHANASEKARAN 1 Assistant Professor, Department of ECE, Avinashilingam University, Coimbatore 2 Professor & Director-Research,

More information

PROJECT REPORT IMPLEMENTATION OF LOGARITHM COMPUTATION DEVICE AS PART OF VLSI TOOLS COURSE

PROJECT REPORT IMPLEMENTATION OF LOGARITHM COMPUTATION DEVICE AS PART OF VLSI TOOLS COURSE PROJECT REPORT ON IMPLEMENTATION OF LOGARITHM COMPUTATION DEVICE AS PART OF VLSI TOOLS COURSE Project Guide Prof Ravindra Jayanti By Mukund UG3 (ECE) 200630022 Introduction The project was implemented

More information

A Modified Radix2, Radix4 Algorithms and Modified Adder for Parallel Multiplication

A Modified Radix2, Radix4 Algorithms and Modified Adder for Parallel Multiplication International Journal of Emerging Engineering Research and Technology Volume 3, Issue 8, August 2015, PP 90-95 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) A Modified Radix2, Radix4 Algorithms and

More information

HIGH PERFORMANCE ELLIPTIC CURVE CRYPTO-PROCESSOR FOR FPGA PLATFORMS

HIGH PERFORMANCE ELLIPTIC CURVE CRYPTO-PROCESSOR FOR FPGA PLATFORMS HIGH PERFORMANCE ELLIPTIC CURVE CRYPTO-PROCESSOR FOR FPGA PLATFORMS Debdeep Mukhopadhyay Dept. of Computer Science and Engg. IIT Kharagpur 3/6/2010 NTT Labs, Japan 1 Outline Elliptic Curve Cryptography

More information

FPGA for Software Engineers

FPGA for Software Engineers FPGA for Software Engineers Course Description This course closes the gap between hardware and software engineers by providing the software engineer all the necessary FPGA concepts and terms. The course

More information

ISSN: X Impact factor: (Volume3, Issue2) Analyzing Two-Term Dot Product of Multiplier Using Floating Point and Booth Multiplier

ISSN: X Impact factor: (Volume3, Issue2) Analyzing Two-Term Dot Product of Multiplier Using Floating Point and Booth Multiplier ISSN: 2454-132X Impact factor: 4.295 (Volume3, Issue2) Analyzing Two-Term Dot Product of Multiplier Using Floating Point and Booth Multiplier 1 Mukesh Krishna Department Electrical and Electronics Engineering

More information

Implementation of Galois Field Arithmetic Unit on FPGA

Implementation of Galois Field Arithmetic Unit on FPGA Implementation of Galois Field Arithmetic Unit on FPGA 1 LakhendraKumar, 2 Dr. K. L. Sudha 1 B.E project scholar, VIII SEM, Dept. of E&C, DSCE, Bangalore, India 2 Professor, Dept. of E&C, DSCE, Bangalore,

More information

Design of S-box and IN V S -box using Composite Field Arithmetic for AES Algorithm

Design of S-box and IN V S -box using Composite Field Arithmetic for AES Algorithm Design of S-box and IN V S -box using Composite Field Arithmetic for AES Algorithm Sushma D K Department of Electronics and Communication The Oxford College of Engineering Bangalore, India Dr. Manju Devi

More information

High Speed Systolic Montgomery Modular Multipliers for RSA Cryptosystems

High Speed Systolic Montgomery Modular Multipliers for RSA Cryptosystems High Speed Systolic Montgomery Modular Multipliers for RSA Cryptosystems RAVI KUMAR SATZODA, CHIP-HONG CHANG and CHING-CHUEN JONG Centre for High Performance Embedded Systems Nanyang Technological University

More information

Tiny Tate Bilinear Pairing Core Specification. Author: Homer Hsing

Tiny Tate Bilinear Pairing Core Specification. Author: Homer Hsing Tiny Tate Bilinear Pairing Core Specification Author: Homer Hsing homer.hsing@gmail.com Rev. 0.1 May 3, 2012 This page has been intentionally left blank. www.opencores.org Rev 0.1 ii Rev. Date Author Description

More information

Design Space Exploration of the Lightweight Stream Cipher WG-8 for FPGAs and ASICs

Design Space Exploration of the Lightweight Stream Cipher WG-8 for FPGAs and ASICs Design Space Exploration of the Lightweight Stream Cipher WG- for FPGAs and ASICs Gangqiang Yang, Xinxin Fan, Mark Aagaard and Guang Gong University of Waterloo g37yang@uwaterloo.ca Sept 9, 013 Gangqiang

More information

Digit-Level Semi-Systolic and Systolic Structures for the Shifted Polynomial Basis Multiplication Over Binary Extension Fields

Digit-Level Semi-Systolic and Systolic Structures for the Shifted Polynomial Basis Multiplication Over Binary Extension Fields IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 211 2125 [1] B. Calhoun and A. Chandrakasan, Static noise margin variation for sub-threshold SRAM in 65-nm CMOS,

More information

Controller IP for a Low Cost FPGA Based USB Device Core

Controller IP for a Low Cost FPGA Based USB Device Core National Conference on Emerging Trends in VLSI, Embedded and Communication Systems-2013 17 Controller IP for a Low Cost FPGA Based USB Device Core N.V. Indrasena and Anitta Thomas Abstract--- In this paper

More information

Design and Implementation of A Reconfigurable Arbiter

Design and Implementation of A Reconfigurable Arbiter Proceedings of the 7th WSEAS International Conference on Signal, Speech and Image Processing, Beijing, China, September 15-17, 2007 100 Design and Implementation of A Reconfigurable Arbiter YU-JUNG HUANG,

More information

Indian Silicon Technologies 2013

Indian Silicon Technologies 2013 SI.No Topics IEEE YEAR 1. An RFID Based Solution for Real-Time Patient Surveillance and data Processing Bio- Metric System using FPGA 2. Real-time Binary Shape Matching System Based on FPGA 3. An Optimized

More information

MODULO 2 n + 1 MAC UNIT

MODULO 2 n + 1 MAC UNIT Int. J. Elec&Electr.Eng&Telecoms. 2013 Sithara Sha and Shajimon K John, 2013 Research Paper MODULO 2 n + 1 MAC UNIT ISSN 2319 2518 www.ijeetc.com Vol. 2, No. 4, October 2013 2013 IJEETC. All Rights Reserved

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 Advance Encryption Standard (AES) Rijndael algorithm is symmetric block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256

More information

A Ripple Carry Adder based Low Power Architecture of LMS Adaptive Filter

A Ripple Carry Adder based Low Power Architecture of LMS Adaptive Filter A Ripple Carry Adder based Low Power Architecture of LMS Adaptive Filter A.S. Sneka Priyaa PG Scholar Government College of Technology Coimbatore ABSTRACT The Least Mean Square Adaptive Filter is frequently

More information

Mastrovito Multipliers Based New High Speed Hybrid Double Multiplication Architectures Based On Verilog

Mastrovito Multipliers Based New High Speed Hybrid Double Multiplication Architectures Based On Verilog Mastrovito Multipliers Based New High Speed Hybrid Double Multiplication Architectures Based On Verilog Sangoju Janardhana Chary & Rajesh Kanuganti 1 M-Tech, Dept. of ECE,Khammam Institute of Technology

More information

Design & Analysis of 16 bit RISC Processor Using low Power Pipelining

Design & Analysis of 16 bit RISC Processor Using low Power Pipelining International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Design & Analysis of 16 bit RISC Processor Using low Power Pipelining Yedla Venkanna 148R1D5710 Branch: VLSI ABSTRACT:-

More information

Quixilica Floating Point FPGA Cores

Quixilica Floating Point FPGA Cores Data sheet Quixilica Floating Point FPGA Cores Floating Point Adder - 169 MFLOPS* on VirtexE-8 Floating Point Multiplier - 152 MFLOPS* on VirtexE-8 Floating Point Divider - 189 MFLOPS* on VirtexE-8 Floating

More information

Synthesis of VHDL Code for FPGA Design Flow Using Xilinx PlanAhead Tool

Synthesis of VHDL Code for FPGA Design Flow Using Xilinx PlanAhead Tool Synthesis of VHDL Code for FPGA Design Flow Using Xilinx PlanAhead Tool Md. Abdul Latif Sarker, Moon Ho Lee Division of Electronics & Information Engineering Chonbuk National University 664-14 1GA Dekjin-Dong

More information

AES ALGORITHM FOR ENCRYPTION

AES ALGORITHM FOR ENCRYPTION Volume 02 - Issue 05 May 2016 PP. 63-68 AES ALGORITHM FOR ENCRYPTION Radhika D.Bajaj M.Tech VLSI G.H. Raisoni Institute of Engineering And Technology For Women, Nagpur. Dr. U.M. Gokhale Electronics and

More information

FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC)

FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC) FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC) D.Udhayasheela, pg student [Communication system],dept.ofece,,as-salam engineering and technology, N.MageshwariAssistant Professor

More information

INTERNATIONAL JOURNAL OF PROFESSIONAL ENGINEERING STUDIES Volume VI /Issue 3 / JUNE 2016

INTERNATIONAL JOURNAL OF PROFESSIONAL ENGINEERING STUDIES Volume VI /Issue 3 / JUNE 2016 VLSI DESIGN OF HIGH THROUGHPUT FINITE FIELD MULTIPLIER USING REDUNDANT BASIS TECHNIQUE YANATI.BHARGAVI, A.ANASUYAMMA Department of Electronics and communication Engineering Audisankara College of Engineering

More information

Design of a Pipelined 32 Bit MIPS Processor with Floating Point Unit

Design of a Pipelined 32 Bit MIPS Processor with Floating Point Unit Design of a Pipelined 32 Bit MIPS Processor with Floating Point Unit P Ajith Kumar 1, M Vijaya Lakshmi 2 P.G. Student, Department of Electronics and Communication Engineering, St.Martin s Engineering College,

More information

A High-Speed FPGA Implementation of an RSD-Based ECC Processor

A High-Speed FPGA Implementation of an RSD-Based ECC Processor RESEARCH ARTICLE International Journal of Engineering and Techniques - Volume 4 Issue 1, Jan Feb 2018 A High-Speed FPGA Implementation of an RSD-Based ECC Processor 1 K Durga Prasad, 2 M.Suresh kumar 1

More information

Designing an Improved 64 Bit Arithmetic and Logical Unit for Digital Signaling Processing Purposes

Designing an Improved 64 Bit Arithmetic and Logical Unit for Digital Signaling Processing Purposes Available Online at- http://isroj.net/index.php/issue/current-issue ISROJ Index Copernicus Value for 2015: 49.25 Volume 02 Issue 01, 2017 e-issn- 2455 8818 Designing an Improved 64 Bit Arithmetic and Logical

More information

A High-Speed FPGA Implementation of an RSD- Based ECC Processor

A High-Speed FPGA Implementation of an RSD- Based ECC Processor A High-Speed FPGA Implementation of an RSD- Based ECC Processor Abstract: In this paper, an exportable application-specific instruction-set elliptic curve cryptography processor based on redundant signed

More information