Systems Architectures towards Exascale

Size: px
Start display at page:

Download "Systems Architectures towards Exascale"

Transcription

1 Systems Architectures towards Exascale D. Pleiter German-Indian Workshop on HPC Architectures and Applications Pune 29 November 2016

2 Outline Introduction Exascale computing Technology trends Architectures today and tomorrow Power challenges Balanced system challenge Summary and Conclusions 2/38

3 Introduction 3/38

4 Forschungszentrum Jülich JSC One of Europe's largest interdisciplinary research centres; 5,000 employees Special expertise in physics, materials science, nanotechnology, neuroscience and medicine, and information technology Leader in various European HPC projects, including PRACE 4

5 HPC Infrastructure at JSC: Dual track concept IBM Power 4+ JUMP, 9 TFlop/s IBM Blue Gene/L JUBL, 45 TFlop/s IBM Power 6 JUMP, 9 TFlop/s Intel Nehalem JUROPA 300 TFlop/s IBM Blue Gene/P JUGENE, 1 PFlop/s petascale File Server Lustre GPFS IBM Blue Gene/Q JUQUEEN 5.9 PFlop/s JURECA ~ 2 PFlop/s + Booster ~ 10 PFlop/s General-Purpose Cluster JUQUEEN successor ~ 50 PFlop/s Highly Scalable System pre-exascale exascale 5

6 Jülich Supercomputing Centre Supercomputer operation for Centre Forschungszentrum Jülich Regional Jülich-Aachen ResearchAlliance (JARA) Helmholtz & National NIC, GCS Europe PRACE, EU projects Education and Training Application support User support Peer review support and coordination Research and development Algorithms and tools Exascale architectures and technologies 6/38

7 HPC Research at JSC Communities Exascale Labs Simulation Labs Algorithms and tools 7/38

8 Computational Science Research Simulation Laboratories Teams of 3-10 people 9 Labs established Simulation Laboratories concept Research in given science domain Computational science expertise in house Provider of services and support to science domain Provide advanced service Interface to science domains Contribute to enabling co-design Examples for support activities Code parallelisation or porting Code re-factorisation Community code maintenance 8/38

9 Exascale Computing 9/38

10 What is exascale computing? Answer 1: Running HPL at 1 EFlop/s = 1018 Flop/s HPL = High-Performance LINPACK HPL benchmark Solve a dense N N system of linear equations A x = b Rules: Algorithm: LU factorization with partial pivoting Double precision Problem size can be freely chosen Freedom to look for your sweet spot Top500 listing Ranking of system according to floating-point operation throughput 10/38

11 Top500 performance trends Performance doubles every 12.9 months Exascale at 2020? 11/38

12 What is exascale computing? (cont.) Answer 2: Future generation supercomputers enabling new science Exascale challenges [PRACE Scientific Case, 2012] Weather, climatology and solid Earth Sciences Astrophysics, high-energy physics and plasma physics Materials science, chemistry and nano-science Engineering sciences and industrial applications Life sciences and medicine 12/38

13 What is exascale computing? (cont.) Exascale computer = x of today's petascale supercomputers Flop/s metric will become less relevant Other capabilities (application view) Support for less regular computational tasks Significantly larger memory footprint Extreme data processing capabilities Improved/optimized data transport capabilities Scalable visualisation capabilities Management of complex work-flows... 13/38

14 Exascale application highlights Structure of matter Goal: Computing first principles results from theory of strong interaction: Quantum Chromodynamics (QCD) Numerical simulations enabled through formulation on the lattice Materials science Calculations based on the Density Functional Theory method Major tool for exploring properties of materials Phase-change materials Dilute magnetic semiconductors Challenge: Need many atoms but application complexity typically scales O(N3atom) 14/38

15 Exascale application highlights (cont.) Radio astronomy Very large radio telescope project Increasing relevance of HPC for radio-astronomy Sites: Australia and South Africa Needed to analyse data coming from many sources But: relatively small power envelope Key HPC systems for SKA [M. Diesmann, 2013] Brain research Goals: Central Signal Processor Science Data Processor Generate high-resolution brain atlases Improve the understanding of the human brain by means of models Challenges: By SKA Project Development Office and Swinburne Astronomy Productions - Swinburne Astronomy Productions for SKA Project Development Office, CC BY 3.0, [S. Lefranc et al., 2016] Extreme scale data volumes Memory footprint limitations 15/38

16 Technology trends 16/38

17 Technology trends: Moore's Law Observation Time evolution of optimal manufacturing costs for integrated circuits results in exponential increase of number of components per circuit Term tends to be abused for any exponential growth [G. Moore, 1965] [M. Bohr, 2007] 17/38

18 Technology trends: Dennard scaling Dennard scaling allowed to change the following parameters at constant power: Increase of transistor density (Moore s law) Increase clock frequency Reduce supply voltage Increase performance = increase transistor density Allows to implement, e.g., more cores Trend towards increasing parallelism [L. Chang et al., 2010] 18/38

19 Technology trends: Rent's rule Rent's rule T =k G p G Number of logic elements (gates) T Number of edge connections (terminals) k Rent's coefficient p Rent's exponent, where typically p 1 Difficult to balance communication and compute Strategy for problem mitigating: Memory hierarchy Multiple, fast but small on-chip memory (cache) Slower but larger off-chip memory Trend towards deeper memory hierarchies 19/38

20 Architectures today and tomorrow 20/38

21 Highly-Scalable Blue Gene/Q: JUQUEEN Highly parallel architecture by design Micro-architecture level (SIMD, SMT) Processor level System level JUQUEEN = 28 Blue Gene/Q racks PowerPC ISA + extensions GFlop/s per node 28,672 nodes 5.9 PFlop/s peak Tight integration through on-chip network Performance ranking (November 2016) Top500: Green500: Graph500: rank #19 rank #85 rank #5 21

22 Pilot Systems for Human Brain Project IBM+NVIDIA pilot system JURON 18 Minsky server each with 2 IBM POWER8 processors 4 NVIDIA P100 GPUs 1 NVMe card Full fat tree IB EDR Cray pilot system JULIA 60 compute nodes each with 1 Intel Knights Landing processor Pruned OPA network 2 DataWarp nodes with 2 NVMe cards each 22/38

23 Exascale Swim Line: Xeon Phi KNL processor features simple cores operating at moderate clock speed Dual wide SIMD pipelines (VPU) Bfp 3 TFlop/s Hierarchical memory architecture High-bandwidth MCDRAM (Bmem 450 GByte/s, Cmem = 16 GByte) Large capacity DDR4 (Bmem 115 GByte/s, Cmem 384 GByte) Integration approach Single-socket nodes 16,000 nodes Bfp 50 PFlop/s Pruned network topologies Dragonfly or similar 23/38

24 Exascale Swim Line: POWER + GPU Heterogeneous architecture Features Most arithmetic operations on GPU Integration of multiple memory tiers 2x POWER8: ~0.5 TFlop/s 4x P100: 19 TFlop/s Integration HBM + DDR (+ NVRAM) Efficient data transport channels Fat nodes 2,500 nodes Bfp 50 PFlop/s Full fat-tree topologies 24/38

25 Node Level Comparison Blue Gene/Q 205 2,662 2*POWER8 + 4*P100 19,038 Bfp [Flop/cycle] 128 2,048 14,336 Memory bandwidth Bmem [GByte/s] Memory capacity Cmem [GByte] Network node bi-section bandwidth Bnet [Gbit/s] 28 ~ , Floating-point throughput (DP) Bfp [GFlop/s] KNL Assuming a Xeon Phi 7230 with single OPA port Considering only floating-point operations of P100 25/38

26 Power Challenges 26/38

27 Power challenge Green500: Rank supercomputers according to power efficiency Supercomputer = System listed in TOP500 Metric = Floating-point performance vs. power consumption Flop/s/W Performance = HPL performance (like for TOP500) Current number #1: MFlop/s/W This is equivalent to 106 pj/flop Exascale goal: keep below 20 MW This is equivalent to 20 pj/flop Caveat: naïve approach HPL load is not representative Green500 does not cover full system Need improvement 27/38

28 Power challenge: Green500 28/38

29 Power challenge: Data movement costs Comparison NVIDIA GPU as of 2010 Projection NVIDIA GPU Process technology 40 nm 10 nm Voltage (VDD) 0.9 V 0.65 V 1.6 GHz 2 GHz DP-FMA energy 50 pj 6.5 pj Wire energy (256 bits, 10 mm) 310 pj 150 pj Frequency [S.W. Keckler et al., 2011] Data movement costs will even more dominate 29/38

30 Balanced System Challenge 30/38

31 Challenge: Keeping system balanced Simple machine model comprising Storage devices Data transport/processing devices Information exchange I kx, y (W ) Information exchanged between storage device x and y arithmetic unit R memory bus Simple performance model Latency-bandwidth model register file M memory Δ t fp (W )=λ fp + I fp (W )/βfp Δ t mem (W )=λ mem +I mem (W )/βmem 31/38

32 Keeping system balanced (cont.) Balance condition Δ t mem (W ) Δ t fp (W ) λ mem +I mem (W )/βmem λ fp + I fp (W )/βfp Balanced architecture Cheap to increase I fp βfp I mem βmem Expensive to increase Arithmetic Intensity 32/38

33 Technology trend: memory DDR-SDRAM Density scales according to Moore's law Very moderate increase in bandwidth High-bandwidth memory technologies Examples: GDDR5, HBM, HMC High bandwidth, low capacity Example: NVIDIA Pascal GPU Non-volatile memory technologies Examples: NAND flash, PCM Low bandwidth, high capacity 33/38

34 Memory capacity vs. bandwidth Consider C mem R= B mem Typical values R High-bandwidth memory DDR NVMe card O(10 ms) O(1 s) O(1000 s) No established balance conditions But: deeper memory hierarchies unavoidable 34/38

35 Hierarchical storage architectures European FETHPC project 10 academic + commercial partners Goal: Enable hierarchical storage architecture Co-design required to address usability challenge Target 5 tiers Tier 1: volatile memory Tier 2-3: non-volatile memory Tier 4-5: spinning disks Explore in-storage compute 35/38

36 Thinking hierarchical: An example Retention time analysis Use case analysis based on classification of data objects produced/consumed during HPC work-flow Retention time classes Transient (Temporary) Short-term (Campaign) Data discarded on simulation completion or when later processing steps are concluded Data used throughout the execution of the scientific work-flow [El Sayed, 2016] Permanent (Forever) Data outliving the machine used to generate it Natural mapping onto storage hierarchy 36/38

37 Summary and Conclusions 37/38

38 Summary and conclusions Significant efforts required towards next levels of supercomputing Strong technology constraints Several swim lanes towards exascale emerging Application demands for exascale computing Examples: materials sciences, brain research Need for application driven co-design approach Helps to make right design trade-off decisions Guides applications towards exascale enablement 38/38

Porting Scientific Applications to OpenPOWER

Porting Scientific Applications to OpenPOWER Porting Scientific Applications to OpenPOWER Dirk Pleiter Forschungszentrum Jülich / JSC #OpenPOWERSummit Join the conversation at #OpenPOWERSummit 1 JSC s HPC Strategy IBM Power 6 JUMP, 9 TFlop/s Intel

More information

NVIDIA Application Lab at Jülich

NVIDIA Application Lab at Jülich Mitglied der Helmholtz- Gemeinschaft NVIDIA Application Lab at Jülich Dirk Pleiter Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich at a Glance (status 2010) Budget: 450 mio Euro Staff: 4,800

More information

JÜLICH SUPERCOMPUTING CENTRE Site Introduction Michael Stephan Forschungszentrum Jülich

JÜLICH SUPERCOMPUTING CENTRE Site Introduction Michael Stephan Forschungszentrum Jülich JÜLICH SUPERCOMPUTING CENTRE Site Introduction 09.04.2018 Michael Stephan JSC @ Forschungszentrum Jülich FORSCHUNGSZENTRUM JÜLICH Research Centre Jülich One of the 15 Helmholtz Research Centers in Germany

More information

Welcome to the. Jülich Supercomputing Centre. D. Rohe and N. Attig Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich

Welcome to the. Jülich Supercomputing Centre. D. Rohe and N. Attig Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich Mitglied der Helmholtz-Gemeinschaft Welcome to the Jülich Supercomputing Centre D. Rohe and N. Attig Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich Schedule: Monday, May 18 13:00-13:30 Welcome

More information

Welcome to the. Jülich Supercomputing Centre. D. Rohe and N. Attig Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich

Welcome to the. Jülich Supercomputing Centre. D. Rohe and N. Attig Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich Mitglied der Helmholtz-Gemeinschaft Welcome to the Jülich Supercomputing Centre D. Rohe and N. Attig Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich Schedule: Thursday, Nov 26 13:00-13:30

More information

Jülich Supercomputing Centre

Jülich Supercomputing Centre Mitglied der Helmholtz-Gemeinschaft Jülich Supercomputing Centre Norbert Attig Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich (FZJ) Aug 26, 2009 DOAG Regionaltreffen NRW 2 Supercomputing at

More information

MPI RUNTIMES AT JSC, NOW AND IN THE FUTURE

MPI RUNTIMES AT JSC, NOW AND IN THE FUTURE , NOW AND IN THE FUTURE Which, why and how do they compare in our systems? 08.07.2018 I MUG 18, COLUMBUS (OH) I DAMIAN ALVAREZ Outline FZJ mission JSC s role JSC s vision for Exascale-era computing JSC

More information

I/O Monitoring at JSC, SIONlib & Resiliency

I/O Monitoring at JSC, SIONlib & Resiliency Mitglied der Helmholtz-Gemeinschaft I/O Monitoring at JSC, SIONlib & Resiliency Update: I/O Infrastructure @ JSC Update: Monitoring with LLview (I/O, Memory, Load) I/O Workloads on Jureca SIONlib: Task-Local

More information

Von Antreibern und Beschleunigern des HPC

Von Antreibern und Beschleunigern des HPC Mitglied der Helmholtz-Gemeinschaft Von Antreibern und Beschleunigern des HPC D. Pleiter Jülich 16 December 2014 Ein Dementi vorweg [c't, Nr. 25/2014, 15.11.2014] Ja: Das FZJ ist seit März Mitglieder der

More information

I/O and Scheduling aspects in DEEP-EST

I/O and Scheduling aspects in DEEP-EST I/O and Scheduling aspects in DEEP-EST Norbert Eicker Jülich Supercomputing Centre & University of Wuppertal The research leading to these results has received funding from the European Community's Seventh

More information

Parallel & Scalable Machine Learning Introduction to Machine Learning Algorithms

Parallel & Scalable Machine Learning Introduction to Machine Learning Algorithms Parallel & Scalable Machine Learning Introduction to Machine Learning Algorithms Dr. Ing. Morris Riedel Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research

More information

Exascale: challenges and opportunities in a power constrained world

Exascale: challenges and opportunities in a power constrained world Exascale: challenges and opportunities in a power constrained world Carlo Cavazzoni c.cavazzoni@cineca.it SuperComputing Applications and Innovation Department CINECA CINECA non profit Consortium, made

More information

The DEEP (and DEEP-ER) projects

The DEEP (and DEEP-ER) projects The DEEP (and DEEP-ER) projects Estela Suarez - Jülich Supercomputing Centre BDEC for Europe Workshop Barcelona, 28.01.2015 The research leading to these results has received funding from the European

More information

Preparing GPU-Accelerated Applications for the Summit Supercomputer

Preparing GPU-Accelerated Applications for the Summit Supercomputer Preparing GPU-Accelerated Applications for the Summit Supercomputer Fernanda Foertter HPC User Assistance Group Training Lead foertterfs@ornl.gov This research used resources of the Oak Ridge Leadership

More information

Performance and Energy Usage of Workloads on KNL and Haswell Architectures

Performance and Energy Usage of Workloads on KNL and Haswell Architectures Performance and Energy Usage of Workloads on KNL and Haswell Architectures Tyler Allen 1 Christopher Daley 2 Doug Doerfler 2 Brian Austin 2 Nicholas Wright 2 1 Clemson University 2 National Energy Research

More information

Umeå University

Umeå University HPC2N @ Umeå University Introduction to HPC2N and Kebnekaise Jerry Eriksson, Pedro Ojeda-May, and Birgitte Brydsö Outline Short presentation of HPC2N HPC at a glance. HPC2N Abisko, Kebnekaise HPC Programming

More information

Umeå University

Umeå University HPC2N: Introduction to HPC2N and Kebnekaise, 2017-09-12 HPC2N @ Umeå University Introduction to HPC2N and Kebnekaise Jerry Eriksson, Pedro Ojeda-May, and Birgitte Brydsö Outline Short presentation of HPC2N

More information

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber NERSC Site Update National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory Richard Gerber NERSC Senior Science Advisor High Performance Computing Department Head Cori

More information

The Mont-Blanc approach towards Exascale

The Mont-Blanc approach towards Exascale http://www.montblanc-project.eu The Mont-Blanc approach towards Exascale Alex Ramirez Barcelona Supercomputing Center Disclaimer: Not only I speak for myself... All references to unavailable products are

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29 Introduction CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction Spring 2018 1 / 29 Outline 1 Preface Course Details Course Requirements 2 Background Definitions

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

GPUS FOR NGVLA. M Clark, April 2015

GPUS FOR NGVLA. M Clark, April 2015 S FOR NGVLA M Clark, April 2015 GAMING DESIGN ENTERPRISE VIRTUALIZATION HPC & CLOUD SERVICE PROVIDERS AUTONOMOUS MACHINES PC DATA CENTER MOBILE The World Leader in Visual Computing 2 What is a? Tesla K40

More information

HPC projects. Grischa Bolls

HPC projects. Grischa Bolls HPC projects Grischa Bolls Outline Why projects? 7th Framework Programme Infrastructure stack IDataCool, CoolMuc Mont-Blanc Poject Deep Project Exa2Green Project 2 Why projects? Pave the way for exascale

More information

CSD3 The Cambridge Service for Data Driven Discovery. A New National HPC Service for Data Intensive science

CSD3 The Cambridge Service for Data Driven Discovery. A New National HPC Service for Data Intensive science CSD3 The Cambridge Service for Data Driven Discovery A New National HPC Service for Data Intensive science Dr Paul Calleja Director of Research Computing University of Cambridge Problem statement Today

More information

Short Talk: System abstractions to facilitate data movement in supercomputers with deep memory and interconnect hierarchy

Short Talk: System abstractions to facilitate data movement in supercomputers with deep memory and interconnect hierarchy Short Talk: System abstractions to facilitate data movement in supercomputers with deep memory and interconnect hierarchy François Tessier, Venkatram Vishwanath Argonne National Laboratory, USA July 19,

More information

Efficiency and Programmability: Enablers for ExaScale. Bill Dally Chief Scientist and SVP, Research NVIDIA Professor (Research), EE&CS, Stanford

Efficiency and Programmability: Enablers for ExaScale. Bill Dally Chief Scientist and SVP, Research NVIDIA Professor (Research), EE&CS, Stanford Efficiency and Programmability: Enablers for ExaScale Bill Dally Chief Scientist and SVP, Research NVIDIA Professor (Research), EE&CS, Stanford Scientific Discovery and Business Analytics Driving an Insatiable

More information

Mapping MPI+X Applications to Multi-GPU Architectures

Mapping MPI+X Applications to Multi-GPU Architectures Mapping MPI+X Applications to Multi-GPU Architectures A Performance-Portable Approach Edgar A. León Computer Scientist San Jose, CA March 28, 2018 GPU Technology Conference This work was performed under

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Waiting for Moore s Law to save your serial code start getting bleak in 2004 Source: published SPECInt data Moore s Law is not at all

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

Trends in HPC Architectures

Trends in HPC Architectures Mitglied der Helmholtz-Gemeinschaft Trends in HPC Architectures Norbert Eicker Institute for Advanced Simulation Jülich Supercomputing Centre PRACE/LinkSCEEM-2 CyI 2011 Winter School Nikosia, Cyprus Forschungszentrum

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Waiting for Moore s Law to save your serial code started getting bleak in 2004 Source: published SPECInt

More information

HPC and the AppleTV-Cluster

HPC and the AppleTV-Cluster HPC and the AppleTV-Cluster Dieter Kranzlmüller, Karl Fürlinger, Christof Klausecker Munich Network Management Team Ludwig-Maximilians-Universität München (LMU) & Leibniz Supercomputing Centre (LRZ) Outline

More information

ENDURING DIFFERENTIATION. Timothy Lanfear

ENDURING DIFFERENTIATION. Timothy Lanfear ENDURING DIFFERENTIATION Timothy Lanfear WHERE ARE WE? 2 LIFE AFTER DENNARD SCALING 10 7 40 Years of Microprocessor Trend Data 10 6 10 5 10 4 Transistors (thousands) 1.1X per year 10 3 10 2 Single-threaded

More information

ENDURING DIFFERENTIATION Timothy Lanfear

ENDURING DIFFERENTIATION Timothy Lanfear ENDURING DIFFERENTIATION Timothy Lanfear WHERE ARE WE? 2 LIFE AFTER DENNARD SCALING GPU-ACCELERATED PERFORMANCE 10 7 40 Years of Microprocessor Trend Data 10 6 10 5 10 4 10 3 10 2 Single-threaded perf

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

Overview. CS 472 Concurrent & Parallel Programming University of Evansville

Overview. CS 472 Concurrent & Parallel Programming University of Evansville Overview CS 472 Concurrent & Parallel Programming University of Evansville Selection of slides from CIS 410/510 Introduction to Parallel Computing Department of Computer and Information Science, University

More information

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA STATE OF THE ART 2012 18,688 Tesla K20X GPUs 27 PetaFLOPS FLAGSHIP SCIENTIFIC APPLICATIONS

More information

Fujitsu s Approach to Application Centric Petascale Computing

Fujitsu s Approach to Application Centric Petascale Computing Fujitsu s Approach to Application Centric Petascale Computing 2 nd Nov. 2010 Motoi Okuda Fujitsu Ltd. Agenda Japanese Next-Generation Supercomputer, K Computer Project Overview Design Targets System Overview

More information

HPC Technology Trends

HPC Technology Trends HPC Technology Trends High Performance Embedded Computing Conference September 18, 2007 David S Scott, Ph.D. Petascale Product Line Architect Digital Enterprise Group Risk Factors Today s s presentations

More information

John Hengeveld Director of Marketing, HPC Evangelist

John Hengeveld Director of Marketing, HPC Evangelist MIC, Intel and Rearchitecting for Exascale John Hengeveld Director of Marketing, HPC Evangelist Intel Data Center Group Dr. Jean-Laurent Philippe, PhD Technical Sales Manager & Exascale Technical Lead

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

Fundamentals of Quantitative Design and Analysis

Fundamentals of Quantitative Design and Analysis Fundamentals of Quantitative Design and Analysis Dr. Jiang Li Adapted from the slides provided by the authors Computer Technology Performance improvements: Improvements in semiconductor technology Feature

More information

Vectorisation and Portable Programming using OpenCL

Vectorisation and Portable Programming using OpenCL Vectorisation and Portable Programming using OpenCL Mitglied der Helmholtz-Gemeinschaft Jülich Supercomputing Centre (JSC) Andreas Beckmann, Ilya Zhukov, Willi Homberg, JSC Wolfram Schenck, FH Bielefeld

More information

Overview of Tianhe-2

Overview of Tianhe-2 Overview of Tianhe-2 (MilkyWay-2) Supercomputer Yutong Lu School of Computer Science, National University of Defense Technology; State Key Laboratory of High Performance Computing, China ytlu@nudt.edu.cn

More information

Update on LRZ Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities. 2 Oct 2018 Prof. Dr. Dieter Kranzlmüller

Update on LRZ Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities. 2 Oct 2018 Prof. Dr. Dieter Kranzlmüller Update on LRZ Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities 2 Oct 2018 Prof. Dr. Dieter Kranzlmüller 1 Leibniz Supercomputing Centre Bavarian Academy of Sciences and

More information

ECE 486/586. Computer Architecture. Lecture # 2

ECE 486/586. Computer Architecture. Lecture # 2 ECE 486/586 Computer Architecture Lecture # 2 Spring 2015 Portland State University Recap of Last Lecture Old view of computer architecture: Instruction Set Architecture (ISA) design Real computer architecture:

More information

HPC Cineca Infrastructure: State of the art and towards the exascale

HPC Cineca Infrastructure: State of the art and towards the exascale HPC Cineca Infrastructure: State of the art and towards the exascale HPC Methods for CFD and Astrophysics 13 Nov. 2017, Casalecchio di Reno, Bologna Ivan Spisso, i.spisso@cineca.it Contents CINECA in a

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

I/O at JSC. I/O Infrastructure Workloads, Use Case I/O System Usage and Performance SIONlib: Task-Local I/O. Wolfgang Frings

I/O at JSC. I/O Infrastructure Workloads, Use Case I/O System Usage and Performance SIONlib: Task-Local I/O. Wolfgang Frings Mitglied der Helmholtz-Gemeinschaft I/O at JSC I/O Infrastructure Workloads, Use Case I/O System Usage and Performance SIONlib: Task-Local I/O Wolfgang Frings W.Frings@fz-juelich.de Jülich Supercomputing

More information

European energy efficient supercomputer project

European energy efficient supercomputer project http://www.montblanc-project.eu European energy efficient supercomputer project Simon McIntosh-Smith University of Bristol (Based on slides from Alex Ramirez, BSC) Disclaimer: Speaking for myself... All

More information

Technology Trends Presentation For Power Symposium

Technology Trends Presentation For Power Symposium Technology Trends Presentation For Power Symposium 2006 8-23-06 Darryl Solie, Distinguished Engineer, Chief System Architect IBM Systems & Technology Group From Ingenuity to Impact Copyright IBM Corporation

More information

ECE 574 Cluster Computing Lecture 23

ECE 574 Cluster Computing Lecture 23 ECE 574 Cluster Computing Lecture 23 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 1 December 2015 Announcements Project presentations next week There is a final. time. Maybe

More information

Carlo Cavazzoni, HPC department, CINECA

Carlo Cavazzoni, HPC department, CINECA Introduction to Shared memory architectures Carlo Cavazzoni, HPC department, CINECA Modern Parallel Architectures Two basic architectural scheme: Distributed Memory Shared Memory Now most computers have

More information

Recent Developments in Supercomputing

Recent Developments in Supercomputing John von Neumann Institute for Computing Recent Developments in Supercomputing Th. Lippert published in NIC Symposium 2008, G. Münster, D. Wolf, M. Kremer (Editors), John von Neumann Institute for Computing,

More information

Energy Efficient Computing Systems (EECS) Magnus Jahre Coordinator, EECS

Energy Efficient Computing Systems (EECS) Magnus Jahre Coordinator, EECS Energy Efficient Computing Systems (EECS) Magnus Jahre Coordinator, EECS Who am I? Education Master of Technology, NTNU, 2007 PhD, NTNU, 2010. Title: «Managing Shared Resources in Chip Multiprocessor Memory

More information

Performance Evaluation of a Vector Supercomputer SX-Aurora TSUBASA

Performance Evaluation of a Vector Supercomputer SX-Aurora TSUBASA Performance Evaluation of a Vector Supercomputer SX-Aurora TSUBASA Kazuhiko Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa, M. Yokokawa, T. Aoyama, M. Sato, H. Kobayashi Tohoku University 14 November,

More information

PART I - Fundamentals of Parallel Computing

PART I - Fundamentals of Parallel Computing PART I - Fundamentals of Parallel Computing Objectives What is scientific computing? The need for more computing power The need for parallel computing and parallel programs 1 What is scientific computing?

More information

HPC in the Multicore Era

HPC in the Multicore Era HPC in the Multicore Era -Challenges and opportunities - David Barkai, Ph.D. Intel HPC team High Performance Computing 14th Workshop on the Use of High Performance Computing in Meteorology ECMWF, Shinfield

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

HPC-CINECA infrastructure: The New Marconi System. HPC methods for Computational Fluid Dynamics and Astrophysics Giorgio Amati,

HPC-CINECA infrastructure: The New Marconi System. HPC methods for Computational Fluid Dynamics and Astrophysics Giorgio Amati, HPC-CINECA infrastructure: The New Marconi System HPC methods for Computational Fluid Dynamics and Astrophysics Giorgio Amati, g.amati@cineca.it Agenda 1. New Marconi system Roadmap Some performance info

More information

Gen-Z Memory-Driven Computing

Gen-Z Memory-Driven Computing Gen-Z Memory-Driven Computing Our vision for the future of computing Patrick Demichel Distinguished Technologist Explosive growth of data More Data Need answers FAST! Value of Analyzed Data 2005 0.1ZB

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson adrianj@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past, computers

More information

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc Scaling to Petaflop Ola Torudbakken Distinguished Engineer Sun Microsystems, Inc HPC Market growth is strong CAGR increased from 9.2% (2006) to 15.5% (2007) Market in 2007 doubled from 2003 (Source: IDC

More information

Steve Scott, Tesla CTO SC 11 November 15, 2011

Steve Scott, Tesla CTO SC 11 November 15, 2011 Steve Scott, Tesla CTO SC 11 November 15, 2011 What goal do these products have in common? Performance / W Exaflop Expectations First Exaflop Computer K Computer ~10 MW CM5 ~200 KW Not constant size, cost

More information

HPC Architectures evolution: the case of Marconi, the new CINECA flagship system. Piero Lanucara

HPC Architectures evolution: the case of Marconi, the new CINECA flagship system. Piero Lanucara HPC Architectures evolution: the case of Marconi, the new CINECA flagship system Piero Lanucara Many advantages as a supercomputing resource: Low energy consumption. Limited floor space requirements Fast

More information

New HPC architectures landscape and impact on code developments Massimiliano Guarrasi, CINECA Meeting ICT INAF Catania, 13/09/2018

New HPC architectures landscape and impact on code developments Massimiliano Guarrasi, CINECA Meeting ICT INAF Catania, 13/09/2018 New HPC architectures landscape and impact on code developments Massimiliano Guarrasi, CINECA Meeting ICT INAF Catania, 13/09/2018 CINECA at glance Services both for Universities and Ministry Solutions

More information

45-year CPU Evolution: 1 Law -2 Equations

45-year CPU Evolution: 1 Law -2 Equations 4004 8086 PowerPC 601 Pentium 4 Prescott 1971 1978 1992 45-year CPU Evolution: 1 Law -2 Equations Daniel Etiemble LRI Université Paris Sud 2004 Xeon X7560 Power9 Nvidia Pascal 2010 2017 2016 Are there

More information

Intel HPC Technologies Outlook

Intel HPC Technologies Outlook Intel HPC Technologies Outlook Andrey Semin Principal Engineer, HPC Technology Manager, EMEA October 19 th, 2015 ZKI Tagung AK Supercomputing Munich, Germany Legal Disclaimers INFORMATION IN THIS DOCUMENT

More information

THE PATH TO EXASCALE COMPUTING. Bill Dally Chief Scientist and Senior Vice President of Research

THE PATH TO EXASCALE COMPUTING. Bill Dally Chief Scientist and Senior Vice President of Research THE PATH TO EXASCALE COMPUTING Bill Dally Chief Scientist and Senior Vice President of Research The Goal: Sustained ExaFLOPs on problems of interest 2 Exascale Challenges Energy efficiency Programmability

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 14 th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 14 th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 14 th CALL (T ier0) Contributing sites and the corresponding computer systems for this call are: GENCI CEA, France Bull Bullx cluster GCS HLRS, Germany Cray

More information

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Aim High Intel Technical Update Teratec 07 Symposium June 20, 2007 Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Risk Factors Today s s presentations contain forward-looking statements.

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

Fra superdatamaskiner til grafikkprosessorer og

Fra superdatamaskiner til grafikkprosessorer og Fra superdatamaskiner til grafikkprosessorer og Brødtekst maskinlæring Prof. Anne C. Elster IDI HPC/Lab Parallel Computing: Personal perspective 1980 s: Concurrent and Parallel Pascal 1986: Intel ipsc

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Waiting for Moore s Law to save your serial code started getting bleak in 2004 Source: published SPECInt

More information

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA SUDHEER CHUNDURI, SCOTT PARKER, KEVIN HARMS, VITALI MOROZOV, CHRIS KNIGHT, KALYAN KUMARAN Performance Engineering Group Argonne Leadership Computing Facility

More information

Technology challenges and trends over the next decade (A look through a 2030 crystal ball) Al Gara Intel Fellow & Chief HPC System Architect

Technology challenges and trends over the next decade (A look through a 2030 crystal ball) Al Gara Intel Fellow & Chief HPC System Architect Technology challenges and trends over the next decade (A look through a 2030 crystal ball) Al Gara Intel Fellow & Chief HPC System Architect Today s Focus Areas For Discussion Will look at various technologies

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson a.jackson@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past,

More information

PRACE Project Access Technical Guidelines - 19 th Call for Proposals

PRACE Project Access Technical Guidelines - 19 th Call for Proposals PRACE Project Access Technical Guidelines - 19 th Call for Proposals Peer-Review Office Version 5 06/03/2019 The contributing sites and the corresponding computer systems for this call are: System Architecture

More information

High Performance Computing at the Jülich Supercomputing Center

High Performance Computing at the Jülich Supercomputing Center Mitglied der Helmholtz-Gemeinschaft High Performance Computing at the Jülich Supercomputing Center Jutta Docter Institute for Advanced Simulation (IAS) Jülich Supercomputing Centre (JSC) Overview Jülich

More information

Early Evaluation of the "Infinite Memory Engine" Burst Buffer Solution

Early Evaluation of the Infinite Memory Engine Burst Buffer Solution Early Evaluation of the "Infinite Memory Engine" Burst Buffer Solution Wolfram Schenck Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany Salem El Sayed,

More information

Dynamical Exascale Entry Platform

Dynamical Exascale Entry Platform DEEP Dynamical Exascale Entry Platform 2 nd IS-ENES Workshop on High performance computing for climate models 30.01.2013, Toulouse, France Estela Suarez The research leading to these results has received

More information

HPC Issues for DFT Calculations. Adrian Jackson EPCC

HPC Issues for DFT Calculations. Adrian Jackson EPCC HC Issues for DFT Calculations Adrian Jackson ECC Scientific Simulation Simulation fast becoming 4 th pillar of science Observation, Theory, Experimentation, Simulation Explore universe through simulation

More information

Parallel Computer Architecture II

Parallel Computer Architecture II Parallel Computer Architecture II Stefan Lang Interdisciplinary Center for Scientific Computing (IWR) University of Heidelberg INF 368, Room 532 D-692 Heidelberg phone: 622/54-8264 email: Stefan.Lang@iwr.uni-heidelberg.de

More information

Technologies and application performance. Marc Mendez-Bermond HPC Solutions Expert - Dell Technologies September 2017

Technologies and application performance. Marc Mendez-Bermond HPC Solutions Expert - Dell Technologies September 2017 Technologies and application performance Marc Mendez-Bermond HPC Solutions Expert - Dell Technologies September 2017 The landscape is changing We are no longer in the general purpose era the argument of

More information

Chapter 1: Introduction to Parallel Computing

Chapter 1: Introduction to Parallel Computing Parallel and Distributed Computing Chapter 1: Introduction to Parallel Computing Jun Zhang Laboratory for High Performance Computing & Computer Simulation Department of Computer Science University of Kentucky

More information

Presentations: Jack Dongarra, University of Tennessee & ORNL. The HPL Benchmark: Past, Present & Future. Mike Heroux, Sandia National Laboratories

Presentations: Jack Dongarra, University of Tennessee & ORNL. The HPL Benchmark: Past, Present & Future. Mike Heroux, Sandia National Laboratories HPC Benchmarking Presentations: Jack Dongarra, University of Tennessee & ORNL The HPL Benchmark: Past, Present & Future Mike Heroux, Sandia National Laboratories The HPCG Benchmark: Challenges It Presents

More information

Timothy Lanfear, NVIDIA HPC

Timothy Lanfear, NVIDIA HPC GPU COMPUTING AND THE Timothy Lanfear, NVIDIA FUTURE OF HPC Exascale Computing will Enable Transformational Science Results First-principles simulation of combustion for new high-efficiency, lowemision

More information

SuperMUC. PetaScale HPC at the Leibniz Supercomputing Centre (LRZ) Top 500 Supercomputer (Juni 2012)

SuperMUC. PetaScale HPC at the Leibniz Supercomputing Centre (LRZ) Top 500 Supercomputer (Juni 2012) SuperMUC PetaScale HPC at the Leibniz Supercomputing Centre (LRZ) Dieter Kranzlmüller Munich Network Management Team Ludwig Maximilians Universität München (LMU) & Leibniz Supercomputing Centre of the

More information

Trends of Network Topology on Supercomputers. Michihiro Koibuchi National Institute of Informatics, Japan 2018/11/27

Trends of Network Topology on Supercomputers. Michihiro Koibuchi National Institute of Informatics, Japan 2018/11/27 Trends of Network Topology on Supercomputers Michihiro Koibuchi National Institute of Informatics, Japan 2018/11/27 From Graph Golf to Real Interconnection Networks Case 1: On-chip Networks Case 2: Supercomputer

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

Toward portable I/O performance by leveraging system abstractions of deep memory and interconnect hierarchies

Toward portable I/O performance by leveraging system abstractions of deep memory and interconnect hierarchies Toward portable I/O performance by leveraging system abstractions of deep memory and interconnect hierarchies François Tessier, Venkatram Vishwanath, Paul Gressier Argonne National Laboratory, USA Wednesday

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

HPC future trends from a science perspective

HPC future trends from a science perspective HPC future trends from a science perspective Simon McIntosh-Smith University of Bristol HPC Research Group simonm@cs.bris.ac.uk 1 Business as usual? We've all got used to new machines being relatively

More information

Cray XE6 Performance Workshop

Cray XE6 Performance Workshop Cray XE6 erformance Workshop odern HC Architectures David Henty d.henty@epcc.ed.ac.uk ECC, University of Edinburgh Overview Components History Flynn s Taxonomy SID ID Classification via emory Distributed

More information

Making a Case for a Green500 List

Making a Case for a Green500 List Making a Case for a Green500 List S. Sharma, C. Hsu, and W. Feng Los Alamos National Laboratory Virginia Tech Outline Introduction What Is Performance? Motivation: The Need for a Green500 List Challenges

More information

in Action Fujitsu High Performance Computing Ecosystem Human Centric Innovation Innovation Flexibility Simplicity

in Action Fujitsu High Performance Computing Ecosystem Human Centric Innovation Innovation Flexibility Simplicity Fujitsu High Performance Computing Ecosystem Human Centric Innovation in Action Dr. Pierre Lagier Chief Technology Officer Fujitsu Systems Europe Innovation Flexibility Simplicity INTERNAL USE ONLY 0 Copyright

More information

GPU Architecture. Alan Gray EPCC The University of Edinburgh

GPU Architecture. Alan Gray EPCC The University of Edinburgh GPU Architecture Alan Gray EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? Architectural reasons for accelerator performance advantages Latest GPU Products From

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) Contributing sites and the corresponding computer systems for this call are: BSC, Spain IBM System x idataplex CINECA, Italy Lenovo System

More information

Stockholm Brain Institute Blue Gene/L

Stockholm Brain Institute Blue Gene/L Stockholm Brain Institute Blue Gene/L 1 Stockholm Brain Institute Blue Gene/L 2 IBM Systems & Technology Group and IBM Research IBM Blue Gene /P - An Overview of a Petaflop Capable System Carl G. Tengwall

More information