CS152 Computer Architecture and Engineering Lecture 24. I/O and Storage Systems. April 29, 2004 John Kubiatowicz (

Size: px
Start display at page:

Download "CS152 Computer Architecture and Engineering Lecture 24. I/O and Storage Systems. April 29, 2004 John Kubiatowicz ("

Transcription

1 CS152 Computer Architecture and Engineering Lecture 24 I/O and Storage Systems Recap: Nano-layered Disk Heads Special sensitivity of Disk head comes from Giant Magneto-Resistive effect or (GMR) IBM is leader in this technology Same technology as TMJ-RAM breakthrough we described in earlier class. Coil for writing April 29, 2004 John Kubiatowicz ( lecture slides: Lec24.2 Recap: Disk Device Terminology Disk I/O Performance 300 Response Time (ms) Disk Latency = Queueing Time + Controller time + Seek Time + Rotation Time + Xfer Time Order of magnitude times for 4K byte transfers: Average Seek: 8 ms or less Rotate: rpm Xfer: rpm Metrics: Response Time Throughput latency goes as T ser u/(1-u) u = utilization Proc Queue Throughput (Utilization) (% total BW) Response time = Queue + Device Service time 0 0% IOC Device 100% Lec24.3 Lec24.4

2 Introduction to Queueing Theory A Little Queuing Theory: Use of random distributions Arrivals Black Box Queueing System Departures System Queue server Proc IOC Device Avg. Queueing Theory applies to long term, steady state behavior Arrival rate = Departure rate Little s Law: Mean number tasks in system = arrival rate x mean reponse time Observed by many, Little was first to prove Simple interpretation: you should see the same number of tasks in queue when entering as when leaving. Applies to any system in equilibrium, as long as nothing in black box is creating or destroying tasks Lec24.5 Server spends a variable amount of time with customers Weighted mean m1 = (f1 x T1 + f2 x T fn x Tn)/F = Σ p(t)xt σ 2 = (f1 x T1 2 + f2 x T fn x Tn 2 )/F m1 2 = Σ p(t)xt 2 -m1 2 Squared coefficient of variance: C = σ 2 /m1 2 - Unitless measure (100 ms 2 vs. 0.1 s 2 ) Exponential distribution C = 1 : most short relative to average, few others long; 90% < 2.3 x average, 63% < average Hypoexponential distribution C < 1 : most close to average, C=0.5 => 90% < 2.0 x average, only 57% < average Hyperexponential distribution C > 1 : further from average C=2.0 => 90% < 2.8 x average, 69% < average 0 Avg. Lec24.6 A Little Queuing Theory: Variable Service Time Queue System Proc IOC Device Disk response times C 1.5 (majority seeks < average) Yet usually pick C = 1.0 for simplicity Avg. Memoryless, exponential dist Many complex systems well described by memoryless distribution! Another useful value is average time 0 Time must wait for server to complete current task: m1(z) Called Average Residual Wait Time Not just 1/2 x m1 because doesn t capture variance Can derive m1(z) = 1/2 x m1 x (1 + C) No variance C= 0 => m1(z) = 1/2 x m1 Exponential C= 1 => m1(z) = m1 server Lec24.7 A Little Queuing Theory: Average Wait Time Calculating average wait time in queue : All customers in line must complete; avg time: m1 T ser = 1/µ If something at server, it takes to complete on average m1(z) - Chance server is busy = u=λ/µ; average delay is u x m1(z) = uxm1(z)+ L q x T ser = u x m1(z) + λ x x T Little s Law ser = u x m1(z) + u x Defn of utilization (u) x (1 u) = m1(z) x u = m1(z) x u/(1-u) = T ser x {1/2 x (1+C)} x u/(1 u)) Notation: λ average number of arriving customers/second T ser average time to service a customer u server utilization (0..1): u = λ x T ser average time/customer in queue L q average length of queue:l q = λ x m1(z) average residual wait time = T ser x {1/2 x (1+C)} Lec24.8

3 Assumptions so far: System in equilibrium Time between two successive arrivals in line are random Server can start on next customer immediately after prior finishes No limit to the queue: works First-In-First-Out Afterward, all customers in line must complete; each avg T ser Described memoryless or Markovian request arrival (M for C=1 exponentially random), General service distribution (no restrictions), 1 server: M/G/1 queue When Service times have C = 1, M/M/1 queue = T ser x u / (1 u) T ser u A Little Queuing Theory: M/G/1 and M/M/1 average time to service a customer server utilization (0..1): u = λ xt ser average time/customer in queue Processor sends 10 x 8KB disk I/Os per second, requests & service exponentially distrib., avg. disk service = 20 ms This number comes from disk equation: Service time = Ave seek + ave rot delay + transfer time + ctrl overhead On average, how utilized is the disk? What is the number of requests in the queue? What is the average time spent in the queue? What is the average response time for a disk request? Notation: λ average number of arriving customers/second = 10 T ser average time to service a customer = 20 ms (0.02s) u server utilization (0..1): u = λ xt ser = 10/s x.02s = 0.2 average time/customer in queue = T ser x u / (1 u) = 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0.005s) T sys L q A Little Queuing Theory: An Example average time/customer in system: T sys = +T ser = 25 ms average length of queue:l q = λ x = 10/s x.005s = 0.05 requests in queue L sys average # tasks in system: L sys = λ x T sys = 10/s x.025s = 0.25 Lec24.9 Lec24.10 Memory System I/O Performance Request Rate Pipelined Bus with queue at controller? Time to transfer request ueue = Queueing Delay+service time Time to transfer data DRAM has DETERMINISTIC service time T ser = t RAC + (n-1) * t PC + t precharge = m1(z) x u/(1-u) = T ser x {1/2 x (1+C)} x u/(1 u)) with C=0 Processor λ µ Queue Memory Controller DRAM Service Rate? Lec24.11 Administrivia Go to the Projects link and describe your project (By Friday) Thursday: Sections in lab again (119 Cory) Discuss your design document Send draft to TA tonight Midterm II next Wednesday 5:30 8:30 in 306 Soda Hall - Pizza afterwards Topics - Pipelining - Caches/Memory systems - Buses and I/O (Disk equation) - Queueing theory Can bring 1 page of notes and calculator - Handwitten, double-sided (CLOSED BOOK!) Oral Report Powerpoint 15 minute presentation, 5 minutes for questions Lec24.12

4 Giving Commands to I/O Devices Two methods are used to address the device: Special I/O instructions Memory-mapped I/O Special I/O instructions specify: Both the device number and the command word - Device number: the processor communicates this via a set of wires normally included as part of the I/O bus - Command word: this is usually send on the bus s data lines Memory-mapped I/O: Portions of the address space are assigned to I/O device Read and writes to those addresses are interpreted as commands to the I/O devices Lec24.13 Memory Mapped I/O Memory CPU Interface Single Memory & I/O Bus No Separate I/O Instructions Interface ROM RAM Peripheral Peripheral CPU $ I/O Issues: Real implementations usually below L2 $ the cache, rather than in parallel with the Memory Bus I/O bus cache (what you have for Labs 5 & 6) - Requires cache invalidation! User programs are prevented from Memory Bus Adaptor issuing I/O operations directly: - The I/O address space is protected by the address translation Lec24.14 I/O Device Notifying the OS The OS needs to know when: The I/O device has completed an operation The I/O operation has encountered an error This can be accomplished in two different ways I/O Interrupt: - Whenever an I/O device needs attention from the processor, it interrupts the processor from what it is currently doing. Polling: - The I/O device put information in a status register - The OS periodically check the status register Lec24.15 External Interrupt Example: Device Interrupt add $r1,$r2,$r3 subi $r4,$r1,#4 slli $r4,$r4,#2 Hiccup(!) lw lw add sw $r2,0($r4) $r3,4($r4) $r2,$r2,$r3 8($r4),$r2 PC saved Disable All Ints Supervisor Mode Restore PC User Mode Raise priority Reenable All Ints Save registers lw $r1,20($r0) lw $r2,0($r1) addi $r3,$r0,#5 sw $r3,0($r1) Restore registers Clear current Int Disable All Ints Restore priority RTI Advantage: User program progress is only halted during actual transfer Disadvantage, special hardware is needed to: Cause an interrupt (I/O device) Detect an interrupt (processor) Save the proper states to resume after the interrupt (processor) Interrupt Handler Lec24.16

5 Alternative: Polling Polling is faster/slower than Interrupts External Interrupt no_mess: Disable Network Intr subi $r4,$r1,#4 slli $r4,$r4,#2 lw $r2,0($r4) lw $r3,4($r4) add $r2,$r2,$r3 sw 8($r4),$r2 lw $r1,12($zero) beq $r1,no_mess lw $r1,20($r0) lw $r2,0($r1) addi $r3,$r0,#5 sw 0($r1),$r3 Clear Network Intr Polling Point (check device register) Handler Polling is faster than interrupts because Compiler knows which registers in use at polling point. Hence, do not need to save and restore registers (or not as many). Other interrupt overhead avoided (pipeline flush, trap priorities, etc). Polling is slower than interrupts because Overhead of polling instructions is incurred regardless of whether or not handler is run. This could add to inner-loop delay. Device may have to wait for service for a long time. When to use one or the other? Multi-axis tradeoff - Frequent/regular events good for polling, as long as device can be controlled at user level. - Interrupts good for infrequent/irregular events - Interrupts good for ensuring regular/predictable service of events. Lec24.17 Lec24.18 Delegating I/O Responsibility from the CPU: DMA Delegating I/O Responsibility from the CPU: IOP Direct Memory Access (DMA): External to the CPU Act as a maser on the bus Transfer blocks of data to or from memory without CPU intervention CPU sends a starting address, direction, and length count to DMAC. Then issues "start". Memory CPU DMAC IOC device DMAC provides handshake signals for Peripheral Controller, and Memory Addresses and handshake signals for Memory. Lec24.19 CPU Mem IOP main memory bus I/O bus IOP steals memory cycles. D1 D2 Dn (1) Issues CPU (4) IOP interrupts instruction CPU when done to IOP IOP (2) (3) memory what Device to/from memory to do transfers are controlled by the IOP directly. target device where cmnds are OP Device Address IOP looks in memory for commands OP Addr Cnt Other where to put data how much special requests Lec24.20

6 Reliability and Availability Manufacturing Advantages of Disk Arrays Two terms that are often confused: Reliability: Is anything broken? Availability: Is the system still available to the user? Availability can be improved by adding hardware: Example: adding ECC on memory Reliability can only be improved by: Better environmental conditions Building more reliable components Building with fewer components - Improve availability may come at the cost of lower reliability Durability: Will the data last forever? Conventional: 4 disk designs 3.5 Disk Array: 1 disk design Low End Disk Product Families High End Lec24.21 Lec24.22 Array Reliability Redundant Arrays of Disks Reliability of N disks = Reliability of 1 Disk N 50,000 Hours 70 disks = 700 hours Disk system MTTF: Drops from 6 years to 1 month! Arrays (without redundancy) too unreliable to be useful! Files are "striped" across multiple spindles Redundancy yields high data availability Disks will fail Contents reconstructed from data redundantly stored in the array Capacity penalty to store it Bandwidth penalty to update Mirroring/Shadowing (high capacity cost) Hot spares support reconstruction in in parallel with access: very high media availability can be be achieved Techniques: Horizontal Hamming Codes (overkill) Parity & Reed-Solomon Codes Failure Prediction (no capacity overhead!) VaxSimPlus Technique is controversial Lec24.23 Lec24.24

7 RAID 1: Disk Mirroring/Shadowing RAID 5+: High I/O Rate Parity Each disk is fully duplicated onto its "shadow" Very high availability can be achieved Bandwidth sacrifice on write: Logical write = two physical writes Reads may be optimized recovery group A logical logical write write becomes four four physical I/Os I/Os Independent writes writes possible because of of interleaved parity parity Reed-Solomon Codes Codes ("Q") ("Q") for for protection during during reconstruction Targeted for mixed applications D0 D1 D2 D3 P D4 D5 D6 P D7 D8 D9 P D10 D11 D12 P D13 D14 D15 P D16 D17 D18 D19 Increasing Logical Disk Addresses Stripe Stripe Unit Most expensive solution: 100% capacity overhead Targeted for high I/O rate, high availability environments Lec24.25 D20 D21 D22 D23 P.... Disk Columns.. Lec24.26 Problems of Disk Arrays: Small Writes System-Level Availability RAID-5: Small Write Algorithm 1 Logical Write = 2 Physical Reads + 2 Physical Writes host I/O Controller Fully dual redundant host I/O Controller D0' new data + D0 D1 D2 D3 P old data XOR (1. Read) old (2. Read) parity + XOR Array Controller Array Controller Goal: Goal: No No Single Single Points Points of of Failure Failure (3. Write) (4. Write) D0' D1 D2 D3 P' Lec24.27 Recovery Group... with duplicated paths, higher performance can be obtained when there are no failures Lec24.28

8 OceanStore Vision: Utility-based Infrastructure What are the advantages of a utility? Canadian OceanStore Pac Bell Sprint IBM Data service provided by storage federation Cross-administrative domain AT&T IBM For Clients: Outsourcing of Responsibility - Someone else worries about quality of service Better Reliability - Utility can muster greater resources toward durability - System not disabled by local outages - Utility can focus resources (manpower) at security-vulnerable aspects of system Better data mobility - Starting with secure network model sharing For Utility Provider: Economies of scale - Dynamically redistribute resources between clients - Focused manpower can serve many clients simultaneously Contractual Quality of Service ( someone to sue ) Lec24.29 Lec24.30 Two Types of OceanStore Data Active Data: Floating Replicas Per object virtual server Interaction with other replicas for consistency May appear and disappear like bubbles Second-Tier Caches The Path of an OceanStore Update Inner-Ring Servers Archival Data: OceanStore s Stable Store m-of-n coding: Like hologram - Data coded into n fragments, any m of which are sufficient to reconstruct (e.g m=16, n=64) - Coding overhead is proportional to n m (e.g 4) Fragments are cryptographically self-verifying Most data in the OceanStore is archival! Clients Lec24.31 Lec24.32

9 Archival Dissemination of Fragments Secure Object Storage Client (w/ TCPA) OceanStore Client (w/ TCPA) Client Data Manager Client (w/ TCPA) Archival Servers Archival Servers Lec24.33 Security: Access and Content controlled by client Privacy through data encryption Optional use of cryptographic hardware for revocation Authenticity through hashing and active integrity checking Flexible self-management and optimization: Performance and durability Efficient sharing Lec24.34 The Berkeley PetaByte Archival Service OceanStore Concepts Applied to Tape-less backup Self-Replicating, Self-Repairing, Self-Managing No need for actual Tape in system - (Although could be there to keep with tradition) Lec24.35 I/O Summary: I/O performance limited by weakest link in chain between OS and device Three Components of Disk Access Time: Seek Time: advertised to be 8 to 12 ms. May be lower in real life. Rotational Latency: 4.1 ms at 7200 RPM and 8.3 ms at 3600 RPM Transfer Time: 2 to 12 MB per second I/O device notifying the operating system: Polling: it can waste a lot of processor time I/O interrupt: similar to exception except it is asynchronous Delegating I/O responsibility from the CPU: DMA, or even IOP Queueing theory is important 100% utilization means very large latency Remember, for M/M/1 queue (exponential source of requests/service) - queue size goes as u/(1-u) - latency goes as T ser u/(1-u) For M/G/1 queue (more general server, exponential sources) - latency goes as m1(z) x u/(1-u) = T ser x {1/2 x (1+C)} x u/(1-u) Redundancy + Repair is key to high reliability Lec24.36

The Big Picture: Where are We Now? CS152 Computer Architecture and Engineering Lecture 24. I/O Systems II

The Big Picture: Where are We Now? CS152 Computer Architecture and Engineering Lecture 24. I/O Systems II The Big Picture: Where are We Now? CS52 Computer Architecture and Engineering Lecture 24 I/O Systems II Today s Topic: I/O Systems Processor Input Control Memory Network/Bus Input Memory Processor Control

More information

Recap: Making address translation practical: TLB. CS152 Computer Architecture and Engineering Lecture 24. Busses (continued) Queueing Theory Disk IO

Recap: Making address translation practical: TLB. CS152 Computer Architecture and Engineering Lecture 24. Busses (continued) Queueing Theory Disk IO Recap: Making address translation practical: TLB CS152 Computer Architecture and Engineering Lecture 24 Virtual memory => memory acts like a cache for the disk Page table maps virtual page numbers to physical

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some material adapted from Mohamed Younis, UMBC CMSC 6 Spr 23 course slides Some material adapted from Hennessy & Patterson / 23 Elsevier Science Characteristics IBM 39 IBM UltraStar Integral 82 Disk diameter

More information

CS152 Computer Architecture and Engineering Lecture 25. I/O and Storage Systems Power

CS152 Computer Architecture and Engineering Lecture 25. I/O and Storage Systems Power CS52 Computer Architecture and Engineering Lecture 25 I/O and Storage Systems Power Recap: Nano-layered Disk Heads Special sensitivity of Disk head comes from Giant Magneto-Resistive effect or (GMR) IBM

More information

CS162 Operating Systems and Systems Programming Lecture 17. Disk Management and File Systems

CS162 Operating Systems and Systems Programming Lecture 17. Disk Management and File Systems CS162 Operating Systems and Systems Programming Lecture 17 Disk Management and File Systems October 29, 2007 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs162 Review: Want Standard Interfaces

More information

Chapter 6. I/O issues

Chapter 6. I/O issues Computer Architectures Chapter 6 I/O issues Tien-Fu Chen National Chung Cheng Univ Chap6 - Input / Output Issues I/O organization issue- CPU-memory bus, I/O bus width A/D multiplex Split transaction Synchronous

More information

CS162 Operating Systems and Systems Programming Lecture 17. Disk Management and File Systems

CS162 Operating Systems and Systems Programming Lecture 17. Disk Management and File Systems CS162 Operating Systems and Systems Programming Lecture 17 Disk Management and File Systems March 18, 2010 Ion Stoica http://inst.eecs.berkeley.edu/~cs162 Review: Want Standard Interfaces to Devices Block

More information

High-Performance Storage Systems

High-Performance Storage Systems High-Performance Storage Systems I/O Systems Processor interrupts Cache Memory - I/O Bus Main Memory I/O Controller I/O Controller I/O Controller Disk Disk Graphics Network 2 Storage Technology Drivers

More information

CS162 Operating Systems and Systems Programming Lecture 16. I/O Systems. Page 1

CS162 Operating Systems and Systems Programming Lecture 16. I/O Systems. Page 1 CS162 Operating Systems and Systems Programming Lecture 16 I/O Systems March 31, 2008 Prof. Anthony D. Joseph http://inst.eecs.berkeley.edu/~cs162 Review: Hierarchy of a Modern Computer System Take advantage

More information

Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H. Katz Computer Science 252 Spring 1996

Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H. Katz Computer Science 252 Spring 1996 Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H Katz Computer Science 252 Spring 996 RHKS96 Review: Storage System Issues Historical Context of Storage I/O Storage I/O Performance

More information

Lecture 12: I/O: Metrics, A Little Queuing Theory, and Busses Professor David A. Patterson Computer Science 252 Fall 1996

Lecture 12: I/O: Metrics, A Little Queuing Theory, and Busses Professor David A. Patterson Computer Science 252 Fall 1996 Lecture 12: I/O: Metrics, A Little Queuing Theory, and Busses Professor David A. Patterson Computer Science 252 Fall 1996 DAP.F96 1 Review: Disk Device Terminology Disk Latency = Queuing Time + Seek Time

More information

Lecture 13. Storage, Network and Other Peripherals

Lecture 13. Storage, Network and Other Peripherals Lecture 13 Storage, Network and Other Peripherals 1 I/O Systems Processor interrupts Cache Processor & I/O Communication Memory - I/O Bus Main Memory I/O Controller I/O Controller I/O Controller Disk Disk

More information

Computer Science 146. Computer Architecture

Computer Science 146. Computer Architecture Computer Science 46 Computer Architecture Spring 24 Harvard University Instructor: Prof dbrooks@eecsharvardedu Lecture 22: More I/O Computer Science 46 Lecture Outline HW5 and Project Questions? Storage

More information

Review. EECS 252 Graduate Computer Architecture. Lec 18 Storage. Introduction to Queueing Theory. Deriving Little s Law

Review. EECS 252 Graduate Computer Architecture. Lec 18 Storage. Introduction to Queueing Theory. Deriving Little s Law EECS 252 Graduate Computer Architecture Lec 18 Storage David Patterson Electrical Engineering and Computer Sciences University of California, Berkeley Review Disks: Arial Density now 30%/yr vs. 100%/yr

More information

I/O Systems. EECC551 - Shaaban. Processor. Cache. Memory - I/O Bus. Main Memory. I/O Controller. I/O Controller. I/O Controller. Graphics.

I/O Systems. EECC551 - Shaaban. Processor. Cache. Memory - I/O Bus. Main Memory. I/O Controller. I/O Controller. I/O Controller. Graphics. Processor I/O Systems interrupts Cache Memory - I/O Bus Main Memory I/O Controller I/O Controller I/O Controller Disk Disk Graphics Network Time(workload) = Time(CPU) + Time(I/O) - Time(Overlap) #1 Lec

More information

CS152 Computer Architecture and Engineering Lecture 20: Busses and OS s Responsibilities. Recap: IO Benchmarks and I/O Devices

CS152 Computer Architecture and Engineering Lecture 20: Busses and OS s Responsibilities. Recap: IO Benchmarks and I/O Devices CS152 Computer Architecture and Engineering Lecture 20: ses and OS s Responsibilities April 7, 1995 Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com) Slides available on http://http.cs.berkeley.edu/~patterson

More information

CS152 Computer Architecture and Engineering Lecture 26. Low Power Design. May 3, 2001 John Kubiatowicz (http.cs.berkeley.

CS152 Computer Architecture and Engineering Lecture 26. Low Power Design. May 3, 2001 John Kubiatowicz (http.cs.berkeley. CS52 Computer Architecture and Engineering Lecture 26 Low Power Design May 3, 2 John Kubiatowicz (http.cs.berkeley.edu/~kubitron) lecture slides: http://www-inst.eecs.berkeley.edu/~cs52/ Recap: I/O Summary

More information

CS2410: Computer Architecture. Storage systems. Sangyeun Cho. Computer Science Department University of Pittsburgh

CS2410: Computer Architecture. Storage systems. Sangyeun Cho. Computer Science Department University of Pittsburgh CS24: Computer Architecture Storage systems Sangyeun Cho Computer Science Department (Some slides borrowed from D Patterson s lecture slides) Case for storage Shift in focus from computation to communication

More information

ECE468 Computer Organization and Architecture. OS s Responsibilities

ECE468 Computer Organization and Architecture. OS s Responsibilities ECE468 Computer Organization and Architecture OS s Responsibilities ECE4680 buses.1 April 5, 2003 Recap: Summary of Bus Options: Option High performance Low cost Bus width Separate address Multiplex address

More information

Lecture 23: Storage Systems. Topics: disk access, bus design, evaluation metrics, RAID (Sections )

Lecture 23: Storage Systems. Topics: disk access, bus design, evaluation metrics, RAID (Sections ) Lecture 23: Storage Systems Topics: disk access, bus design, evaluation metrics, RAID (Sections 7.1-7.9) 1 Role of I/O Activities external to the CPU are typically orders of magnitude slower Example: while

More information

CPS104 Computer Organization and Programming Lecture 18: Input-Output. Outline of Today s Lecture. The Big Picture: Where are We Now?

CPS104 Computer Organization and Programming Lecture 18: Input-Output. Outline of Today s Lecture. The Big Picture: Where are We Now? CPS104 Computer Organization and Programming Lecture 18: Input-Output Robert Wagner cps 104.1 RW Fall 2000 Outline of Today s Lecture The system Magnetic Disk Tape es DMA cps 104.2 RW Fall 2000 The Big

More information

RAID (Redundant Array of Inexpensive Disks)

RAID (Redundant Array of Inexpensive Disks) Magnetic Disk Characteristics I/O Connection Structure Types of Buses Cache & I/O I/O Performance Metrics I/O System Modeling Using Queuing Theory Designing an I/O System RAID (Redundant Array of Inexpensive

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Storage and Other I/O Topics I/O Performance Measures Types and Characteristics of I/O Devices Buses Interfacing I/O Devices

More information

Storage. Hwansoo Han

Storage. Hwansoo Han Storage Hwansoo Han I/O Devices I/O devices can be characterized by Behavior: input, out, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections 2 I/O System Characteristics

More information

Page 1, 5/4/99 8:22 PM

Page 1, 5/4/99 8:22 PM Outline Review Pipelining CS61C Review of Cache/VM/TLB Lecture 27 May 5, 1999 (Cinco de Mayo) Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html Review Interrupt/Polling

More information

Readings. Storage Hierarchy III: I/O System. I/O (Disk) Performance. I/O Device Characteristics. often boring, but still quite important

Readings. Storage Hierarchy III: I/O System. I/O (Disk) Performance. I/O Device Characteristics. often boring, but still quite important Storage Hierarchy III: I/O System Readings reg I$ D$ L2 L3 memory disk (swap) often boring, but still quite important ostensibly about general I/O, mainly about disks performance: latency & throughput

More information

Digital Design Laboratory Lecture 6 I/O

Digital Design Laboratory Lecture 6 I/O ECE 280 / CSE 280 Digital Design Laboratory Lecture 6 I/O Input/Output Module Interface to CPU and Memory Interface to one or more peripherals Generic Model of I/O Module External Devices Human readable

More information

HP AutoRAID (Lecture 5, cs262a)

HP AutoRAID (Lecture 5, cs262a) HP AutoRAID (Lecture 5, cs262a) Ion Stoica, UC Berkeley September 13, 2016 (based on presentation from John Kubiatowicz, UC Berkeley) Array Reliability Reliability of N disks = Reliability of 1 Disk N

More information

Appendix D: Storage Systems

Appendix D: Storage Systems Appendix D: Storage Systems Instructor: Josep Torrellas CS433 Copyright Josep Torrellas 1999, 2001, 2002, 2013 1 Storage Systems : Disks Used for long term storage of files temporarily store parts of pgm

More information

Administrivia. CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Disks (cont.) Disks - review

Administrivia. CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Disks (cont.) Disks - review Administrivia CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Homework #4 due Thursday answers posted soon after Exam #2 on Thursday, April 24 on memory hierarchy (Unit 4) and

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Computer Architecture ECE 568 Part 6 Input/Output Israel Koren ECE568/Koren Part.6. Motivation: Why Care About I/O? CPU Performance:

More information

Systems Architecture II

Systems Architecture II Systems Architecture II Topics Interfacing I/O Devices to Memory, Processor, and Operating System * Memory-mapped IO and Interrupts in SPIM** *This lecture was derived from material in the text (Chapter

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

Today s Papers. Array Reliability. RAID Basics (Two optional papers) EECS 262a Advanced Topics in Computer Systems Lecture 3

Today s Papers. Array Reliability. RAID Basics (Two optional papers) EECS 262a Advanced Topics in Computer Systems Lecture 3 EECS 262a Advanced Topics in Computer Systems Lecture 3 Filesystems (Con t) September 10 th, 2012 John Kubiatowicz and Anthony D. Joseph Electrical Engineering and Computer Sciences University of California,

More information

HP AutoRAID (Lecture 5, cs262a)

HP AutoRAID (Lecture 5, cs262a) HP AutoRAID (Lecture 5, cs262a) Ali Ghodsi and Ion Stoica, UC Berkeley January 31, 2018 (based on slide from John Kubiatowicz, UC Berkeley) Array Reliability Reliability of N disks = Reliability of 1 Disk

More information

CSE 380 Computer Operating Systems

CSE 380 Computer Operating Systems CSE 380 Computer Operating Systems Instructor: Insup Lee University of Pennsylvania Fall 2003 Lecture Note on Disk I/O 1 I/O Devices Storage devices Floppy, Magnetic disk, Magnetic tape, CD-ROM, DVD User

More information

Computer Architecture Computer Science & Engineering. Chapter 6. Storage and Other I/O Topics BK TP.HCM

Computer Architecture Computer Science & Engineering. Chapter 6. Storage and Other I/O Topics BK TP.HCM Computer Architecture Computer Science & Engineering Chapter 6 Storage and Other I/O Topics Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine

More information

Introduction I/O 1. I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec

Introduction I/O 1. I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec Introduction I/O 1 I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections I/O Device Summary I/O 2 I/O System

More information

Chapter 6. Storage and Other I/O Topics

Chapter 6. Storage and Other I/O Topics Chapter 6 Storage and Other I/O Topics Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Computer Architecture ECE 568 Part 6 Input/Output Israel Koren ECE568/Koren Part.6. CPU performance keeps increasing 26 72-core Xeon

More information

CSE325 Principles of Operating Systems. Mass-Storage Systems. David P. Duggan. April 19, 2011

CSE325 Principles of Operating Systems. Mass-Storage Systems. David P. Duggan. April 19, 2011 CSE325 Principles of Operating Systems Mass-Storage Systems David P. Duggan dduggan@sandia.gov April 19, 2011 Outline Storage Devices Disk Scheduling FCFS SSTF SCAN, C-SCAN LOOK, C-LOOK Redundant Arrays

More information

Introduction to Input and Output

Introduction to Input and Output Introduction to Input and Output The I/O subsystem provides the mechanism for communication between the CPU and the outside world (I/O devices). Design factors: I/O device characteristics (input, output,

More information

Today: Coda, xfs! Brief overview of other file systems. Distributed File System Requirements!

Today: Coda, xfs! Brief overview of other file systems. Distributed File System Requirements! Today: Coda, xfs! Case Study: Coda File System Brief overview of other file systems xfs Log structured file systems Lecture 21, page 1 Distributed File System Requirements! Transparency Access, location,

More information

Input/Output Introduction

Input/Output Introduction Input/Output 1 Introduction Motivation Performance metrics Processor interface issues Buses 2 Page 1 Motivation CPU Performance: 60% per year I/O system performance limited by mechanical delays (e.g.,

More information

Introduction. Motivation Performance metrics Processor interface issues Buses

Introduction. Motivation Performance metrics Processor interface issues Buses Input/Output 1 Introduction Motivation Performance metrics Processor interface issues Buses 2 Motivation CPU Performance: 60% per year I/O system performance limited by mechanical delays (e.g., disk I/O)

More information

CS152 Computer Architecture and Engineering Lecture 19: I/O Systems

CS152 Computer Architecture and Engineering Lecture 19: I/O Systems CS152 Computer Architecture and Engineering Lecture 19: I/O Systems April 5, 1995 Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com) Slides available on http://http.cs.berkeley.edu/~patterson

More information

Storage systems. Computer Systems Architecture CMSC 411 Unit 6 Storage Systems. (Hard) Disks. Disk and Tape Technologies. Disks (cont.

Storage systems. Computer Systems Architecture CMSC 411 Unit 6 Storage Systems. (Hard) Disks. Disk and Tape Technologies. Disks (cont. Computer Systems Architecture CMSC 4 Unit 6 Storage Systems Alan Sussman November 23, 2004 Storage systems We already know about four levels of storage: registers cache memory disk but we've been a little

More information

Today: Coda, xfs. Case Study: Coda File System. Brief overview of other file systems. xfs Log structured file systems HDFS Object Storage Systems

Today: Coda, xfs. Case Study: Coda File System. Brief overview of other file systems. xfs Log structured file systems HDFS Object Storage Systems Today: Coda, xfs Case Study: Coda File System Brief overview of other file systems xfs Log structured file systems HDFS Object Storage Systems Lecture 20, page 1 Coda Overview DFS designed for mobile clients

More information

Computer Architecture I/O Systems cs 152 L19.io.1

Computer Architecture I/O Systems cs 152 L19.io.1 Computer Architecture I/O Systems cs 152 L19.io.1 Outline of Today s Lecture Recap Busses Finish VM: TLBs Questions and Administrative Matters I/O Performance Measures Types and Characteristics of I/O

More information

Operating Systems 2010/2011

Operating Systems 2010/2011 Operating Systems 2010/2011 Input/Output Systems part 2 (ch13, ch12) Shudong Chen 1 Recap Discuss the principles of I/O hardware and its complexity Explore the structure of an operating system s I/O subsystem

More information

Input/Output. Today. Next. Principles of I/O hardware & software I/O software layers Disks. Protection & Security

Input/Output. Today. Next. Principles of I/O hardware & software I/O software layers Disks. Protection & Security Input/Output Today Principles of I/O hardware & software I/O software layers Disks Next Protection & Security Operating Systems and I/O Two key operating system goals Control I/O devices Provide a simple,

More information

Input/Output & System Performance Issues

Input/Output & System Performance Issues Input/Output & System Performance Issues System Architecture & I/O Connection Structure Types of Buses/Interconnects in the system. I/O Data Transfer Methods. I/O and System Performance Metrics. I/O Throughput

More information

Section 10: Device Drivers, FAT, Queuing Theory, Memory Mapped Files

Section 10: Device Drivers, FAT, Queuing Theory, Memory Mapped Files Section 10: Device Drivers, FAT, Queuing Theory, Memory Mapped Files CS162 Oct 31st, 2017 Contents 1 Warmup: I/O and Device Drivers 2 2 Vocabulary 2 3 Problems 4 3.1 FAT................................................

More information

Lecture 11: Cache Conclusion and I/O Introduction: Storage Devices, Metrics, & Productivity

Lecture 11: Cache Conclusion and I/O Introduction: Storage Devices, Metrics, & Productivity Lecture 11: Cache Conclusion and I/O Introduction: Storage Devices, Metrics, & Productivity Professor David A. Patterson Computer Science 252 Fall 1996 DAP.F96 1 Chip Review: IRAM Challenges Speed, area,

More information

Storage Systems. Storage Systems

Storage Systems. Storage Systems Storage Systems Storage Systems We already know about four levels of storage: Registers Cache Memory Disk But we've been a little vague on how these devices are interconnected In this unit, we study Input/output

More information

An Introduction to RAID

An Introduction to RAID Intro An Introduction to RAID Gursimtan Singh Dept. of CS & IT Doaba College RAID stands for Redundant Array of Inexpensive Disks. RAID is the organization of multiple disks into a large, high performance

More information

Midterm II December 3 rd, 2007 CS162: Operating Systems and Systems Programming

Midterm II December 3 rd, 2007 CS162: Operating Systems and Systems Programming Fall 2007 University of California, Berkeley College of Engineering Computer Science Division EECS John Kubiatowicz Midterm II December 3 rd, 2007 CS162: Operating Systems and Systems Programming Your

More information

CS5460: Operating Systems Lecture 20: File System Reliability

CS5460: Operating Systems Lecture 20: File System Reliability CS5460: Operating Systems Lecture 20: File System Reliability File System Optimizations Modern Historic Technique Disk buffer cache Aggregated disk I/O Prefetching Disk head scheduling Disk interleaving

More information

John Wawrzynek & Nick Weaver

John Wawrzynek & Nick Weaver CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory John Wawrzynek & Nick Weaver http://inst.eecs.berkeley.edu/~cs61c From Previous Lecture: Operating Systems Input / output (I/O) Memory

More information

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Vivek Pai Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Today s Topics Magnetic disks Magnetic disk

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 29: Computer Input/Output Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Announcements ECE Honors Exhibition Wednesday, April

More information

CS162 Operating Systems and Systems Programming Lecture 17. Disk Management and File Systems. Review: Want Standard Interfaces to Devices

CS162 Operating Systems and Systems Programming Lecture 17. Disk Management and File Systems. Review: Want Standard Interfaces to Devices Review: Want Standard Interfaces to Devices CS162 Operating Systems and Systems Programming Lecture 17 Disk Management and File Systems March 22, 2006 Prof. Anthony D. Joseph http://inst.eecs.berkeley.edu/~cs162

More information

Chapter 6. Storage and Other I/O Topics

Chapter 6. Storage and Other I/O Topics Chapter 6 Storage and Other I/O Topics Introduction I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

EECS 252 Graduate Computer Architecture Lecture 4. Control Flow (continued) Interrupts. Review: Ordering Properties of basic inst.

EECS 252 Graduate Computer Architecture Lecture 4. Control Flow (continued) Interrupts. Review: Ordering Properties of basic inst. EECS 252 Graduate Computer Architecture Lecture 4 Control Flow (continued) Interrupts John Kubiatowicz Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~kubitron/cs252

More information

Midterm II December 4 th, 2006 CS162: Operating Systems and Systems Programming

Midterm II December 4 th, 2006 CS162: Operating Systems and Systems Programming Fall 2006 University of California, Berkeley College of Engineering Computer Science Division EECS John Kubiatowicz Midterm II December 4 th, 2006 CS162: Operating Systems and Systems Programming Your

More information

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Kai Li Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Today s Topics Magnetic disks Magnetic disk

More information

Agenda. Agenda 11/12/12. Review - 6 Great Ideas in Computer Architecture

Agenda. Agenda 11/12/12. Review - 6 Great Ideas in Computer Architecture /3/2 Review - 6 Great Ideas in Computer Architecture CS 6C: Great Ideas in Computer Architecture (Machine Structures) Dependability and RAID Instructors: Krste Asanovic, Randy H. Katz hfp://inst.eecs.berkeley.edu/~cs6c/fa2.

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Processor Interrupts Cache Memory I/O bus Main memory I/O controller I/O controller I/O controller Disk Disk Graphics output Network

More information

Chapter 6. Storage and Other I/O Topics. ICE3003: Computer Architecture Fall 2012 Euiseong Seo

Chapter 6. Storage and Other I/O Topics. ICE3003: Computer Architecture Fall 2012 Euiseong Seo Chapter 6 Storage and Other I/O Topics 1 Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

Computer Systems Laboratory Sungkyunkwan University

Computer Systems Laboratory Sungkyunkwan University I/O System Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Introduction (1) I/O devices can be characterized by Behavior: input, output, storage

More information

CISC 662 Graduate Computer Architecture Lecture 7 - Multi-cycles. Interrupts and Exceptions. Device Interrupt (Say, arrival of network message)

CISC 662 Graduate Computer Architecture Lecture 7 - Multi-cycles. Interrupts and Exceptions. Device Interrupt (Say, arrival of network message) CISC 662 Graduate Computer Architecture Lecture 7 - Multi-cycles Michela Taufer Interrupts and Exceptions http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy

More information

Input/Output & System Performance Issues

Input/Output & System Performance Issues Input/Output & System Performance Issues System Architecture & I/O Connection Structure Types of Buses/Interconnects in the system. I/O Data Transfer Methods. System and I/O Performance Metrics. I/O Throughput

More information

Storage System COSC UCB

Storage System COSC UCB Storage System COSC4201 1 1999 UCB I/O and Disks Over the years much less attention was paid to I/O compared with CPU design. As frustrating as a CPU crash is, disk crash is a lot worse. Disks are mechanical

More information

CISC 662 Graduate Computer Architecture Lecture 7 - Multi-cycles

CISC 662 Graduate Computer Architecture Lecture 7 - Multi-cycles CISC 662 Graduate Computer Architecture Lecture 7 - Multi-cycles Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer

More information

Chapter 6 Storage and Other I/O Topics

Chapter 6 Storage and Other I/O Topics Department of Electr rical Eng ineering, Chapter 6 Storage and Other I/O Topics 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Feng-Chia Unive ersity Outline 6.1 Introduction 6.2 Dependability,

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013 TOPICS TODAY I/O Architectures Interrupts Exceptions FETCH EXECUTE CYCLE 1.7 The von Neumann Model This is a general

More information

October 10 th, 2015 Prof. John Kubiatowicz

October 10 th, 2015 Prof. John Kubiatowicz CS162 Operating Systems and Systems Programming Lecture 17 Performance Storage Devices, Queueing Theory October 10 th, 2015 Prof. John Kubiatowicz http://cs162.eecs.berkeley.edu Acknowledgments: Lecture

More information

Chapter 6. Storage and Other I/O Topics. Jiang Jiang

Chapter 6. Storage and Other I/O Topics. Jiang Jiang Chapter 6 Storage and Other I/O Topics Jiang Jiang jiangjiang@ic.sjtu.edu.cn [Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2008, MK] Chapter 6 Storage and Other I/O

More information

INPUT/OUTPUT ORGANIZATION

INPUT/OUTPUT ORGANIZATION INPUT/OUTPUT ORGANIZATION Accessing I/O Devices I/O interface Input/output mechanism Memory-mapped I/O Programmed I/O Interrupts Direct Memory Access Buses Synchronous Bus Asynchronous Bus I/O in CO and

More information

COS 318: Operating Systems. Storage Devices. Jaswinder Pal Singh Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Jaswinder Pal Singh Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Jaswinder Pal Singh Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Today s Topics Magnetic disks

More information

Chapter-6. SUBJECT:- Operating System TOPICS:- I/O Management. Created by : - Sanjay Patel

Chapter-6. SUBJECT:- Operating System TOPICS:- I/O Management. Created by : - Sanjay Patel Chapter-6 SUBJECT:- Operating System TOPICS:- I/O Management Created by : - Sanjay Patel Disk Scheduling Algorithm 1) First-In-First-Out (FIFO) 2) Shortest Service Time First (SSTF) 3) SCAN 4) Circular-SCAN

More information

Announcement. Computer Architecture (CSC-3501) Lecture 23 (17 April 2008) Chapter 7 Objectives. 7.1 Introduction. 7.2 I/O and Performance

Announcement. Computer Architecture (CSC-3501) Lecture 23 (17 April 2008) Chapter 7 Objectives. 7.1 Introduction. 7.2 I/O and Performance Computer Architecture (CSC-3501) Lecture 23 (17 April 2008) Announcement Homework #8 and #9 are uploaded at class website Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark 1 2 Chapter 7 Objectives 7.1

More information

Agenda. Project #3, Part I. Agenda. Project #3, Part I. No SSE 12/1/10

Agenda. Project #3, Part I. Agenda. Project #3, Part I. No SSE 12/1/10 // CS 6C: Great Ideas in Computer Architecture (Machine Structures) Project Speed- up and RAID Instructors: Randy H. Katz David A. PaGerson hgp://inst.eecs.berkeley.edu/~cs6c/fa // Fall - - Lecture #9

More information

EE108B Lecture 17 I/O Buses and Interfacing to CPU. Christos Kozyrakis Stanford University

EE108B Lecture 17 I/O Buses and Interfacing to CPU. Christos Kozyrakis Stanford University EE108B Lecture 17 I/O Buses and Interfacing to CPU Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b 1 Announcements Remaining deliverables PA2.2. today HW4 on 3/13 Lab4 on 3/19

More information

Computer Architecture. Hebrew University Spring Chapter 8 Input/Output. Big Picture: Where are We Now?

Computer Architecture. Hebrew University Spring Chapter 8 Input/Output. Big Picture: Where are We Now? Computer Architecture Hebrew University Spring 2001 Chapter 8 Input/Output Adapted from COD2e by Petterson & Hennessy Chapter 8 I/O Big Picture: Where are We Now? I/O Systems Computer Processor Control

More information

CS 61C: Great Ideas in Computer Architecture. Input/Output

CS 61C: Great Ideas in Computer Architecture. Input/Output CS 61C: Great Ideas in Computer Architecture Input/Output Instructor: Justin Hsia 1 Review of Last Lecture (1/2) Great Idea: Dependability via Redundancy Reliability: MTTF & Annualized Failure Rate Availability:

More information

ECE Enterprise Storage Architecture. Fall 2018

ECE Enterprise Storage Architecture. Fall 2018 ECE590-03 Enterprise Storage Architecture Fall 2018 RAID Tyler Bletsch Duke University Slides include material from Vince Freeh (NCSU) A case for redundant arrays of inexpensive disks Circa late 80s..

More information

Recap: What is virtual memory? CS152 Computer Architecture and Engineering Lecture 22. Virtual Memory (continued) Buses

Recap: What is virtual memory? CS152 Computer Architecture and Engineering Lecture 22. Virtual Memory (continued) Buses CS152 Computer Architecture and Engineering Lecture 22 Virtual (continued) es April 21, 2004 John Kubiatowicz (www.cs.berkeley.edu/~kubitron) Virtual Address Space Recap: What is virtual memory? Physical

More information

RAID (Redundant Array of Inexpensive Disks) I/O Benchmarks ABCs of UNIX File Systems A Study Comparing UNIX File System Performance

RAID (Redundant Array of Inexpensive Disks) I/O Benchmarks ABCs of UNIX File Systems A Study Comparing UNIX File System Performance Magnetic Disk Characteristics I/O Connection Structure Types of Buses Cache & I/O I/O Performance Metrics I/O System Modeling Using Queuing Theory Designing an I/O System RAID (Redundant Array of Inexpensive

More information

CS 61C: Great Ideas in Computer Architecture. Dependability. Guest Lecturer: Paul Ruan

CS 61C: Great Ideas in Computer Architecture. Dependability. Guest Lecturer: Paul Ruan CS 61C: Great Ideas in Computer Architecture Dependability Guest Lecturer: Paul Ruan 8/2/2012 Lecture #27 1 Review WSC Servers on a rack, rack part of cluster Issues to handle include load balancing, failures,

More information

Chapter 6. Storage and Other I/O Topics

Chapter 6. Storage and Other I/O Topics Chapter 6 Storage and Other I/O Topics Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures CS61C L40 I/O: Disks (1) Lecture 40 I/O : Disks 2004-12-03 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia I talk to robots Japan's growing

More information

Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 420, York College. November 21, 2006

Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 420, York College. November 21, 2006 November 21, 2006 The memory hierarchy Red = Level Access time Capacity Features Registers nanoseconds 100s of bytes fixed Cache nanoseconds 1-2 MB fixed RAM nanoseconds MBs to GBs expandable Disk milliseconds

More information

Mass-Storage Structure

Mass-Storage Structure CS 4410 Operating Systems Mass-Storage Structure Summer 2011 Cornell University 1 Today How is data saved in the hard disk? Magnetic disk Disk speed parameters Disk Scheduling RAID Structure 2 Secondary

More information

CS 341l Fall 2008 Test #4 NAME: Key

CS 341l Fall 2008 Test #4 NAME: Key CS 341l all 2008 est #4 NAME: Key CS3411 est #4, 21 November 2008. 100 points total, number of points each question is worth is indicated in parentheses. Answer all questions. Be as concise as possible

More information

Review: Hardware user/kernel boundary

Review: Hardware user/kernel boundary Review: Hardware user/kernel boundary applic. applic. applic. user lib lib lib kernel syscall pg fault syscall FS VM sockets disk disk NIC context switch TCP retransmits,... device interrupts Processor

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568 UNIVERSITY OF MASSACHUSETTS Dept of Electrical & Computer Engineering Computer Architecture ECE 568 art 5 Input/Output Israel Koren ECE568/Koren art5 CU performance keeps increasing 26 72-core Xeon hi

More information

CS252 S05. CMSC 411 Computer Systems Architecture Lecture 18 Storage Systems 2. I/O performance measures. I/O performance measures

CS252 S05. CMSC 411 Computer Systems Architecture Lecture 18 Storage Systems 2. I/O performance measures. I/O performance measures CMSC 411 Computer Systems Architecture Lecture 18 Storage Systems 2 I/O performance measures I/O performance measures diversity: which I/O devices can connect to the system? capacity: how many I/O devices

More information

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili Virtual Memory Lecture notes from MKP and S. Yalamanchili Sections 5.4, 5.5, 5.6, 5.8, 5.10 Reading (2) 1 The Memory Hierarchy ALU registers Cache Memory Memory Memory Managed by the compiler Memory Managed

More information