CS152 Computer Architecture and Engineering Lecture 26. Low Power Design. May 3, 2001 John Kubiatowicz (http.cs.berkeley.

Size: px
Start display at page:

Download "CS152 Computer Architecture and Engineering Lecture 26. Low Power Design. May 3, 2001 John Kubiatowicz (http.cs.berkeley."

Transcription

1 CS52 Computer Architecture and Engineering Lecture 26 Low Power Design May 3, 2 John Kubiatowicz (http.cs.berkeley.edu/~kubitron) lecture slides: Recap: I/O Summary I/O performance limited by weakest link in chain between OS and device Queueing theory is important % utilization means very large latency Remember, for M/M/ queue (exponential source of requests/service) - queue size goes as u/(-u) - latency goes as T ser u/(-u) For M/G/ queue (more general server, exponential sources) - latency goes as m(z) x u/(-u) = T ser x {/2 x (+C)} x u/(-u) Three Components of Disk Access Time: Seek Time: advertised to be 8 to 2 ms. May be lower in real life. Rotational Latency: 4. ms at 72 RPM and 8.3 ms at 36 RPM Transfer Time: 2 to 2 MB per second I/O device notifying the operating system: Polling: it can waste a lot of processor time I/O interrupt: similar to exception except it is asynchronous Delegating I/O responsibility from the CPU: DMA, or even IOP Lec26. Lec26.2 Recap: Disk Device Terminology Recap: Disk I/O Performance 3 Response Time (ms) Disk Latency = Queueing Time + Controller time + Seek Time + Rotation Time + Xfer Time Order of magnitude times for 4K byte transfers: Average Seek: 8 ms or less Rotate: rpm Xfer: 72 rpm Metrics: Response Time Throughput latency goes as T ser u/(-u) u = utilization Proc Queue 2 Throughput (Utilization) (% total BW) Response time = Queue + Device Service time % IOC Device % Lec26.3 Lec26.4

2 Recap: Array Reliability Redundant Arrays of Disks Reliability of N disks = Reliability of Disk N 5, Hours 7 disks = 7 hours Disk system MTTF: Drops from 6 years to month! Arrays (without redundancy) too unreliable to be useful! Files are "striped" across multiple spindles Redundancy yields high data availability Disks will fail Contents reconstructed from data redundantly stored in the array Capacity penalty to store it Bandwidth penalty to update Mirroring/Shadowing (high capacity cost) Hot spares support reconstruction in in parallel with access: very high media availability can be be achieved Techniques: Horizontal Hamming Codes (overkill) Parity & Reed-Solomon Codes Failure Prediction (no capacity overhead!) VaxSimPlus Technique is controversial Lec26.5 Lec26.6 RAID : Disk Mirroring/Shadowing RAID 3: Parity Disk recovery group P Each disk is fully duplicated onto its "shadow" Very high availability can be achieved Bandwidth sacrifice on write: Logical write = two physical writes Reads may be optimized Most expensive solution: % capacity overhead Targeted for high I/O rate, high availability environments Lec26.7 logical record Striped physical records Parity computed across recovery group to protect against hard disk failures 33% capacity cost for parity in this configuration wider arrays reduce capacity costs, decrease expected availability, increase reconstruction time Arms logically synchronized, spindles rotationally synchronized logically a single high capacity, high transfer rate disk Targeted for high bandwidth applications: Scientific, Image Processing Lec26.8

3 RAID 5+: High I/O Rate Parity Problems of Disk Arrays: Small Writes RAID-5: Small Write Algorithm A logical logical write write becomes four four physical I/Os I/Os Independent writes writes possible because of of interleaved parity parity Reed-Solomon Codes Codes ("Q") ("Q") for for protection during during reconstruction Targeted for mixed applications D D D2 D3 P D4 D5 D6 P D7 D8 D9 P D D D2 P D3 D4 D5 P D6 D7 D8 D9 Increasing Logical Disk Addresses Stripe Stripe Unit D new data Logical Write = 2 Physical Reads + 2 Physical Writes + D D D2 D3 P old data XOR (. Read) old (2. Read) parity + XOR (3. Write) (4. Write) D2 D2 D22 D23 P... Disk Columns Lec26.9 D D D2 D3 P Lec26. Hewlett-Packard (HP) AutoRAID Subsystem Organization HP has interesting solution which combines both mirroring and RAID level 5. Dynamically adapts disk storage - For recent or highly used data, uses mirroring - For less recently used data, uses RAID 5 Gets speed of mirroring when it matters and density of RAID 5 on average host manages interface to host, DMA control, buffering, parity logic physical device control host adapter array controller single board disk controller single board disk controller single board disk controller striping software off-loaded from host to array controller no applications modifications no reduction of host performance single board disk controller often piggy-backed in small format devices Lec26. Lec26.2

4 System Availability: Orthogonal RAIDs System-Level Availability String Controller String Controller host I/O Controller Fully dual redundant host I/O Controller Array Controller String Controller String Controller String Controller String Controller Array Controller Array Controller Goal: Goal: No No Single Single Points Points of of Failure Failure Data Recovery Group: unit of data redundancy Redundant Support Components: fans, power supplies, controller, cables End to End Data Integrity: internal parity protected data paths Lec26.3 Recovery Group... with duplicated paths, higher performance can be obtained when there are no failures Lec26.4 Administrivia Pending schedule: Tuesday 5/8: Last class (wrap up, evaluations, etc) Thursday 5/: Oral reports: Times TBA - Signup sheet will be on my office door next week - Project reports must be submitted via web by 5pm on 5/ Friday 5/: Grades ready System for examining grades is up James posted description of how to use on the web page Please check your grades! - Midterm II should be up there by tomorrow Solutions to Midterm II not up yet (sorry!) Oral Report Powerpoint 5 minute presentation, 5 minutes for questions 7 Talk Commandments for a Bad Talk I. Thou shalt not illustrate. II. Thou shalt not covet brevity. III. Thou shalt not print large. IV. Thou shalt not use color. V. Thou shalt not skip slides in a long talk. VI. Thou shalt cover thy naked slides. VII. Thou shalt not practice. Lec26.5 Lec26.6

5 Following all the commandments We describe the philosophy and design of the control flow machine, and present the results of detailed simulations of the performance of a single processing element. Each factor is compared with the measured performance of an advanced von Neumann computer running equivalent code. It is shown that the control flow processor compares favorablylism in the program. We present a denotational semantics for a logic program to construct a control flow for the logic program. The control flow is defined as an algebraic manipulator of idempotent substitutions and it virtually reflects the resolution deductions. We also present a bottom-up compilation of medium grain clusters from a fine grain control flow graph. We compare the basic block and the dependence sets algorithms that partition control flow graphs into clusters. Our compiling strategy is to exploit coarse-grain parallelism at function application level: and the function application level parallelism is implemented by fork-join mechanism. The compiler translates source programs into control flow graphs based on analyzing flow of control, and then serializes instructions within graphs according to flow arcs such that function applications, which have no control dependency, are executed in parallel. A hierarchical macro-control-flow computation allows them to exploit the coarse grain parallelism inside a macrotask, such as a subroutine or a loop, hierarchically. We use a hierarchical definition of macrotasks, a parallelism extraction scheme among macrotasks defined inside an upper layer macrotask, and a scheduling scheme which assigns hierarchical macrotasks on hierarchical clusters. We apply a parallel simulation scheme to a real problem: the simulation of a control flow architecture, and we compare the performance of this simulator with that of a sequential one. Moreover, we investigate the effect of modelling the application on the performance of the simulator. Our study indicates that parallel simulation can reduce the execution time significantly if appropriate modelling is used. We have demonstrated that to achieve the best execution time for a control flow program, the number of nodes within the system and the type of mapping scheme used are particularly important. In addition, we observe that a large number of subsystem nodes allows more actors to be fired concurrently, but the communication overhead in passing control tokens to their destination nodes causes the overall execution time to increase substantially. The relationship between the mapping scheme employed and locality effect in a program are discussed. The mapping scheme employed has to exhibit a strong locality effect in order to allow efficient execution. We assess the average number of instructions in a cluster and the reduction in matching operations compared with fine grain control flow execution. Medium grain execution can benefit from a higher output bandwidth of a processor and finally, a simple superscalar processor with an issue rate of ten is sufficient to exploit the internal parallelism of a cluster. Although the technique does not exhaustively detect all possible errors, it detects nontrivial errors with a worst-case complexity quadratic to the system size. It can be automated and applied to systems with arbitrary loops and nondeterminism. Alternatives to a Bad Talk Practice, Practice, Practice! Use casette tape recorder to listen, practice Try videotaping Seek feedback from friends Use phrases, not sentences Notes separate from slides (don t read slide) Pick appropriate font, size (~ 24 point to 32 point) Estimate talk length - 2 minutes per slide Use extras as backup slides (Question and Answer) Use color tastefully (graphs, emphasis) Don t cover slides Use overlays or builds in powerpoint Go to room early to find out what is WRONG with setup Beware: PC projection + dark rooms after meal! Lec26.7 Lec26.8 Include in your final presentation Who is on team, and who did what Everyone should say something High-level description of what you did and how you combined components together Use block diagrams rather than detailed schematics Assume audience knows Chapters 6 and 7 already Include novel aspects of design Did you innovate? How? Why did you choose to do things the way that you did? Give Critical Path and Clock cycle time Bring paper copy of schematics in case there are detailed questions. What could be done to improve clock cycle time? Description of testing philosophy! Mystery program statistics: instructions, clock cycles, CPI, why stalls occur (cache miss, load-use interlocks, branch mispredictions,... ) Lessons learned, what might do different next time Lec26.9 Slides Borrowed from Bob Broderson Low Power Design Lec26.2

6 Lec26.2 Lec26.22 Lec26.23 Lec26.24

7 Lec26.25 Lec26.26 Lec26.27 Lec26.28

8 Lec26.29 Lec26.3 Lec26.3 Lec26.32

9 Lec26.33 Lec26.34 Lec26.35 Lec26.36

10 Lec26.37 Lec26.38 Lec26.39 Lec26.4

11 Lec26.4 Lec26.42 Back to original goal: Processor Usage Model Desired Compute-intensive and Throughput low-latency processes Ceiling: Set by top speed of the processor Typical Usage Delivered Throughput Peak Excess throughput Single-user system not always computing Background and high-latency processes System Optimizations: Maximize Peak Throughput Minimize Average Energy/operation (maximize computation per battery life) time time Wake up Compute ASAP Go to idle/sleep mode Always high throughput Always high energy/operation Lec26.43 Lec26.44

12 Another approach: Reduce Frequency Delivered Throughput Frequency set by user Peak f CLK Reduced PowerBook Control Panel Slow Fast Alternative: Dynamic Voltage Scaling Delivered Throughput Reduce throughput & f Peak CLK, Reduce energy/operation time Energy/operation remains unchanged... while throughput scales down with f CLK Problems: Circuits designed to be fast are now wasted. Demand for peak throughput not met. time Dynamically scale energy/operation with throughput Extend battery life by up to x with the same hardware! Key: Process scheduler determines operating point. Lec26.45 Lec26.46 What about bus transitions?,qsxw (QFRGHU (QFRGHG9HUVLRQ 'HFRGH Can we reduce total number of transitions on buses by sophisticated bus drivers? 2XWSXW Can we encode information in a way that takes less power? Do this on chip?! Trying to reduce total number of transitions Reasoning Increasing importance of wires relative to transistors Spend transistors to drive wires more efficiently? Try to reduce transitions over wires Orthogonal to other power-saving techniques I.e. voltage reduction, low-swing drive clock gating Parallelism (like vectors!) Lec26.47 Lec26.48

13 Huffman-based Compression Hamming Weight,QSXW (QFRGHU 'HFRGH 2XWSXW,QSXW (QFRGHU 'HFRGH 2XWSXW «Variable bit length ± problem! Possible soln: macro clock «DS )XQFWLRQ «Find a map function to minimize transition Search space is large 256! (For 8-bit bus) Leads to transition code idea Less bits!= less transitions Lec26.49 Lec26.5 Hamming Transcoder Hamming Transcoder (con t) 6WDWH7UDQVLWLRQ'LDJUDP &RGH[)) )UHT [WDEOH IRUELWEXV Only transitions matter, not absolute value Recognize more frequent transitions & assign lowweight code to them &RGH[ )UHT Guarantees more frequent transitions have less bits changes on the wire Most frequent arc assigned low-weight codes Use output codes to XOR transmission line Every in coded version causes transistion Most frequent arcs cause least number of transitions Lec26.5 Lec26.52

14 Transition Code ± Setup Simulation Results () icu_data bus &RGHU 'HFRGHU # of Transitions Uncompressed Rank = Rank = 9 Rank = 256 &RGHU &XUEXVYDOXH UHY LQSXW &XULQSXW 7UDQVLWLRQ 7DEOH 7UDQVFRGH &RGHG" ;25 7R%XV Savings Rank 9 saves 79.52% Rank 256 saves 79.68% Rank 9th bit overhead Rank : 23% Rank 9:.29% Lec26.53 Lec26.54 Simulation Results (2) # of Transitions icu_data transition vs. rank Rank XPEHURIWUDQVLWLRQV GURSVTXLFNO\DV UDQNVLQFUHDVHV [WDEOHPLJKW QRWEHQHFHVVDU\ 2WKHUWUDFHILOHVVKRZ VLPLODUWUHQGV Conclusion Best way to say power or energy: do nothing! Most Important equations to remember: Energy = CV 2 Power = CV 2 f Slowing clock rate does not reduce energy for fixed operation! RWHLFXBGDWD FRQQHFWVEHWZHHQLQVWUXFWLRQFDFKHXQLWDQG LQWHJHUXQLW$IDLUO\ORQJEXVDFFRUGLQJWRSLFR-DYD VIORRUSODQ Ways of reducing energy: Pipelining with reduced voltage Parallelism with reduced voltage Lec26.55 Lec26.56

How to Give a Bad Talk

How to Give a Bad Talk Lecture 20: How to Give a Bad Talk Professor David A. Patterson Computer Science 152 Fall 1997 Cs252.1 CS 152: Remaining Schedule What s Left: Thursday 12/4: Oral Presentations, Noon to 7PM, 6thfloor Friday

More information

CS152 Computer Architecture and Engineering Lecture 25. I/O and Storage Systems Power

CS152 Computer Architecture and Engineering Lecture 25. I/O and Storage Systems Power CS52 Computer Architecture and Engineering Lecture 25 I/O and Storage Systems Power Recap: Nano-layered Disk Heads Special sensitivity of Disk head comes from Giant Magneto-Resistive effect or (GMR) IBM

More information

The Big Picture: Where are We Now? CS152 Computer Architecture and Engineering Lecture 24. I/O Systems II

The Big Picture: Where are We Now? CS152 Computer Architecture and Engineering Lecture 24. I/O Systems II The Big Picture: Where are We Now? CS52 Computer Architecture and Engineering Lecture 24 I/O Systems II Today s Topic: I/O Systems Processor Input Control Memory Network/Bus Input Memory Processor Control

More information

Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H. Katz Computer Science 252 Spring 1996

Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H. Katz Computer Science 252 Spring 1996 Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H Katz Computer Science 252 Spring 996 RHKS96 Review: Storage System Issues Historical Context of Storage I/O Storage I/O Performance

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some material adapted from Mohamed Younis, UMBC CMSC 6 Spr 23 course slides Some material adapted from Hennessy & Patterson / 23 Elsevier Science Characteristics IBM 39 IBM UltraStar Integral 82 Disk diameter

More information

Chapter 6. I/O issues

Chapter 6. I/O issues Computer Architectures Chapter 6 I/O issues Tien-Fu Chen National Chung Cheng Univ Chap6 - Input / Output Issues I/O organization issue- CPU-memory bus, I/O bus width A/D multiplex Split transaction Synchronous

More information

Computer Science 146. Computer Architecture

Computer Science 146. Computer Architecture Computer Science 46 Computer Architecture Spring 24 Harvard University Instructor: Prof dbrooks@eecsharvardedu Lecture 22: More I/O Computer Science 46 Lecture Outline HW5 and Project Questions? Storage

More information

RAID (Redundant Array of Inexpensive Disks)

RAID (Redundant Array of Inexpensive Disks) Magnetic Disk Characteristics I/O Connection Structure Types of Buses Cache & I/O I/O Performance Metrics I/O System Modeling Using Queuing Theory Designing an I/O System RAID (Redundant Array of Inexpensive

More information

CS152 Computer Architecture and Engineering Lecture 24. I/O and Storage Systems. April 29, 2004 John Kubiatowicz (

CS152 Computer Architecture and Engineering Lecture 24. I/O and Storage Systems. April 29, 2004 John Kubiatowicz ( CS152 Computer Architecture and Engineering Lecture 24 I/O and Storage Systems Recap: Nano-layered Disk Heads Special sensitivity of Disk head comes from Giant Magneto-Resistive effect or (GMR) IBM is

More information

HP AutoRAID (Lecture 5, cs262a)

HP AutoRAID (Lecture 5, cs262a) HP AutoRAID (Lecture 5, cs262a) Ion Stoica, UC Berkeley September 13, 2016 (based on presentation from John Kubiatowicz, UC Berkeley) Array Reliability Reliability of N disks = Reliability of 1 Disk N

More information

Lecture 23: Storage Systems. Topics: disk access, bus design, evaluation metrics, RAID (Sections )

Lecture 23: Storage Systems. Topics: disk access, bus design, evaluation metrics, RAID (Sections ) Lecture 23: Storage Systems Topics: disk access, bus design, evaluation metrics, RAID (Sections 7.1-7.9) 1 Role of I/O Activities external to the CPU are typically orders of magnitude slower Example: while

More information

CS2410: Computer Architecture. Storage systems. Sangyeun Cho. Computer Science Department University of Pittsburgh

CS2410: Computer Architecture. Storage systems. Sangyeun Cho. Computer Science Department University of Pittsburgh CS24: Computer Architecture Storage systems Sangyeun Cho Computer Science Department (Some slides borrowed from D Patterson s lecture slides) Case for storage Shift in focus from computation to communication

More information

CSE325 Principles of Operating Systems. Mass-Storage Systems. David P. Duggan. April 19, 2011

CSE325 Principles of Operating Systems. Mass-Storage Systems. David P. Duggan. April 19, 2011 CSE325 Principles of Operating Systems Mass-Storage Systems David P. Duggan dduggan@sandia.gov April 19, 2011 Outline Storage Devices Disk Scheduling FCFS SSTF SCAN, C-SCAN LOOK, C-LOOK Redundant Arrays

More information

Today s Papers. Array Reliability. RAID Basics (Two optional papers) EECS 262a Advanced Topics in Computer Systems Lecture 3

Today s Papers. Array Reliability. RAID Basics (Two optional papers) EECS 262a Advanced Topics in Computer Systems Lecture 3 EECS 262a Advanced Topics in Computer Systems Lecture 3 Filesystems (Con t) September 10 th, 2012 John Kubiatowicz and Anthony D. Joseph Electrical Engineering and Computer Sciences University of California,

More information

HP AutoRAID (Lecture 5, cs262a)

HP AutoRAID (Lecture 5, cs262a) HP AutoRAID (Lecture 5, cs262a) Ali Ghodsi and Ion Stoica, UC Berkeley January 31, 2018 (based on slide from John Kubiatowicz, UC Berkeley) Array Reliability Reliability of N disks = Reliability of 1 Disk

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Computer Architecture ECE 568 Part 6 Input/Output Israel Koren ECE568/Koren Part.6. Motivation: Why Care About I/O? CPU Performance:

More information

CSE 380 Computer Operating Systems

CSE 380 Computer Operating Systems CSE 380 Computer Operating Systems Instructor: Insup Lee University of Pennsylvania Fall 2003 Lecture Note on Disk I/O 1 I/O Devices Storage devices Floppy, Magnetic disk, Magnetic tape, CD-ROM, DVD User

More information

Storage. Hwansoo Han

Storage. Hwansoo Han Storage Hwansoo Han I/O Devices I/O devices can be characterized by Behavior: input, out, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections 2 I/O System Characteristics

More information

CMSC 424 Database design Lecture 12 Storage. Mihai Pop

CMSC 424 Database design Lecture 12 Storage. Mihai Pop CMSC 424 Database design Lecture 12 Storage Mihai Pop Administrative Office hours tomorrow @ 10 Midterms are in solutions for part C will be posted later this week Project partners I have an odd number

More information

Readings. Storage Hierarchy III: I/O System. I/O (Disk) Performance. I/O Device Characteristics. often boring, but still quite important

Readings. Storage Hierarchy III: I/O System. I/O (Disk) Performance. I/O Device Characteristics. often boring, but still quite important Storage Hierarchy III: I/O System Readings reg I$ D$ L2 L3 memory disk (swap) often boring, but still quite important ostensibly about general I/O, mainly about disks performance: latency & throughput

More information

Definition of RAID Levels

Definition of RAID Levels RAID The basic idea of RAID (Redundant Array of Independent Disks) is to combine multiple inexpensive disk drives into an array of disk drives to obtain performance, capacity and reliability that exceeds

More information

Storage systems. Computer Systems Architecture CMSC 411 Unit 6 Storage Systems. (Hard) Disks. Disk and Tape Technologies. Disks (cont.

Storage systems. Computer Systems Architecture CMSC 411 Unit 6 Storage Systems. (Hard) Disks. Disk and Tape Technologies. Disks (cont. Computer Systems Architecture CMSC 4 Unit 6 Storage Systems Alan Sussman November 23, 2004 Storage systems We already know about four levels of storage: registers cache memory disk but we've been a little

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Storage and Other I/O Topics I/O Performance Measures Types and Characteristics of I/O Devices Buses Interfacing I/O Devices

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Computer Architecture ECE 568 Part 6 Input/Output Israel Koren ECE568/Koren Part.6. CPU performance keeps increasing 26 72-core Xeon

More information

Administrivia. CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Disks (cont.) Disks - review

Administrivia. CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Disks (cont.) Disks - review Administrivia CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Homework #4 due Thursday answers posted soon after Exam #2 on Thursday, April 24 on memory hierarchy (Unit 4) and

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

Today: Coda, xfs. Case Study: Coda File System. Brief overview of other file systems. xfs Log structured file systems HDFS Object Storage Systems

Today: Coda, xfs. Case Study: Coda File System. Brief overview of other file systems. xfs Log structured file systems HDFS Object Storage Systems Today: Coda, xfs Case Study: Coda File System Brief overview of other file systems xfs Log structured file systems HDFS Object Storage Systems Lecture 20, page 1 Coda Overview DFS designed for mobile clients

More information

CPS104 Computer Organization and Programming Lecture 18: Input-Output. Outline of Today s Lecture. The Big Picture: Where are We Now?

CPS104 Computer Organization and Programming Lecture 18: Input-Output. Outline of Today s Lecture. The Big Picture: Where are We Now? CPS104 Computer Organization and Programming Lecture 18: Input-Output Robert Wagner cps 104.1 RW Fall 2000 Outline of Today s Lecture The system Magnetic Disk Tape es DMA cps 104.2 RW Fall 2000 The Big

More information

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili Virtual Memory Lecture notes from MKP and S. Yalamanchili Sections 5.4, 5.5, 5.6, 5.8, 5.10 Reading (2) 1 The Memory Hierarchy ALU registers Cache Memory Memory Memory Managed by the compiler Memory Managed

More information

I/O, Disks, and RAID Yi Shi Fall Xi an Jiaotong University

I/O, Disks, and RAID Yi Shi Fall Xi an Jiaotong University I/O, Disks, and RAID Yi Shi Fall 2017 Xi an Jiaotong University Goals for Today Disks How does a computer system permanently store data? RAID How to make storage both efficient and reliable? 2 What does

More information

Operating Systems 2010/2011

Operating Systems 2010/2011 Operating Systems 2010/2011 Input/Output Systems part 2 (ch13, ch12) Shudong Chen 1 Recap Discuss the principles of I/O hardware and its complexity Explore the structure of an operating system s I/O subsystem

More information

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Vivek Pai Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Today s Topics Magnetic disks Magnetic disk

More information

Today: Coda, xfs! Brief overview of other file systems. Distributed File System Requirements!

Today: Coda, xfs! Brief overview of other file systems. Distributed File System Requirements! Today: Coda, xfs! Case Study: Coda File System Brief overview of other file systems xfs Log structured file systems Lecture 21, page 1 Distributed File System Requirements! Transparency Access, location,

More information

CS162 Operating Systems and Systems Programming Lecture 16. I/O Systems. Page 1

CS162 Operating Systems and Systems Programming Lecture 16. I/O Systems. Page 1 CS162 Operating Systems and Systems Programming Lecture 16 I/O Systems March 31, 2008 Prof. Anthony D. Joseph http://inst.eecs.berkeley.edu/~cs162 Review: Hierarchy of a Modern Computer System Take advantage

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

ECE Enterprise Storage Architecture. Fall 2018

ECE Enterprise Storage Architecture. Fall 2018 ECE590-03 Enterprise Storage Architecture Fall 2018 RAID Tyler Bletsch Duke University Slides include material from Vince Freeh (NCSU) A case for redundant arrays of inexpensive disks Circa late 80s..

More information

High-Performance Storage Systems

High-Performance Storage Systems High-Performance Storage Systems I/O Systems Processor interrupts Cache Memory - I/O Bus Main Memory I/O Controller I/O Controller I/O Controller Disk Disk Graphics Network 2 Storage Technology Drivers

More information

V. Mass Storage Systems

V. Mass Storage Systems TDIU25: Operating Systems V. Mass Storage Systems SGG9: chapter 12 o Mass storage: Hard disks, structure, scheduling, RAID Copyright Notice: The lecture notes are mainly based on modifications of the slides

More information

CS 341l Fall 2008 Test #4 NAME: Key

CS 341l Fall 2008 Test #4 NAME: Key CS 341l all 2008 est #4 NAME: Key CS3411 est #4, 21 November 2008. 100 points total, number of points each question is worth is indicated in parentheses. Answer all questions. Be as concise as possible

More information

Final Lecture. A few minutes to wrap up and add some perspective

Final Lecture. A few minutes to wrap up and add some perspective Final Lecture A few minutes to wrap up and add some perspective 1 2 Instant replay The quarter was split into roughly three parts and a coda. The 1st part covered instruction set architectures the connection

More information

CSCI-GA Operating Systems. I/O : Disk Scheduling and RAID. Hubertus Franke

CSCI-GA Operating Systems. I/O : Disk Scheduling and RAID. Hubertus Franke CSCI-GA.2250-001 Operating Systems I/O : Disk Scheduling and RAID Hubertus Franke frankeh@cs.nyu.edu Disks Scheduling Abstracted by OS as files A Conventional Hard Disk (Magnetic) Structure Hard Disk

More information

Chapter 11. I/O Management and Disk Scheduling

Chapter 11. I/O Management and Disk Scheduling Operating System Chapter 11. I/O Management and Disk Scheduling Lynn Choi School of Electrical Engineering Categories of I/O Devices I/O devices can be grouped into 3 categories Human readable devices

More information

Appendix D: Storage Systems

Appendix D: Storage Systems Appendix D: Storage Systems Instructor: Josep Torrellas CS433 Copyright Josep Torrellas 1999, 2001, 2002, 2013 1 Storage Systems : Disks Used for long term storage of files temporarily store parts of pgm

More information

Storage Systems. Storage Systems

Storage Systems. Storage Systems Storage Systems Storage Systems We already know about four levels of storage: Registers Cache Memory Disk But we've been a little vague on how these devices are interconnected In this unit, we study Input/output

More information

Mass-Storage Structure

Mass-Storage Structure CS 4410 Operating Systems Mass-Storage Structure Summer 2011 Cornell University 1 Today How is data saved in the hard disk? Magnetic disk Disk speed parameters Disk Scheduling RAID Structure 2 Secondary

More information

EE282 Computer Architecture. Lecture 1: What is Computer Architecture?

EE282 Computer Architecture. Lecture 1: What is Computer Architecture? EE282 Computer Architecture Lecture : What is Computer Architecture? September 27, 200 Marc Tremblay Computer Systems Laboratory Stanford University marctrem@csl.stanford.edu Goals Understand how computer

More information

Storage System COSC UCB

Storage System COSC UCB Storage System COSC4201 1 1999 UCB I/O and Disks Over the years much less attention was paid to I/O compared with CPU design. As frustrating as a CPU crash is, disk crash is a lot worse. Disks are mechanical

More information

CS162 Operating Systems and Systems Programming Lecture 17. Disk Management and File Systems

CS162 Operating Systems and Systems Programming Lecture 17. Disk Management and File Systems CS162 Operating Systems and Systems Programming Lecture 17 Disk Management and File Systems October 29, 2007 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs162 Review: Want Standard Interfaces

More information

CS162 Operating Systems and Systems Programming Lecture 17. Disk Management and File Systems

CS162 Operating Systems and Systems Programming Lecture 17. Disk Management and File Systems CS162 Operating Systems and Systems Programming Lecture 17 Disk Management and File Systems March 18, 2010 Ion Stoica http://inst.eecs.berkeley.edu/~cs162 Review: Want Standard Interfaces to Devices Block

More information

Agenda. Agenda 11/12/12. Review - 6 Great Ideas in Computer Architecture

Agenda. Agenda 11/12/12. Review - 6 Great Ideas in Computer Architecture /3/2 Review - 6 Great Ideas in Computer Architecture CS 6C: Great Ideas in Computer Architecture (Machine Structures) Dependability and RAID Instructors: Krste Asanovic, Randy H. Katz hfp://inst.eecs.berkeley.edu/~cs6c/fa2.

More information

SYSTEM UPGRADE, INC Making Good Computers Better. System Upgrade Teaches RAID

SYSTEM UPGRADE, INC Making Good Computers Better. System Upgrade Teaches RAID System Upgrade Teaches RAID In the growing computer industry we often find it difficult to keep track of the everyday changes in technology. At System Upgrade, Inc it is our goal and mission to provide

More information

Agenda. Project #3, Part I. Agenda. Project #3, Part I. No SSE 12/1/10

Agenda. Project #3, Part I. Agenda. Project #3, Part I. No SSE 12/1/10 // CS 6C: Great Ideas in Computer Architecture (Machine Structures) Project Speed- up and RAID Instructors: Randy H. Katz David A. PaGerson hgp://inst.eecs.berkeley.edu/~cs6c/fa // Fall - - Lecture #9

More information

Physical Storage Media

Physical Storage Media Physical Storage Media These slides are a modified version of the slides of the book Database System Concepts, 5th Ed., McGraw-Hill, by Silberschatz, Korth and Sudarshan. Original slides are available

More information

CSE 120. Overview. July 27, Day 8 Input/Output. Instructor: Neil Rhodes. Hardware. Hardware. Hardware

CSE 120. Overview. July 27, Day 8 Input/Output. Instructor: Neil Rhodes. Hardware. Hardware. Hardware CSE 120 July 27, 2006 Day 8 Input/Output Instructor: Neil Rhodes How hardware works Operating Systems Layer What the kernel does API What the programmer does Overview 2 Kinds Block devices: read/write

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 9: Mass Storage Structure Prof. Alan Mislove (amislove@ccs.neu.edu) Moving-head Disk Mechanism 2 Overview of Mass Storage Structure Magnetic

More information

u Covered: l Management of CPU & concurrency l Management of main memory & virtual memory u Currently --- Management of I/O devices

u Covered: l Management of CPU & concurrency l Management of main memory & virtual memory u Currently --- Management of I/O devices Where Are We? COS 318: Operating Systems Storage Devices Jaswinder Pal Singh Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) u Covered: l Management of CPU

More information

Reliable Computing I

Reliable Computing I Instructor: Mehdi Tahoori Reliable Computing I Lecture 8: Redundant Disk Arrays INSTITUTE OF COMPUTER ENGINEERING (ITEC) CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC) National Research Center of the Helmholtz

More information

Recap: Making address translation practical: TLB. CS152 Computer Architecture and Engineering Lecture 24. Busses (continued) Queueing Theory Disk IO

Recap: Making address translation practical: TLB. CS152 Computer Architecture and Engineering Lecture 24. Busses (continued) Queueing Theory Disk IO Recap: Making address translation practical: TLB CS152 Computer Architecture and Engineering Lecture 24 Virtual memory => memory acts like a cache for the disk Page table maps virtual page numbers to physical

More information

Chapter-6. SUBJECT:- Operating System TOPICS:- I/O Management. Created by : - Sanjay Patel

Chapter-6. SUBJECT:- Operating System TOPICS:- I/O Management. Created by : - Sanjay Patel Chapter-6 SUBJECT:- Operating System TOPICS:- I/O Management Created by : - Sanjay Patel Disk Scheduling Algorithm 1) First-In-First-Out (FIFO) 2) Shortest Service Time First (SSTF) 3) SCAN 4) Circular-SCAN

More information

Database Systems. November 2, 2011 Lecture #7. topobo (mit)

Database Systems. November 2, 2011 Lecture #7. topobo (mit) Database Systems November 2, 2011 Lecture #7 1 topobo (mit) 1 Announcement Assignment #2 due today Assignment #3 out today & due on 11/16. Midterm exam in class next week. Cover Chapters 1, 2,

More information

CSE380 - Operating Systems. Communicating with Devices

CSE380 - Operating Systems. Communicating with Devices CSE380 - Operating Systems Notes for Lecture 15-11/4/04 Matt Blaze (some examples by Insup Lee) Communicating with Devices Modern architectures support convenient communication with devices memory mapped

More information

I/O Hardwares. Some typical device, network, and data base rates

I/O Hardwares. Some typical device, network, and data base rates Input/Output 1 I/O Hardwares Some typical device, network, and data base rates 2 Device Controllers I/O devices have components: mechanical component electronic component The electronic component is the

More information

An Introduction to RAID

An Introduction to RAID Intro An Introduction to RAID Gursimtan Singh Dept. of CS & IT Doaba College RAID stands for Redundant Array of Inexpensive Disks. RAID is the organization of multiple disks into a large, high performance

More information

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Kai Li Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Today s Topics Magnetic disks Magnetic disk

More information

Lecture 13. Storage, Network and Other Peripherals

Lecture 13. Storage, Network and Other Peripherals Lecture 13 Storage, Network and Other Peripherals 1 I/O Systems Processor interrupts Cache Processor & I/O Communication Memory - I/O Bus Main Memory I/O Controller I/O Controller I/O Controller Disk Disk

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568 UNIVERSITY OF MASSACHUSETTS Dept of Electrical & Computer Engineering Computer Architecture ECE 568 art 5 Input/Output Israel Koren ECE568/Koren art5 CU performance keeps increasing 26 72-core Xeon hi

More information

Input/Output. Today. Next. Principles of I/O hardware & software I/O software layers Disks. Protection & Security

Input/Output. Today. Next. Principles of I/O hardware & software I/O software layers Disks. Protection & Security Input/Output Today Principles of I/O hardware & software I/O software layers Disks Next Protection & Security Operating Systems and I/O Two key operating system goals Control I/O devices Provide a simple,

More information

- SLED: single large expensive disk - RAID: redundant array of (independent, inexpensive) disks

- SLED: single large expensive disk - RAID: redundant array of (independent, inexpensive) disks RAID and AutoRAID RAID background Problem: technology trends - computers getting larger, need more disk bandwidth - disk bandwidth not riding moore s law - faster CPU enables more computation to support

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University l Chapter 10: File System l Chapter 11: Implementing File-Systems l Chapter 12: Mass-Storage

More information

Where We Are in This Course Right Now. ECE 152 Introduction to Computer Architecture Input/Output (I/O) Copyright 2012 Daniel J. Sorin Duke University

Where We Are in This Course Right Now. ECE 152 Introduction to Computer Architecture Input/Output (I/O) Copyright 2012 Daniel J. Sorin Duke University Introduction to Computer Architecture Input/Output () Copyright 2012 Daniel J. Sorin Duke University Slides are derived from work by Amir Roth (Penn) Spring 2012 Where We Are in This Course Right Now So

More information

Chapter 11 I/O Management and Disk Scheduling

Chapter 11 I/O Management and Disk Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall 1 2 Differences

More information

COS 318: Operating Systems. Storage Devices. Jaswinder Pal Singh Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Jaswinder Pal Singh Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Jaswinder Pal Singh Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Today s Topics Magnetic disks

More information

Introduction to Input and Output

Introduction to Input and Output Introduction to Input and Output The I/O subsystem provides the mechanism for communication between the CPU and the outside world (I/O devices). Design factors: I/O device characteristics (input, output,

More information

Chapter 6 Storage and Other I/O Topics

Chapter 6 Storage and Other I/O Topics Department of Electr rical Eng ineering, Chapter 6 Storage and Other I/O Topics 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Feng-Chia Unive ersity Outline 6.1 Introduction 6.2 Dependability,

More information

CSE 451: Operating Systems Spring Module 18 Redundant Arrays of Inexpensive Disks (RAID)

CSE 451: Operating Systems Spring Module 18 Redundant Arrays of Inexpensive Disks (RAID) CSE 451: Operating Systems Spring 2017 Module 18 Redundant Arrays of Inexpensive Disks (RAID) John Zahorjan 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski 1 Disks are cheap Background An individual

More information

Review. EECS 252 Graduate Computer Architecture. Lec 18 Storage. Introduction to Queueing Theory. Deriving Little s Law

Review. EECS 252 Graduate Computer Architecture. Lec 18 Storage. Introduction to Queueing Theory. Deriving Little s Law EECS 252 Graduate Computer Architecture Lec 18 Storage David Patterson Electrical Engineering and Computer Sciences University of California, Berkeley Review Disks: Arial Density now 30%/yr vs. 100%/yr

More information

Lecture 28 Multicore, Multithread" Suggested reading:" (H&P Chapter 7.4)"

Lecture 28 Multicore, Multithread Suggested reading: (H&P Chapter 7.4) Lecture 28 Multicore, Multithread" Suggested reading:" (H&P Chapter 7.4)" 1" Processor components" Multicore processors and programming" Processor comparison" CSE 30321 - Lecture 01 - vs." Goal: Explain

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 What is an Operating System? What is

More information

Mass-Storage. ICS332 - Fall 2017 Operating Systems. Henri Casanova

Mass-Storage. ICS332 - Fall 2017 Operating Systems. Henri Casanova Mass-Storage ICS332 - Fall 2017 Operating Systems Henri Casanova (henric@hawaii.edu) Magnetic Disks! Magnetic disks (a.k.a. hard drives ) are (still) the most common secondary storage devices today! They

More information

CS370: Operating Systems [Fall 2018] Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS 370: OPERATING SYSTEMS [DISK SCHEDULING ALGORITHMS] Shrideep Pallickara Computer Science Colorado State University ECCs: How does it impact

More information

Principles of Data Management. Lecture #2 (Storing Data: Disks and Files)

Principles of Data Management. Lecture #2 (Storing Data: Disks and Files) Principles of Data Management Lecture #2 (Storing Data: Disks and Files) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today s Topics v Today

More information

CSE 451: Operating Systems Winter Redundant Arrays of Inexpensive Disks (RAID) and OS structure. Gary Kimura

CSE 451: Operating Systems Winter Redundant Arrays of Inexpensive Disks (RAID) and OS structure. Gary Kimura CSE 451: Operating Systems Winter 2013 Redundant Arrays of Inexpensive Disks (RAID) and OS structure Gary Kimura The challenge Disk transfer rates are improving, but much less fast than CPU performance

More information

Chapter Seven Morgan Kaufmann Publishers

Chapter Seven Morgan Kaufmann Publishers Chapter Seven Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored as a charge on capacitor (must be

More information

RAID (Redundant Array of Inexpensive Disks) I/O Benchmarks ABCs of UNIX File Systems A Study Comparing UNIX File System Performance

RAID (Redundant Array of Inexpensive Disks) I/O Benchmarks ABCs of UNIX File Systems A Study Comparing UNIX File System Performance Magnetic Disk Characteristics I/O Connection Structure Types of Buses Cache & I/O I/O Performance Metrics I/O System Modeling Using Queuing Theory Designing an I/O System RAID (Redundant Array of Inexpensive

More information

CS152 Computer Architecture and Engineering Lecture 20: Busses and OS s Responsibilities. Recap: IO Benchmarks and I/O Devices

CS152 Computer Architecture and Engineering Lecture 20: Busses and OS s Responsibilities. Recap: IO Benchmarks and I/O Devices CS152 Computer Architecture and Engineering Lecture 20: ses and OS s Responsibilities April 7, 1995 Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com) Slides available on http://http.cs.berkeley.edu/~patterson

More information

Chapter 6. Storage and Other I/O Topics

Chapter 6. Storage and Other I/O Topics Chapter 6 Storage and Other I/O Topics Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

RAID. Redundant Array of Inexpensive Disks. Industry tends to use Independent Disks

RAID. Redundant Array of Inexpensive Disks. Industry tends to use Independent Disks RAID Chapter 5 1 RAID Redundant Array of Inexpensive Disks Industry tends to use Independent Disks Idea: Use multiple disks to parallelise Disk I/O for better performance Use multiple redundant disks for

More information

Lecture: Storage, GPUs. Topics: disks, RAID, reliability, GPUs (Appendix D, Ch 4)

Lecture: Storage, GPUs. Topics: disks, RAID, reliability, GPUs (Appendix D, Ch 4) Lecture: Storage, GPUs Topics: disks, RAID, reliability, GPUs (Appendix D, Ch 4) 1 Magnetic Disks A magnetic disk consists of 1-12 platters (metal or glass disk covered with magnetic recording material

More information

UNIT I (Two Marks Questions & Answers)

UNIT I (Two Marks Questions & Answers) UNIT I (Two Marks Questions & Answers) Discuss the different ways how instruction set architecture can be classified? Stack Architecture,Accumulator Architecture, Register-Memory Architecture,Register-

More information

CS252 S05. CMSC 411 Computer Systems Architecture Lecture 18 Storage Systems 2. I/O performance measures. I/O performance measures

CS252 S05. CMSC 411 Computer Systems Architecture Lecture 18 Storage Systems 2. I/O performance measures. I/O performance measures CMSC 411 Computer Systems Architecture Lecture 18 Storage Systems 2 I/O performance measures I/O performance measures diversity: which I/O devices can connect to the system? capacity: how many I/O devices

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures CS61C L40 I/O: Disks (1) Lecture 40 I/O : Disks 2004-12-03 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia I talk to robots Japan's growing

More information

CSE 120. Operating Systems. March 27, 2014 Lecture 17. Mass Storage. Instructor: Neil Rhodes. Wednesday, March 26, 14

CSE 120. Operating Systems. March 27, 2014 Lecture 17. Mass Storage. Instructor: Neil Rhodes. Wednesday, March 26, 14 CSE 120 Operating Systems March 27, 2014 Lecture 17 Mass Storage Instructor: Neil Rhodes Paging and Translation Lookaside Buffer frame dirty? no yes CPU checks TLB PTE in TLB? Free page frame? no yes OS

More information

Database Architecture 2 & Storage. Instructor: Matei Zaharia cs245.stanford.edu

Database Architecture 2 & Storage. Instructor: Matei Zaharia cs245.stanford.edu Database Architecture 2 & Storage Instructor: Matei Zaharia cs245.stanford.edu Summary from Last Time System R mostly matched the architecture of a modern RDBMS» SQL» Many storage & access methods» Cost-based

More information

Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 420, York College. November 21, 2006

Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 420, York College. November 21, 2006 November 21, 2006 The memory hierarchy Red = Level Access time Capacity Features Registers nanoseconds 100s of bytes fixed Cache nanoseconds 1-2 MB fixed RAM nanoseconds MBs to GBs expandable Disk milliseconds

More information

I/O Handling. ECE 650 Systems Programming & Engineering Duke University, Spring Based on Operating Systems Concepts, Silberschatz Chapter 13

I/O Handling. ECE 650 Systems Programming & Engineering Duke University, Spring Based on Operating Systems Concepts, Silberschatz Chapter 13 I/O Handling ECE 650 Systems Programming & Engineering Duke University, Spring 2018 Based on Operating Systems Concepts, Silberschatz Chapter 13 Input/Output (I/O) Typical application flow consists of

More information

Lecture 23. Finish-up buses Storage

Lecture 23. Finish-up buses Storage Lecture 23 Finish-up buses Storage 1 Example Bus Problems, cont. 2) Assume the following system: A CPU and memory share a 32-bit bus running at 100MHz. The memory needs 50ns to access a 64-bit value from

More information

Lecture 25: Interconnection Networks, Disks. Topics: flow control, router microarchitecture, RAID

Lecture 25: Interconnection Networks, Disks. Topics: flow control, router microarchitecture, RAID Lecture 25: Interconnection Networks, Disks Topics: flow control, router microarchitecture, RAID 1 Virtual Channel Flow Control Each switch has multiple virtual channels per phys. channel Each virtual

More information

CS5460: Operating Systems Lecture 20: File System Reliability

CS5460: Operating Systems Lecture 20: File System Reliability CS5460: Operating Systems Lecture 20: File System Reliability File System Optimizations Modern Historic Technique Disk buffer cache Aggregated disk I/O Prefetching Disk head scheduling Disk interleaving

More information

Lecture 9. I/O Management and Disk Scheduling Algorithms

Lecture 9. I/O Management and Disk Scheduling Algorithms Lecture 9 I/O Management and Disk Scheduling Algorithms 1 Lecture Contents 1. I/O Devices 2. Operating System Design Issues 3. Disk Scheduling Algorithms 4. RAID (Redundant Array of Independent Disks)

More information

CS370: Operating Systems [Fall 2018] Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Fall 2018] Dept. Of Computer Science, Colorado State University CS 370: OPERATING SYSTEMS [DISK SCHEDULING ALGORITHMS] Shrideep Pallickara Computer Science Colorado State University L30.1 Frequently asked questions from the previous class survey ECCs: How does it impact

More information