Lab Part. Bernhard Frömel /34. Institut für Technische Informatik Technische Universität Wien Deterministic Networking VU SS14

Size: px
Start display at page:

Download "Lab Part. Bernhard Frömel /34. Institut für Technische Informatik Technische Universität Wien Deterministic Networking VU SS14"

Transcription

1 1/34 Bernhard Institut für Technische Informatik Technische Universität Wien VU SS

2 2/34 Motivation Emergence Self- Organization E versus SO Part I Emergence and Self-Organization

3 3/34 Fireflies synchronize Motivation Emergence Self- Organization E versus SO

4 Fireflies synchronize We understand them 1! Motivation Emergence Self- Organization E versus SO F07/NetLogo/Firefly.html 4/34

5 Flocking birds Motivation Emergence Self- Organization E versus SO Emergent behavior in flocks [1] 5/34

6 Internet Motivation Emergence Self- Organization E versus SO World Wide Web: number of links high for few pages, low for most pages 2 TCP based flows synchronize at network bottle necks, simultaneous inc-/decrease of throughput 2 6/34

7 7/34 Emergent Phenomena Motivation Emergence Self- Organization E versus SO No generally accepted definition of emergence strong versus weak emergence show up as a surprise (subjectively perceived properties useful?) open research Sensible definition: Emergence: A phenomenon of a whole at the macro-level is emergent if and only if it is new with respect to the non-relational phenomena of any of its proper parts at the micro-level. AMADEOS, Conceptual Model

8 8/34 Motivation Emergence Self- Organization E versus SO Characteristics of Emergence [2] Emergent properties are: Origin: Interacting Parts: Parts need to interact, parallelism is not enough Decentralized Control: only local mechanisms are used to influence global behavior Coherence: logical and consistent correlation of parts at micro-level persistent pattern regardless of added/removed parts Micro-Macro effect: effect that comes into existence at macro level (also called emergent) by interaction of parts at the microlevel Two-Way Link: emergent has causal effect on behavior of parts at micro-level Radical Novelty: emergent not explicitly defined Non-linear behavior of parts Feedback/Feedforward mechanisms Time delays

9 9/34 Self-Organization Motivation Emergence Self- Organization E versus SO Working definition: Self-Organisation is a dynamical and adaptive process where systems acquire and maintain structure themselves, without external control. [2] Properties of Self-Organization: Autonomy: absence of external control Increase in Order: convergence to confined set in state space Adaptability/Robustness: convergence robust w.r.t. perturbation and changes

10 10/34 Emergence (E) versus Self-Organization (SO) Motivation Emergence Self- Organization E versus SO Not synonyms! Both are dynamic processes arising over time E robust w.r.t. entering/leaving parts at micro-level SO robust w.r.t. changes of input and maintaining increased order One without the other possible (see [2]) In combination able to structure complex systems by keeping constituent parts simple Linking E and SO, different viewpoints: SO causes E: interaction of parts are SO, SO situated at micro-level SO effect of E: emergents become more organized, SO is a property of E

11 11/34 Clock Sync System Model Protocol Part II Distributed Clock Synchronization

12 12/34 Self-Stabilizing Distributed Clock Synchronization [3] Clock Sync System Model Protocol Problem: synchronize all local clocks up to precision π achieve and maintain precision π across all independent local clocks by exchange of messages no central control unknown initial conditions (i.e., local clock values arbitrary) How to do that?

13 12/34 Self-Stabilizing Distributed Clock Synchronization [3] Clock Sync System Model Protocol Problem: synchronize all local clocks up to precision π achieve and maintain precision π across all independent local clocks by exchange of messages no central control unknown initial conditions (i.e., local clock values arbitrary) How to do that? Solution: Emergence + Self-Organization Execute a protocol locally to achieve desired global effect Without external control input

14 13/34 Asynchronous Distributed System Model Clock Sync System Model Protocol Nodes (processors) contain local oscillators with bounded drift rate ρ, arbitrary phase Local oscillator generates clock ticks that are counted by discrete LocalTimer Nodes interconnected by directed channels according to topology (strongly connected, no self-loops, no multi-edges) Source node broadcasts messages to all directly connected destination nodes Delivery order of messages arbitrary No-fault assumption: all nodes execute protocol correctly, all communication channels transport messages reliably according to specified parameters

15 14/34 Clock Sync System Model Protocol Drift Rate Bound ρ and Relative Drift δ(t) Drift of an oscillator is the frequency ratio of that oscillator and a reference oscillator oscillating perfectly aligned to real-time Drift rate is drift osc 1 Assumption: oscillators have a known bounded drift rate ρ: 0 < ρ << 1 Maximum drift of fastest LocalTimer (discrete) over a time duration t is: (1 + ρ)t Maximum drift of slowest LocalTimer: (1 + ρ) 1 t Maximum relative drift δ(t): δ(t) = ((1 + ρ) (1 + ρ) 1 )t.

16 15/34 Clock Sync System Model Communication Delays Communication delay D, bounded: D 1 Network imprecision d, bounded: d 0 Communication latency γ: γ = (D + d). Protocol Figure : Event-Response Delay and Network Impression [3]

17 16/34 Protocol Description Clock Sync System Model Protocol System has two states: synchronized: all nodes are within precision π unsynchronized: during start-up, dynamic changes of nodes Synchronization protocol executed at each node transitions system to synchronized state (convergence) Synchronization protocol must be repeatedly reexecuted to maintain synchronized state (closure, stability) Nodes communicate by exchange of Sync messages Node times-out in case it s LocalTimer reaches max. value P (resynchronization period), LocalTimer resets

18 17/34 Protocol Execution Clock Sync System Model Protocol Node restarts resynchronization process if LocalTimer times-out, or a Sync message is received Time-out broadcast Sync message Received Sync message: reset LocalTimer and relay Sync message Eventually all nodes participate in (re)synchronization process Prevent cascading effects: Ignore temporally close Sync messages following a Sync message (ignore window)

19 18/34 Clock Sync Protocol in Pseudocode Executed each time step: System Model Protocol

20 19/34 TTEthernet Development Cluster TTEthernet Simulation Tools Part III Lab Environment

21 Development Environment TTEthernet Development Cluster TTEthernet Simulation Tools Gbit/s TTEthernet Development System Four nodes (x86, Ubuntu LTS, ), redundant TTEthernet switch setup Available Demo application showing video&audio streaming (best-effort vs time-triggered) login: demonstrator / demo26 don t update the whole distributions (installing additional software via sudo apt-get install should be safe (in most cases (probably))) work on Video Client 4 All TTEthernet Tool DVDs/CDs: ~/Desktop/tte_cds 20/34

22 21/34 Building TTEthernet Applications [5] TTEthernet Development Cluster TTEthernet Simulation Tools Define network configuration Implement application code Create the schedule (TTE Demo Scheduler) *.xml Compile applications Create device configurations (TTE Build) *.hex Load switches (TTE Load) Start applications

23 22/34 Building/Changing the Schedule TTEthernet Development Cluster TTEthernet Simulation Tools???

24 23/34 TTEthernet Development Cluster TTEthernet Simulation Tools Omnet++, INET, and CoRE4INET [4] Omnet++ is an open-source network simulation framework to build simulators wired, wireless, on-chip, queueing networks,... Eclipse based IDE graphical visualization of simulation INET framework: an open-source communication networks simulation package support for: UDP, TCP, IPv4, IPv6, Ethernet, , 802.1e (QoS extension), (WiMAX),... CoRE4INET: extension of INET for real-time Ethernet TTEthernet (SAE AS6802), Time-Sensitive (TSN), formerly known as: IEEE Audio Video Bridging (AVB)) host-, switch-, and clock models host contains implementation of TTEthernet-API

25 24/34 CoRE4INET, INET Integration [4] TTEthernet Development Cluster TTEthernet Simulation Tools

26 25/34 CoRE4INET, In Action TTEthernet Development Cluster TTEthernet Simulation Tools

27 26/34 Tasks Logistics and Grading Part IV Assignment

28 27/34 Tasks Logistics and Grading Tasks 1. Implement a distributed clock synchronization protocol Based on the paper: A Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs, Mahyar R. Malekpour Use (real) TTEthernet for simple four nodes topology Use simulation framework for simulating hundreds of nodes in different topologies (Schedule?) 2. Compare achieved clock precision π over time on conventional Ethernet and TTEthernet (or other Time-Triggered Ethernets in simulation) Under different (self-chosen) network load/fault scenarios Conduct measurements, use TTEthernet global clock 3. Discuss results Hint : The best-effort (traffic class) solution of the group from last year is available in the lab environment.

29 28/34 Deliverables Tasks Logistics and Grading Implementation Documentation/Lab report English Include rudimentary HowTo develope TTEthernet applications (tool usage + schedules) Focus on concise presentation of the implementation and discussion of results

30 29/34 Logistics and Grading Tasks Logistics and Grading Start: now Finish: September (latest) Work in groups, group size depends on number of participants Location: Institute Lab Fallstudienlabor Offer: weekly meetings Grading Deliverables: 75 points Delivery Talk/Presentation of results: 25 points

31 30/34 Summary Q&A Credits References Part V End

32 31/34 Summary Summary Q&A Credits References Emergence and self-organization Self-Stabilizing distributed clock synchronization Available lab equipment and environment Assignment

33 32/34 Questions & Answers Summary Q&A Credits References

34 33/34 Summary Q&A Credits References Credits Images: https: // files/styles/lightbox/public/field/image/ SynchClock.jpg?itok=DEFoWZod

35 Summary Q&A Credits References References [1] Felipe Cucker and Steve Smale. Emergent behavior in flocks. Automatic Control, IEEE Transactions on, 52(5): , [2] Tom De Wolf and Tom Holvoet. Emergence versus self-organisation: Different concepts but promising when combined. In Engineering self-organising systems, pages Springer, [3] Mahyar R Malekpour. A self-stabilizing distributed clock synchronization protocol for arbitrary digraphs. National Aeronautics and Space Administration, Langley Research Center, [4] Till Steinbach, Hermand Dieumo Kenfack, Franz Korf, and Thomas C. Schmidt. An Extension of the OMNeT++ INET Framework for Simulating Real-time Ethernet with High Accuracy. In SIMUTools th International OMNeT++ Workshop, pages , New York, USA, March ACM DL. [5] TTTech. TTEthernet Introduction Workshop, Slides. TTTech Computertechnik AG, /34

Tomorrow s In-Car Interconnect? A Competitive Evaluation of IEEE AVB and Time-Triggered Ethernet (AS6802) NET

Tomorrow s In-Car Interconnect? A Competitive Evaluation of IEEE AVB and Time-Triggered Ethernet (AS6802) NET A Competitive Evaluation of IEEE 802.1 AVB and Time-Triggered Ethernet (AS6802) Till Steinbach 1 Hyung-Taek Lim 2 Franz Korf 1 Thomas C. Schmidt 1 Daniel Herrscher 2 Adam Wolisz 3 1 {till.steinbach, korf,

More information

Simulation based Timing Analysis of FlexRay Communication at System Level. Stefan Buschmann Till Steinbach Franz Korf Thomas C.

Simulation based Timing Analysis of FlexRay Communication at System Level. Stefan Buschmann Till Steinbach Franz Korf Thomas C. Simulation based Timing Analysis of FlexRay Communication at System Level Stefan Buschmann Till Steinbach Franz Korf Thomas C. Schmidt stefan.buschmann@haw-hamburg.de {till.steinbach, korf, schmidt}@informatik.haw-hamburg.de

More information

Distributed IMA with TTEthernet

Distributed IMA with TTEthernet Distributed IMA with thernet ARINC 653 Integration of thernet Georg Gaderer, Product Manager Georg.Gaderer@tttech.com October 30, 2012 Copyright TTTech Computertechnik AG. All rights reserved. Introduction

More information

Migration from SERCOS III to TSN - Simulation Based Comparison of TDMA and CBS Transportation

Migration from SERCOS III to TSN - Simulation Based Comparison of TDMA and CBS Transportation EPiC Series in Computing Volume 56, 2018, Pages 52 62 Proceedings of the 5th International OMNeT++ Community Summit Migration from SERCOS III to TSN - Simulation Based Comparison of TDMA and CBS Transportation

More information

Dependable Computer Systems

Dependable Computer Systems Dependable Computer Systems Part 6b: System Aspects Contents Synchronous vs. Asynchronous Systems Consensus Fault-tolerance by self-stabilization Examples Time-Triggered Ethernet (FT Clock Synchronization)

More information

Developing deterministic networking technology for railway applications using TTEthernet software-based end systems

Developing deterministic networking technology for railway applications using TTEthernet software-based end systems Developing deterministic networking technology for railway applications using TTEthernet software-based end systems Project n 100021 Astrit Ademaj, TTTech Computertechnik AG Outline GENESYS requirements

More information

Evaluating Requirements of High Precision Time Synchronisation Protocols using Simulation

Evaluating Requirements of High Precision Time Synchronisation Protocols using Simulation Evaluating Requirements of High Precision Time Synchronisation Protocols using Simulation Lazar T. Todorov, Till Steinbach, Franz Korf, Thomas C. Schmidt HAW-Hamburg, Department Informatik Berliner Tor

More information

Avnu Alliance Introduction

Avnu Alliance Introduction Avnu Alliance Introduction Announcing a Liaison between Edge Computing Consortium and Avnu Alliance + What is Avnu Alliance? Creating a certified ecosystem to bring precise timing, reliability and compatibility

More information

Design and Realization of TTE Network based on EDA

Design and Realization of TTE Network based on EDA Journal of Web Systems and Applications (2017) Vol. 1, Numuber 1 Clausius Scientific Press, Canada Design and Realization of TTE Network based on EDA Peili Ding1,a, Gangfeng Yan2,b, Yinan Wang3,c, Zhixiang

More information

Extending OMNeT++ Towards a Platform for the Design of Future In-Vehicle Network Architectures

Extending OMNeT++ Towards a Platform for the Design of Future In-Vehicle Network Architectures Towards a Platform for Till Steinbach Stefan Buschmann Franz Korf philipp.meyer@haw-hamburg.de OMNeT++ Community Summit 15. September 2016, Brno University of Technology, Czech Republic NET Agenda 1 2

More information

Time-Triggered Ethernet

Time-Triggered Ethernet Time-Triggered Ethernet Chapters 42 in the Textbook Professor: HONGWEI ZHANG CSC8260 Winter 2016 Presented By: Priyank Baxi (fr0630) fr0630@wayne.edu Outline History Overview TTEthernet Traffic Classes

More information

Deterministic Ethernet & Unified Networking

Deterministic Ethernet & Unified Networking Deterministic Ethernet & Unified Networking Never bet against Ethernet Mirko Jakovljevic mirko.jakovljevic@tttech.com www.tttech.com Copyright TTTech Computertechnik AG. All rights reserved. About TTTech

More information

Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive Networks

Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive Networks Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive Networks Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelik, Wilfried Steiner TTTech Computertechnik AG RTNS 2016, Brest, France,

More information

Dependability Entering Mainstream IT Networking Standards (IEEE 802.1)

Dependability Entering Mainstream IT Networking Standards (IEEE 802.1) Dependability Entering Mainstream IT Networking Standards (IEEE 802.1) 64th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance Visegrád, Hungary, June 27-30, 2013 Wilfried

More information

Proposal for a Resource Allocation Protocol based on 802.1CS LRP

Proposal for a Resource Allocation Protocol based on 802.1CS LRP Proposal for a Resource Allocation Protocol based on 802.1CS LRP Industrial Requirements Feng Chen, Franz-Josef Götz Siemens AG IEEE 802.1 Interim Meeting May 2017, Stuttgart, Germany Siemens AG 2017 History

More information

Deterministic Ethernet as Reliable Communication Infrastructure for Distributed Dependable Systems

Deterministic Ethernet as Reliable Communication Infrastructure for Distributed Dependable Systems Deterministic Ethernet as Reliable Communication Infrastructure for Distributed Dependable Systems DREAM Seminar UC Berkeley, January 21 st, 2014 Wilfried Steiner, Corporate Scientist wilfried.steiner@tttech.com

More information

Homework 2 COP The total number of paths required to reach the global state is 20 edges.

Homework 2 COP The total number of paths required to reach the global state is 20 edges. Homework 2 COP 5611 Problem 1: 1.a Global state lattice 1. The total number of paths required to reach the global state is 20 edges. 2. In the global lattice each and every edge (downwards) leads to a

More information

ESA ADCSS Deterministic Ethernet in Space Avionics

ESA ADCSS Deterministic Ethernet in Space Avionics ESA ADCSS 2015 Deterministic Ethernet in Space Avionics Bülent Altan Strategic Advisor with Jean-Francois Dufour, Christian Fidi and Matthias Mäke-Kail Copyright TTTech Computertechnik AG. All rights reserved.

More information

Routing. Information Networks p.1/35

Routing. Information Networks p.1/35 Routing Routing is done by the network layer protocol to guide packets through the communication subnet to their destinations The time when routing decisions are made depends on whether we are using virtual

More information

Theory of Operations for TSN-Based Industrial Systems and Applications. Paul Didier Cisco Systems

Theory of Operations for TSN-Based Industrial Systems and Applications. Paul Didier Cisco Systems Theory of Operations for TSN-Based Industrial Systems and Applications Paul Didier Cisco Systems Agenda Why TSN? Value and Benefits TSN Standards a brief Overview How TSN works an Operational Model The

More information

Advanced Distributed Algorithms and Data Structures. Christian Scheideler Institut für Informatik Universität Paderborn

Advanced Distributed Algorithms and Data Structures. Christian Scheideler Institut für Informatik Universität Paderborn Advanced Distributed Algorithms and Data Structures Christian Scheideler Institut für Informatik Universität Paderborn Advanced Distributed Algorithms and Data Structures Lecture: Thu 2-4 pm, F2.211 Tutorial:

More information

Middleware and Distributed Systems. System Models. Dr. Martin v. Löwis

Middleware and Distributed Systems. System Models. Dr. Martin v. Löwis Middleware and Distributed Systems System Models Dr. Martin v. Löwis System Models (Coulouris et al.) Architectural models of distributed systems placement of parts and relationships between them e.g.

More information

Simulation-Based Fault Injection as a Verification Oracle for the Engineering of Time-Triggered Ethernet networks

Simulation-Based Fault Injection as a Verification Oracle for the Engineering of Time-Triggered Ethernet networks Simulation-Based Fault Injection as a Verification Oracle for the Engineering of Time-Triggered Ethernet networks Loïc FEJOZ, RealTime-at-Work (RTaW) Bruno REGNIER, CNES Philippe, MIRAMONT, CNES Nicolas

More information

Technology for Adaptive Hard. Rui Santos, UA

Technology for Adaptive Hard. Rui Santos, UA HaRTES Meeting Enhanced Ethernet Switching Technology for Adaptive Hard Real-Time Applications Rui Santos, rsantos@ua.pt, UA SUMMARY 2 MOTIVATION Switched Ethernet t became common in real-time communications

More information

Distributed Embedded Systems and realtime networks

Distributed Embedded Systems and realtime networks STREAM01 / Mastère SE Distributed Embedded Systems and realtime networks Embedded network TTP Marie-Agnès Peraldi-Frati AOSTE Project UNSA- CNRS-INRIA January 2008 1 Abstract Requirements for TT Systems

More information

Mixed-Criticality Systems based on a CAN Router with Support for Fault Isolation and Selective Fault-Tolerance

Mixed-Criticality Systems based on a CAN Router with Support for Fault Isolation and Selective Fault-Tolerance IFAC 2014 Mixed-Criticality Systems based on a Router with Support for Fault Isolation and Selective Fault-Tolerance Roland Kammerer 1, Roman Obermaisser², Mino Sharkhawy 1 1 Vienna University of Technology,

More information

Distributed Systems. 05. Clock Synchronization. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 05. Clock Synchronization. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 05. Clock Synchronization Paul Krzyzanowski Rutgers University Fall 2017 2014-2017 Paul Krzyzanowski 1 Synchronization Synchronization covers interactions among distributed processes

More information

Data Networks. Lecture 1: Introduction. September 4, 2008

Data Networks. Lecture 1: Introduction. September 4, 2008 Data Networks Lecture 1: Introduction September 4, 2008 Slide 1 Learning Objectives Fundamental aspects of network Design and Analysis: Architecture: layering, topology design, switching mechanisms Protocols:

More information

Introduction to Distributed Systems

Introduction to Distributed Systems Introduction to Distributed Systems Other matters: review of the Bakery Algorithm: why can t we simply keep track of the last ticket taken and the next ticvket to be called? Ref: [Coulouris&al Ch 1, 2]

More information

Oracle 10g and IPv6 IPv6 Summit 11 December 2003

Oracle 10g and IPv6 IPv6 Summit 11 December 2003 Oracle 10g and IPv6 IPv6 Summit 11 December 2003 Marshal Presser Principal Enterprise Architect Oracle Corporation Agenda Oracle Distributed Computing Role of Networking IPv6 Support Plans Early IPv6 Implementations

More information

Diagnosis in the Time-Triggered Architecture

Diagnosis in the Time-Triggered Architecture TU Wien 1 Diagnosis in the Time-Triggered Architecture H. Kopetz June 2010 Embedded Systems 2 An Embedded System is a Cyber-Physical System (CPS) that consists of two subsystems: A physical subsystem the

More information

An Introduction to TTEthernet

An Introduction to TTEthernet An Introduction to thernet TU Vienna, Apr/26, 2013 Guest Lecture in Deterministic Networking (DetNet) Wilfried Steiner, Corporate Scientist wilfried.steiner@tttech.com Copyright TTTech Computertechnik

More information

IEEE TSN (Time-Sensitive Networking): A Deterministic Ethernet Standard

IEEE TSN (Time-Sensitive Networking): A Deterministic Ethernet Standard Page 1 IEEE : A Deterministic Ethernet Standard More than ten years ago, TTTech started a research program to answer the question as to whether it would be possible to provide real-time and safety capabilities

More information

Lab Guide 1 - Basic Configuration and Interface Configuration

Lab Guide 1 - Basic Configuration and Interface Configuration IXP Workshop Lab Lab Guide 1 - Basic Configuration and Interface Configuration Objective: All the workshop lab routers are set to the default configuration and cabling requirements are prebuild according

More information

Harmonization of TSN parameter modelling with automotive design flows

Harmonization of TSN parameter modelling with automotive design flows Harmonization of TSN parameter modelling with automotive design flows Marina Gutiérrez TTTech Auto AG Introduction Ethernet in automotive: Use case Network on vehicle Variable topology Different domains

More information

Time-Sensitive Networking: A Technical Introduction

Time-Sensitive Networking: A Technical Introduction Time-Sensitive Networking: A Technical Introduction 2017 Cisco and/or its affiliates. All rights reserved. What is time-sensitive networking (TSN)? In its simplest form, TSN is the IEEE 802.1Q defined

More information

02 - Distributed Systems

02 - Distributed Systems 02 - Distributed Systems Definition Coulouris 1 (Dis)advantages Coulouris 2 Challenges Saltzer_84.pdf Models Physical Architectural Fundamental 2/58 Definition Distributed Systems Distributed System is

More information

02 - Distributed Systems

02 - Distributed Systems 02 - Distributed Systems Definition Coulouris 1 (Dis)advantages Coulouris 2 Challenges Saltzer_84.pdf Models Physical Architectural Fundamental 2/60 Definition Distributed Systems Distributed System is

More information

Drive-by-Data & Integrated Modular Platform

Drive-by-Data & Integrated Modular Platform Drive-by-Data & Integrated Modular Platform Gernot Hans, Bombardier Transportation Mirko Jakovljevic, TTTech Computertechnik AG CONNECTA has received funding from the European Union s Horizon 2020 research

More information

Till Steinbach 1 Franz Korf 1 René Röllig 2 Thomas Eymann 2.

Till Steinbach 1 Franz Korf 1 René Röllig 2 Thomas Eymann 2. How can I get the most out of Automotive Ethernet? System level network simulation for the design and evaluation of upcoming Ethernet-based architectures Till Steinbach 1 Franz Korf 1 René Röllig 2 Thomas

More information

Router 6000 R17 Training Programs. Catalog of Course Descriptions

Router 6000 R17 Training Programs. Catalog of Course Descriptions Router 6000 R7 Training Programs Catalog of Course Descriptions Catalog of Course Descriptions INTRODUCTION... 3 IP NETWORKING... 4 IP OVERVIEW & FUNDAMENTALS... 8 IP ROUTING OVERVIEW & FUNDAMENTALS...0

More information

How to Synchronize a Pausible Clock to a Reference. Robert Najvirt, Andreas Steininger

How to Synchronize a Pausible Clock to a Reference. Robert Najvirt, Andreas Steininger How to Synchronize a Pausible Clock to a Reference Robert Najvirt, Andreas Steininger GALS Communication The communication between two (locally) synchronous modules has inevitable potential for metastable

More information

Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet

Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet Gonzalo Carvajal 1,2 and Sebastian Fischmeister 1 1 University of Waterloo, ON, Canada 2 Universidad de Concepcion,

More information

Formal Timing Analysis of Ethernet AVB for Industrial Automation

Formal Timing Analysis of Ethernet AVB for Industrial Automation Formal Timing Analysis of Ethernet AVB for Industrial Automation 802.1Qav Meeting, Munich, Jan 16-20, 2012 Jonas Rox, Jonas Diemer, Rolf Ernst {rox diemer}@ida.ing.tu-bs.de January 16, 2012 Outline Introduction

More information

Distributed Systems Exam 1 Review Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems Exam 1 Review Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 2015 Exam 1 Review Paul Krzyzanowski Rutgers University Fall 2016 1 Question 1 Why did the use of reference counting for remote objects prove to be impractical? Explain. It s not fault

More information

DRAFT. Dual Time Scale in Factory & Energy Automation. White Paper about Industrial Time Synchronization. (IEEE 802.

DRAFT. Dual Time Scale in Factory & Energy Automation. White Paper about Industrial Time Synchronization. (IEEE 802. SIEMENS AG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 DRAFT Dual Time Scale in Factory & Energy Automation White Paper about Industrial

More information

Simulation based Timing Analysis of FlexRay Communication at System Level

Simulation based Timing Analysis of FlexRay Communication at System Level Simulation based Timing Analysis of FlexRay Communication at System Level Stefan Buschmann, Till Steinbach, Franz Korf, Thomas C. Schmidt HAW-Hamburg, Department Informatik Berliner Tor 7, D-20099 Hamburg,

More information

Real-Time (Paradigms) (47)

Real-Time (Paradigms) (47) Real-Time (Paradigms) (47) Memory: Memory Access Protocols Tasks competing for exclusive memory access (critical sections, semaphores) become interdependent, a common phenomenon especially in distributed

More information

Reviewed by CeemanB. Vellaithurai WSU ID:

Reviewed by CeemanB. Vellaithurai WSU ID: Reviewed by CeemanB. Vellaithurai WSU ID: 11253840 Introduction Smart Grid Communication Infrastructure/Communication Architecture Data Assumptions Simulation Assumptions Good contributions Drawbacks Research

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction In a packet-switched network, packets are buffered when they cannot be processed or transmitted at the rate they arrive. There are three main reasons that a router, with generic

More information

Computer Networks 1DV201

Computer Networks 1DV201 Computer Networks 1DV201 1 Link to coursepage http://w3.msi.vxu.se/users/ofl/1dv201/index.html 2 Chapter 1-3 Introduction 3 Topic and Scope Computer networks and internets: an overview of concepts, terminology,

More information

Converged Communication Networks

Converged Communication Networks Converged Communication Networks Dr. Associate Professor Department of Electrical Engineering Indian Institute of Technology Bombay Powai, Mumbai - 400076 girishs@ee.iitb.ac.in Outline Convergence in core

More information

Enhanced Ethernet Switching Technology. Time Applications. Rui Santos 17 / 04 / 2009

Enhanced Ethernet Switching Technology. Time Applications. Rui Santos 17 / 04 / 2009 Enhanced Ethernet Switching Technology for Adaptive Hard Real- Time Applications Rui Santos (rsantos@ua.pt) 17 / 04 / 2009 Problem 2 Switched Ethernet became common in real-time communications Some interesting

More information

Networks. Distributed Systems. Philipp Kupferschmied. Universität Karlsruhe, System Architecture Group. May 6th, 2009

Networks. Distributed Systems. Philipp Kupferschmied. Universität Karlsruhe, System Architecture Group. May 6th, 2009 Networks Distributed Systems Philipp Kupferschmied Universität Karlsruhe, System Architecture Group May 6th, 2009 Philipp Kupferschmied Networks 1/ 41 1 Communication Basics Introduction Layered Communication

More information

IEEE 802 Plenary Session July 14-19, 2012 Geneva, Switzerland

IEEE 802 Plenary Session July 14-19, 2012 Geneva, Switzerland IEEE 802 Plenary Session July 14-19, 2012 Geneva, Switzerland AAA 2 C Automotive Requirements for a Flexible Control Traffic Class & Development 1 AAA 2 C 2 AAA 2 C: AVnu sponsored Automotive AVB Gen 2

More information

Distributed Systems (ICE 601) Fault Tolerance

Distributed Systems (ICE 601) Fault Tolerance Distributed Systems (ICE 601) Fault Tolerance Dongman Lee ICU Introduction Failure Model Fault Tolerance Models state machine primary-backup Class Overview Introduction Dependability availability reliability

More information

Computer Science 461 Midterm Exam March 14, :00-10:50am

Computer Science 461 Midterm Exam March 14, :00-10:50am NAME: Login name: Computer Science 461 Midterm Exam March 14, 2012 10:00-10:50am This test has seven (7) questions, each worth ten points. Put your name on every page, and write out and sign the Honor

More information

OPAX - An Open Peer-to-Peer Architecture for XML Message Exchange

OPAX - An Open Peer-to-Peer Architecture for XML Message Exchange OPAX - An Open Peer-to-Peer Architecture for XML Message Exchange Bernhard Schandl, University of Vienna bernhard.schandl@univie.ac.at Users wishing to find multimedia material about interesting events

More information

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca CSCI 1680 Computer Networks Fonseca Homework 1 Due: 27 September 2012, 4pm Question 1 - Layering a. Why are networked systems layered? What are the advantages of layering? Are there any disadvantages?

More information

Network-on-Chip Architecture

Network-on-Chip Architecture Multiple Processor Systems(CMPE-655) Network-on-Chip Architecture Performance aspect and Firefly network architecture By Siva Shankar Chandrasekaran and SreeGowri Shankar Agenda (Enhancing performance)

More information

Investigating the Use of Synchronized Clocks in TCP Congestion Control

Investigating the Use of Synchronized Clocks in TCP Congestion Control Investigating the Use of Synchronized Clocks in TCP Congestion Control Michele Weigle (UNC-CH) November 16-17, 2001 Univ. of Maryland Symposium The Problem TCP Reno congestion control reacts only to packet

More information

Degrees of Freedom in Cached Interference Networks with Limited Backhaul

Degrees of Freedom in Cached Interference Networks with Limited Backhaul Degrees of Freedom in Cached Interference Networks with Limited Backhaul Vincent LAU, Department of ECE, Hong Kong University of Science and Technology (A) Motivation Interference Channels 3 No side information

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Grade: MC: 7: 8: 9: 10: 11: 12: 13: 14: Total: CS244a: An Introduction to Computer Networks Final Exam: Wednesday You are allowed 2 hours to complete this exam. (i) This exam is closed book and closed

More information

Computer Networked games

Computer Networked games Computer Networked games Another form of multimedia traffic audio, video and interactive Slides courtesy Mark Claypool @ WPI page 1 Game Types First Person Shooters Doom, Quake, Counter-strike, Massive

More information

Specifying and Proving Broadcast Properties with TLA

Specifying and Proving Broadcast Properties with TLA Specifying and Proving Broadcast Properties with TLA William Hipschman Department of Computer Science The University of North Carolina at Chapel Hill Abstract Although group communication is vitally important

More information

Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation

Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation Kshitij Bhardwaj Dept. of Computer Science Columbia University Steven M. Nowick 2016 ACM/IEEE Design Automation

More information

Exercise Sensor Networks - (till June 20, 2005)

Exercise Sensor Networks - (till June 20, 2005) - (till June 20, 2005) Exercise 8.1: Signal propagation delay A church bell is rang by a digitally triggered mechanics. How long does the sound travel to a sensor node in a distance of 2km if sound travels

More information

PART IV. Internetworking Using TCP/IP

PART IV. Internetworking Using TCP/IP PART IV Internetworking Using TCP/IP Internet architecture, addressing, binding, encapsulation, and protocols in the TCP/IP suite Chapters 20 Internetworking: Concepts, Architecture, and Protocols 21 IP:

More information

Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE)

Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE) Synthesizing Adaptive Protocols by Selective Enumeration (SYNAPSE) Problem Definition Solution Approach Benefits to End User Talk Overview Metrics Summary of Results to Date Lessons Learned & Future Work

More information

Distributed Systems Exam 1 Review. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems Exam 1 Review. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 2016 Exam 1 Review Paul Krzyzanowski Rutgers University Fall 2016 Question 1 Why does it not make sense to use TCP (Transmission Control Protocol) for the Network Time Protocol (NTP)?

More information

Datacenter replication solution with quasardb

Datacenter replication solution with quasardb Datacenter replication solution with quasardb Technical positioning paper April 2017 Release v1.3 www.quasardb.net Contact: sales@quasardb.net Quasardb A datacenter survival guide quasardb INTRODUCTION

More information

CSMA based Medium Access Control for Wireless Sensor Network

CSMA based Medium Access Control for Wireless Sensor Network CSMA based Medium Access Control for Wireless Sensor Network H. Hoang, Halmstad University Abstract Wireless sensor networks bring many challenges on implementation of Medium Access Control protocols because

More information

Networking Applications

Networking Applications Networking Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab Academy for Science & Technology and Maritime Transport Multimedia Multimedia 1 Outline Audio and Video Services

More information

ns-3 Training ns-3 Annual Meeting June 2017

ns-3 Training ns-3 Annual Meeting June 2017 ns-3 Training ns-3 Annual Meeting June 2017 ns-3 training goals Make attendees more productive with ns-3 Learn about the project scope, and where to get additional help Understand the architecture and

More information

Network Layer: Routing

Network Layer: Routing Network Layer: Routing The Problem A B R 1 R 2 R 4 R 3 Goal: for each destination, compute next hop 1 Lecture 9 2 Basic Assumptions Trivial solution: Flooding Dynamic environment: links and routers unreliable:

More information

Data Acquisition in High Speed Ethernet & Fibre Channel Avionics Systems

Data Acquisition in High Speed Ethernet & Fibre Channel Avionics Systems Data Acquisition in High Speed Ethernet & Fibre Channel Avionics Systems Troy Troshynski Avionics Interface Technologies (A Division of Teradyne) Omaha, NE U.S.A. troyt@aviftech.com http://www.aviftech.com/aggregator

More information

13 AutoFocus 3 - A Scientific Tool Prototype for Model-Based Development of Component-Based, Reactive, Distributed Systems

13 AutoFocus 3 - A Scientific Tool Prototype for Model-Based Development of Component-Based, Reactive, Distributed Systems 13 AutoFocus 3 - A Scientific Tool Prototype for Model-Based Development of Component-Based, Reactive, Distributed Systems Florian Hölzl and Martin Feilkas Institut für Informatik Technische Universität

More information

Frequently asked questions from the previous class survey

Frequently asked questions from the previous class survey CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [DISTRIBUTED COORDINATION/MUTUAL EXCLUSION] Shrideep Pallickara Computer Science Colorado State University L22.1 Frequently asked questions from the previous

More information

IP Video Network Gateway Solutions

IP Video Network Gateway Solutions IP Video Network Gateway Solutions INTRODUCTION The broadcast systems of today exist in two separate and largely disconnected worlds: a network-based world where audio/video information is stored and passed

More information

MCAP: Multiple Client Access Protocol Ravindra Singh Rathore SML College Jhunjhunu, Rajasthan India

MCAP: Multiple Client Access Protocol Ravindra Singh Rathore SML College Jhunjhunu, Rajasthan India MCAP: Multiple Client Access Protocol Ravindra Singh Rathore SML College Jhunjhunu, Rajasthan India (ravindrathore@gmail.com) Abstract - We have implicitly assumed that the client-side software of a web-based

More information

Clock-Synchronisation

Clock-Synchronisation Chapter 2.7 Clock-Synchronisation 1 Content Introduction Physical Clocks - How to measure time? - Synchronisation - Cristian s Algorithm - Berkeley Algorithm - NTP / SNTP - PTP IEEE 1588 Logical Clocks

More information

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting Outline Routing Fundamentals of Computer Networks Guevara Noubir Introduction Broadcasting and Multicasting Shortest Path Unicast Routing Link Weights and Stability F2003, CSG150 Fundamentals of Computer

More information

16 Time Triggered Protocol

16 Time Triggered Protocol 16 Time Triggered Protocol [TTtech04] (TTP) 18-549 Distributed Embedded Systems Philip Koopman October 25, 2004 Significant material drawn from: Prof. H. Kopetz [Kopetz] TTP Specification v 1.1 [TTTech]

More information

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [DISTRIBUTED COORDINATION/MUTUAL EXCLUSION] Shrideep Pallickara Computer Science Colorado State University

More information

Introduction to Protocols for Realtime Data Sharing. Deepti Nagarkar

Introduction to Protocols for Realtime Data Sharing. Deepti Nagarkar Introduction to Protocols for Realtime Data Sharing Deepti Nagarkar Real Time Systems What are Real time systems? Realtime systems are those which must process data and respond immediately to avoid failure

More information

Today. Last Time. Motivation. CAN Bus. More about CAN. What is CAN?

Today. Last Time. Motivation. CAN Bus. More about CAN. What is CAN? Embedded networks Characteristics Requirements Simple embedded LANs Bit banged SPI I2C LIN Ethernet Last Time CAN Bus Intro Low-level stuff Frame types Arbitration Filtering Higher-level protocols Today

More information

CSE 461 MIDTERM REVIEW

CSE 461 MIDTERM REVIEW CSE 461 MIDTERM REVIEW NETWORK LAYERS & ENCAPSULATION Application Application Transport Transport Network Network Data Link/ Physical Data Link/ Physical APPLICATION LAYER Application Application Used

More information

Wireless Sensor Networks: Clustering, Routing, Localization, Time Synchronization

Wireless Sensor Networks: Clustering, Routing, Localization, Time Synchronization Wireless Sensor Networks: Clustering, Routing, Localization, Time Synchronization Maurizio Bocca, M.Sc. Control Engineering Research Group Automation and Systems Technology Department maurizio.bocca@tkk.fi

More information

MORGANSTATEUNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. EEGR510 Communications Networks Credits: 3 COURSE SYLLABUS

MORGANSTATEUNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. EEGR510 Communications Networks Credits: 3 COURSE SYLLABUS MORGANSTATEUNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING EEGR510 Communications Networks Credits: 3 COURSE SYLLABUS Instructor: Dr. Farzad Moazzami Office: SEB 334 Telephone No. 443-885-4204

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2014 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Project #1 Starts in one week Is your Linux environment all ready? Bring your laptop Work time after quick

More information

IT4405 Computer Networks (Compulsory)

IT4405 Computer Networks (Compulsory) IT4405 Computer Networks (Compulsory) INTRODUCTION This course provides a comprehensive insight into the fundamental concepts in data communications, computer network systems and protocols both fixed and

More information

RT-Link: A global time-synchronized link protocol for sensor networks Anthony Rowe, Rahul Mangharam, Raj Rajkumar

RT-Link: A global time-synchronized link protocol for sensor networks Anthony Rowe, Rahul Mangharam, Raj Rajkumar RT-Link: A global time-synchronized link protocol for sensor networks Anthony Rowe, Rahul Mangharam, Raj Rajkumar Papa Alioune Ly, Joel Alloh, Carl Hedari, Tom Reynaert Outline Introduction Design of the

More information

TSN Influences on ODVA Technologies. Steve Zuponcic, Mark Hantel, Rudy Klecka, Paul Didier Rockwell Automation, Cisco Systems.

TSN Influences on ODVA Technologies. Steve Zuponcic, Mark Hantel, Rudy Klecka, Paul Didier Rockwell Automation, Cisco Systems. TSN Influences on ODVA Technologies Steve Zuponcic, Mark Hantel, Rudy Klecka, Paul Didier Rockwell Automation, Cisco Systems February 22, 2017 Presentation Overview Introduction Definition of Terms Standards

More information

Lecture 10: Internetworking"

Lecture 10: Internetworking Lecture 10: Internetworking" CSE 123: Computer Networks Alex C. Snoeren HW 2 due NOW! Lecture 10 Overview" Spanning Tree Internet Protocol Service model Packet format 2 Spanning Tree Algorithm" Each bridge

More information

The CANoe.Ethernet Solution

The CANoe.Ethernet Solution Use in Praxis V1.0 2016-11-23 Agenda 1. Ethernet the Newcomer in Automotive 2. Why an Automotive Ethernet Option for CANoe? 3. Brief Look to CANoe 4. First Hand Usecase from Field 2/20 Network Topology

More information

IP Packet Switching. Goals of Todayʼs Lecture. Simple Network: Nodes and a Link. Connectivity Links and nodes Circuit switching Packet switching

IP Packet Switching. Goals of Todayʼs Lecture. Simple Network: Nodes and a Link. Connectivity Links and nodes Circuit switching Packet switching IP Packet Switching CS 375: Computer Networks Dr. Thomas C. Bressoud Goals of Todayʼs Lecture Connectivity Links and nodes Circuit switching Packet switching IP service model Best-effort packet delivery

More information

Coordinated Multi-Point in Mobile Communications

Coordinated Multi-Point in Mobile Communications Coordinated Multi-Point in Mobile Communications From Theory to Practice Edited by PATRICK MARSCH Nokia Siemens Networks, Wroctaw, Poland GERHARD P. FETTWEIS Technische Universität Dresden, Germany Pf

More information

Solace JMS Broker Delivers Highest Throughput for Persistent and Non-Persistent Delivery

Solace JMS Broker Delivers Highest Throughput for Persistent and Non-Persistent Delivery Solace JMS Broker Delivers Highest Throughput for Persistent and Non-Persistent Delivery Java Message Service (JMS) is a standardized messaging interface that has become a pervasive part of the IT landscape

More information

Introduction to Distributed Systems Seif Haridi

Introduction to Distributed Systems Seif Haridi Introduction to Distributed Systems Seif Haridi haridi@kth.se What is a distributed system? A set of nodes, connected by a network, which appear to its users as a single coherent system p1 p2. pn send

More information

Performance and Evaluation of Integrated Video Transmission and Quality of Service for internet and Satellite Communication Traffic of ATM Networks

Performance and Evaluation of Integrated Video Transmission and Quality of Service for internet and Satellite Communication Traffic of ATM Networks Performance and Evaluation of Integrated Video Transmission and Quality of Service for internet and Satellite Communication Traffic of ATM Networks P. Rajan Dr. K.L.Shanmuganathan Research Scholar Prof.

More information