Fra superdatamaskiner til grafikkprosessorer og

Size: px
Start display at page:

Download "Fra superdatamaskiner til grafikkprosessorer og"

Transcription

1 Fra superdatamaskiner til grafikkprosessorer og Brødtekst maskinlæring Prof. Anne C. Elster IDI HPC/Lab

2 Parallel Computing: Personal perspective 1980 s: Concurrent and Parallel Pascal 1986: Intel ipsc Hypercube CMI (Bergen) and Cornell (Cray arrived at NTNU) 1987: Cluster of 4 IBM 3090s : Intel hypercubes Some on BBN : KSR (MPI1 & 2) TIF(Uncompresed)decompresor arenededtosethispicture. QuickTime anda Kendall Square Research (KSR) KSR-1 at Cornell University: processors Total RAM: 1GB!! - Scalable shared memory multiprocessors (SSMMs) - Proprietary 64-bit processors Intel ipsc Notable Attributes: Network latency across the bridge prevented viable scalability beyond 128 processors. 2

3 The World is Parallel!! All major processor are now multicore chips! --> All computer devices and systems are parallel even your Smartphone! WHY IS THIS? 3

4 Why is computing so exciting today? Look at the tech. trends! Microprocessors have become smaller, denser, and more powerful. As of 2016, the commercially available processor with the highest number of transistors is the 24-core Xeon Haswell-EX with > 5.7 billion transistors. (source: WikiPedia) NVIDIA

5 Tech. Trend: Moore s Law Named after Gordon Moore (co-founder of Intel) Moore predicted in 1965 transistor density of semiconductor chips would double roughly every year, revised in 1975 to every 2 years by 1980 Some think is says that it actually doubles every 18 months since use more transistors and each transistor is faster [due to quote by David House (Intel Exec)] "Moore's law" (popularized by Carver Mead, CalTech) is known as the observation and prediction that the number of transistors on a chip has and will be doubled approximately every 2 years. But in 2015: Intel stated that this has slowed starting in 2012 (22nm), so now every 2.5 yrs (14nm (2014), 10nm scheduled in late 2017) 01/17/2007 from CS267-Lecture 1 5

6 Tech. Trends: Microprocessor Moore s Law 2X transistors/chip Every 1.5 years Called Moore s Law Microprocessors have become smaller, denser, and more powerful. 01/17/2007 from CS267-Lecture 1 Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months. Slide source: Jack Dongarra 6

7 Revolution is Happening Now Chip density is continuing increase ~2x every 2 years Clock speed is not Number of processor cores may double instead There is little or no hidden parallelism (ILP) to be found Parallelism must be exposed to and managed by software Source: Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond) 01/17/2007 CS267-Lecture 1 7

8 Power Density Limits Serial Performance 01/17/2007 from CS267-Lecture 1 8

9 What to do? To increase processor performance one can: 1. Increase the system clock speed -> Power Wall(*) 2. Increase memory bandwidth-> more complex 3. Parallelize -> more complex (*) The Power Wall: Too much heat and transistor performance degrades (more power leakage as power increases)! Now maxing out clock at 3-4GHz for general processors

10 Supercomputer & HPC Trends: Clusters and Accelerators! How did we get here?

11 Market forces!! Rapid architecture development driven by gaming (graphics cards) and embedded systems architectures (e.g. ARM) 387 CUDA Teaching & Research Centers as of Aug 27, 2015! 11

12 Motivation GPU Computing: Many advances in processor designs are driven by Billion $$ gaming market! Modern GPUs (Graphic Processing Unit) offer lots of FLOPS per watt! NVIDA GTX and lots of parallelism! (Pascal): 3640 CUDA cores! -Kepler: -GTX 690 and Tesla K10 cards -have 3072 (2x1536) cores!

13 TK1/Kepler TX1/Maxwell - GPU: SMX Kepler: 192 core - CPU: ARM Cortex A15-32-bit, 2instr/cycle, in-order - 15GBs, LPDDR3, 28nm process - GTX 690 and Tesla K10 cards have 3072 (2x1536) cores! - Tesla K80 is 2,5x faster than K TF TFLOPs single prec TFLOPS Double prec. - Nested kernel calls - Hyper Q allowing up to 32 simultaneous MPI tasks - GPU: SMX Maxwell: 256 cores - 1 TFLOPs/s - CPU: ARM Cortex-A57-64-bit, 3 instr/cycle, out-of-order GBs, LPDDR4, 20nm process - Maxwell Titan with 3072 cores - API and Libraries: - Open GL CUDA cudnn 4.0

14 NTNU IDI HPC-Lab (last 10 yrs) Fall 2006: First 2 student projects with GPU programming (Cg) Christian Larsen (MS Fall Project, December 2006): Utilizing GPUs on Cluster Computers (joint with Schlumberger) Erik Axel Nielsen asks for FX 4800 card for project with GE Healthcare Elster as head of Computational Science & Visualization program helped NTNU acquire new IBM Supercomputer (Njord, 7+ TFLOPS, proprietary switch) 14

15 The NVIDIA DGX-1 Server

16 NVIDIA DGX-1 Server -- Details CPUs : 2 x Intel Xeon E v3 (16-core Haswell) GPUs: 8 x NVIDIA Tesla P100 (3584 CUDA cores) System Memory: 512 GB DDR GPU Memory 128GB (8 x 16GB) Storage: 4 x Samsung PM TB SSD Network: 4 x Infiniband EDR, 2x 10 GigE Power : 3200W Size 3U Blade GPU Throughput: FP16: 170TFLOPs, FP32: 85TFLOPs, FP 64: 42.5 TFLOPs

17 Supercomputing / HPC units are: Flop: floating point operation Flops/s: floating point operations per second Bytes: size of data (a double precision floating point number is 8) Typical sizes are millions, billions, trillions Mega Mflop/s = 10 6 flop/sec Mbyte = 2 20 = ~ 10 6 bytes Giga Gflop/s = 10 9 flop/sec Gbyte = 2 30 ~ 10 9 bytes TeraTflop/s = flop/sec Tbyte = 2 40 ~ bytes PetaPflop/s = flop/sec Pbyte = 2 50 ~ bytes Exa Eflop/s = flop/sec Ebyte = 2 60 ~ bytes Zetta Zflop/s = flop/sec Zbyte = 2 70 ~ bytes Yotta Yflop/s = flop/sec Ybyte = 2 80 ~ bytes See for current list of the world s fastest supercomputers 01/17/2007 from CS267-Lecture 1 17

18

Introduction to Computational Science (aka Scientific Computing)

Introduction to Computational Science (aka Scientific Computing) (aka Scientific Computing) Xianyi Zeng xzeng@utep.edu Department of Mathematical Sciences The University of Texas at El Paso. August 23, 2016. Acknowledgement Dr. Shirley Moore for setting up a high standard

More information

High-Performance Scientific Computing

High-Performance Scientific Computing High-Performance Scientific Computing Instructor: Randy LeVeque TA: Grady Lemoine Applied Mathematics 483/583, Spring 2011 http://www.amath.washington.edu/~rjl/am583 World s fastest computers http://top500.org

More information

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29 Introduction CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction Spring 2018 1 / 29 Outline 1 Preface Course Details Course Requirements 2 Background Definitions

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh (thanks to Prof. Nigel Topham) General Information Instructor

More information

CS5222 Advanced Computer Architecture. Lecture 1 Introduction

CS5222 Advanced Computer Architecture. Lecture 1 Introduction CS5222 Advanced Computer Architecture Lecture 1 Introduction Overview Teaching Staff Introduction to Computer Architecture History Future / Trends Significance The course Content Workload Administrative

More information

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA STATE OF THE ART 2012 18,688 Tesla K20X GPUs 27 PetaFLOPS FLAGSHIP SCIENTIFIC APPLICATIONS

More information

Heterogenous Computing

Heterogenous Computing Heterogenous Computing Fall 2018 CS, SE - Freshman Seminar 11:00 a 11:50a Computer Architecture What are the components of a computer? How do these components work together to perform computations? How

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Vijay Nagarajan and Prof. Nigel Topham! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

Introduction to Parallel Scientific Computing

Introduction to Parallel Scientific Computing Introduction to Parallel Scientific Computing TDT 4200 -- Lect. 3 & 4 Anne C. Elster Dept. of Computer & Info. Sci. (IDI) Norwegian Univ. of Science Technology Trondheim, Norway 8-11 Aug. 2011 Anne C.

More information

The Mont-Blanc approach towards Exascale

The Mont-Blanc approach towards Exascale http://www.montblanc-project.eu The Mont-Blanc approach towards Exascale Alex Ramirez Barcelona Supercomputing Center Disclaimer: Not only I speak for myself... All references to unavailable products are

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Boris Grot and Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh General Information Instructors: Boris

More information

CS240A: Applied Parallel Computing. Introduction

CS240A: Applied Parallel Computing. Introduction CS240A: Applied Parallel Computing Introduction 1 CS 240A Course Information Web page: http://www.cs.ucsb.edu/~tyang/class/240a17 Class schedule: Tu/Th. 1pm-2:50pm Phelp 2510 Instructor: Tao Yang (tyang

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Waiting for Moore s Law to save your serial code start getting bleak in 2004 Source: published SPECInt data Moore s Law is not at all

More information

Fundamentals of Computer Design

Fundamentals of Computer Design Fundamentals of Computer Design Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering Department University

More information

CS240A: Applied Parallel Computing. Introduction

CS240A: Applied Parallel Computing. Introduction CS240A: Applied Parallel Computing Introduction 1 CS 240A Course Information Web page: http://www.cs.ucsb.edu/~tyang/class/240a13w Class schedule: Mon/Wed. 11:00AM-12:50pm Phelp 2510 Instructor: Tao Yang

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

GPU COMPUTING AND THE FUTURE OF HPC. Timothy Lanfear, NVIDIA

GPU COMPUTING AND THE FUTURE OF HPC. Timothy Lanfear, NVIDIA GPU COMPUTING AND THE FUTURE OF HPC Timothy Lanfear, NVIDIA ~1 W ~3 W ~100 W ~30 W 1 kw 100 kw 20 MW Power-constrained Computers 2 EXASCALE COMPUTING WILL ENABLE TRANSFORMATIONAL SCIENCE RESULTS First-principles

More information

Fundamentals of Computers Design

Fundamentals of Computers Design Computer Architecture J. Daniel Garcia Computer Architecture Group. Universidad Carlos III de Madrid Last update: September 8, 2014 Computer Architecture ARCOS Group. 1/45 Introduction 1 Introduction 2

More information

45-year CPU Evolution: 1 Law -2 Equations

45-year CPU Evolution: 1 Law -2 Equations 4004 8086 PowerPC 601 Pentium 4 Prescott 1971 1978 1992 45-year CPU Evolution: 1 Law -2 Equations Daniel Etiemble LRI Université Paris Sud 2004 Xeon X7560 Power9 Nvidia Pascal 2010 2017 2016 Are there

More information

CS 194 Parallel Programming. Why Program for Parallelism?

CS 194 Parallel Programming. Why Program for Parallelism? CS 194 Parallel Programming Why Program for Parallelism? Katherine Yelick yelick@cs.berkeley.edu http://www.cs.berkeley.edu/~yelick/cs194f07 8/29/2007 CS194 Lecure 1 What is Parallel Computing? Parallel

More information

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8 Markus Hadwiger, KAUST Reading Assignment #5 (until March 12) Read (required): Programming Massively Parallel Processors book, Chapter

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

Overview. CS 472 Concurrent & Parallel Programming University of Evansville

Overview. CS 472 Concurrent & Parallel Programming University of Evansville Overview CS 472 Concurrent & Parallel Programming University of Evansville Selection of slides from CIS 410/510 Introduction to Parallel Computing Department of Computer and Information Science, University

More information

Advanced Topics in Numerical Analysis: High Performance Computing

Advanced Topics in Numerical Analysis: High Performance Computing Advanced Topics in Numerical Analysis: High Performance Computing MATH-GA 2012.001 & CSCI-GA 2945.001 Georg (Stadler) Courant Institute, NYU stadler@cims.nyu.edu Spring 2017, Thursday, 5:10 7:00PM, WWH

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors:!

More information

NVidia s GPU Microarchitectures. By Stephen Lucas and Gerald Kotas

NVidia s GPU Microarchitectures. By Stephen Lucas and Gerald Kotas NVidia s GPU Microarchitectures By Stephen Lucas and Gerald Kotas Intro Discussion Points - Difference between CPU and GPU - Use s of GPUS - Brie f History - Te sla Archite cture - Fermi Architecture -

More information

ENDURING DIFFERENTIATION Timothy Lanfear

ENDURING DIFFERENTIATION Timothy Lanfear ENDURING DIFFERENTIATION Timothy Lanfear WHERE ARE WE? 2 LIFE AFTER DENNARD SCALING GPU-ACCELERATED PERFORMANCE 10 7 40 Years of Microprocessor Trend Data 10 6 10 5 10 4 10 3 10 2 Single-threaded perf

More information

ENDURING DIFFERENTIATION. Timothy Lanfear

ENDURING DIFFERENTIATION. Timothy Lanfear ENDURING DIFFERENTIATION Timothy Lanfear WHERE ARE WE? 2 LIFE AFTER DENNARD SCALING 10 7 40 Years of Microprocessor Trend Data 10 6 10 5 10 4 Transistors (thousands) 1.1X per year 10 3 10 2 Single-threaded

More information

8/28/12. CSE 820 Graduate Computer Architecture. Richard Enbody. Dr. Enbody. 1 st Day 2

8/28/12. CSE 820 Graduate Computer Architecture. Richard Enbody. Dr. Enbody. 1 st Day 2 CSE 820 Graduate Computer Architecture Richard Enbody Dr. Enbody 1 st Day 2 1 Why Computer Architecture? Improve coding. Knowledge to make architectural choices. Ability to understand articles about architecture.

More information

Lecture 1: Why Parallelism? Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 1: Why Parallelism? Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 1: Why Parallelism? Parallel Computer Architecture and Programming Hi! Hongyi Alex Kayvon Manish Parag One common definition A parallel computer is a collection of processing elements that cooperate

More information

Parallel Computing. Office: 200A Office: 200A 03.18

Parallel Computing. Office: 200A Office: 200A 03.18 Parallel Computing Dirk Roose Albert-Jan Yzelman Office: 200A 03.25 Office: 200A 03.18 H03F9A Parallel computing Dirk Roose & Albert-Jan Yzelman Semester 1 Aims Insight in parallel computers and available

More information

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms Complexity and Advanced Algorithms Introduction to Parallel Algorithms Why Parallel Computing? Save time, resources, memory,... Who is using it? Academia Industry Government Individuals? Two practical

More information

An Overview of High Performance Computing and Challenges for the Future

An Overview of High Performance Computing and Challenges for the Future An Overview of High Performance Computing and Challenges for the Future Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester 6/15/2009 1 H. Meuer, H. Simon, E. Strohmaier,

More information

ADVANCED COMPUTER ARCHITECTURES

ADVANCED COMPUTER ARCHITECTURES 088949 ADVANCED COMPUTER ARCHITECTURES AA 2014/2015 Second Semester http://home.deib.polimi.it/silvano/aca-milano.htm Prof. Cristina Silvano email: cristina.silvano@polimi.it Dipartimento di Elettronica,

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

CUDA on ARM Update. Developing Accelerated Applications on ARM. Bas Aarts and Donald Becker

CUDA on ARM Update. Developing Accelerated Applications on ARM. Bas Aarts and Donald Becker CUDA on ARM Update Developing Accelerated Applications on ARM Bas Aarts and Donald Becker CUDA on ARM: a forward-looking development platform for high performance, energy efficient hybrid computing It

More information

Multimedia in Mobile Phones. Architectures and Trends Lund

Multimedia in Mobile Phones. Architectures and Trends Lund Multimedia in Mobile Phones Architectures and Trends Lund 091124 Presentation Henrik Ohlsson Contact: henrik.h.ohlsson@stericsson.com Working with multimedia hardware (graphics and displays) at ST- Ericsson

More information

CSC 447: Parallel Programming for Multi- Core and Cluster Systems. Lectures TTh, 11:00-12:15 from January 16, 2018 until 25, 2018 Prerequisites

CSC 447: Parallel Programming for Multi- Core and Cluster Systems. Lectures TTh, 11:00-12:15 from January 16, 2018 until 25, 2018 Prerequisites CSC 447: Parallel Programming for Multi- Core and Cluster Systems Introduction and A dministrivia Haidar M. Harmanani Spring 2018 Course Introduction Lectures TTh, 11:00-12:15 from January 16, 2018 until

More information

Multicore Hardware and Parallelism

Multicore Hardware and Parallelism Multicore Hardware and Parallelism Minsoo Ryu Department of Computer Science and Engineering 2 1 Advent of Multicore Hardware 2 Multicore Processors 3 Amdahl s Law 4 Parallelism in Hardware 5 Q & A 2 3

More information

COMP 322: Fundamentals of Parallel Programming

COMP 322: Fundamentals of Parallel Programming COMP 322: Fundamentals of Parallel Programming! Lecture 1: The What and Why of Parallel Programming; Task Creation & Termination (async, finish) Vivek Sarkar Department of Computer Science, Rice University

More information

Looking at Ultrasound Signal Processing on Low-Power GPUs

Looking at Ultrasound Signal Processing on Low-Power GPUs Looking at Ultrasound Signal Processing on Low-Power GPUs Anne C. Elster (*) and Bjørn Tungesvik Dept. of Computer & Info. Science Norwegian University of Science and Technology (NTNU) (*) Currently on

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

represent parallel computers, so distributed systems such as Does not consider storage or I/O issues

represent parallel computers, so distributed systems such as Does not consider storage or I/O issues Top500 Supercomputer list represent parallel computers, so distributed systems such as SETI@Home are not considered Does not consider storage or I/O issues Both custom designed machines and commodity machines

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

HPC Issues for DFT Calculations. Adrian Jackson EPCC

HPC Issues for DFT Calculations. Adrian Jackson EPCC HC Issues for DFT Calculations Adrian Jackson ECC Scientific Simulation Simulation fast becoming 4 th pillar of science Observation, Theory, Experimentation, Simulation Explore universe through simulation

More information

What is this class all about?

What is this class all about? EE141-Fall 2012 Digital Integrated Circuits Instructor: Elad Alon TuTh 11-12:30pm 247 Cory 1 What is this class all about? Introduction to digital integrated circuit design engineering Will describe models

More information

arxiv: v1 [physics.comp-ph] 4 Nov 2013

arxiv: v1 [physics.comp-ph] 4 Nov 2013 arxiv:1311.0590v1 [physics.comp-ph] 4 Nov 2013 Performance of Kepler GTX Titan GPUs and Xeon Phi System, Weonjong Lee, and Jeonghwan Pak Lattice Gauge Theory Research Center, CTP, and FPRD, Department

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

Real Parallel Computers

Real Parallel Computers Real Parallel Computers Modular data centers Overview Short history of parallel machines Cluster computing Blue Gene supercomputer Performance development, top-500 DAS: Distributed supercomputing Short

More information

Building supercomputers from embedded technologies

Building supercomputers from embedded technologies http://www.montblanc-project.eu Building supercomputers from embedded technologies Alex Ramirez Barcelona Supercomputing Center Technical Coordinator This project and the research leading to these results

More information

HPC Technology Trends

HPC Technology Trends HPC Technology Trends High Performance Embedded Computing Conference September 18, 2007 David S Scott, Ph.D. Petascale Product Line Architect Digital Enterprise Group Risk Factors Today s s presentations

More information

Concurrent Object Oriented Languages

Concurrent Object Oriented Languages Concurrent Object Oriented Languages Instructor Name: Franck van Breugel Email: franck@cse.yorku.ca Office: Lassonde Building, room 3046 Office hours: to be announced Overview concurrent algorithms concurrent

More information

Building NVLink for Developers

Building NVLink for Developers Building NVLink for Developers Unleashing programmatic, architectural and performance capabilities for accelerated computing Why NVLink TM? Simpler, Better and Faster Simplified Programming No specialized

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Waiting for Moore s Law to save your serial code started getting bleak in 2004 Source: published SPECInt

More information

Lecture 1: Gentle Introduction to GPUs

Lecture 1: Gentle Introduction to GPUs CSCI-GA.3033-004 Graphics Processing Units (GPUs): Architecture and Programming Lecture 1: Gentle Introduction to GPUs Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Who Am I? Mohamed

More information

What is GPU? CS 590: High Performance Computing. GPU Architectures and CUDA Concepts/Terms

What is GPU? CS 590: High Performance Computing. GPU Architectures and CUDA Concepts/Terms CS 590: High Performance Computing GPU Architectures and CUDA Concepts/Terms Fengguang Song Department of Computer & Information Science IUPUI What is GPU? Conventional GPUs are used to generate 2D, 3D

More information

Building supercomputers from commodity embedded chips

Building supercomputers from commodity embedded chips http://www.montblanc-project.eu Building supercomputers from commodity embedded chips Alex Ramirez Barcelona Supercomputing Center Technical Coordinator This project and the research leading to these results

More information

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC GPGPUs in HPC VILLE TIMONEN Åbo Akademi University 2.11.2010 @ CSC Content Background How do GPUs pull off higher throughput Typical architecture Current situation & the future GPGPU languages A tale of

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

Administrivia. Administrivia. Administrivia. CIS 565: GPU Programming and Architecture. Meeting

Administrivia. Administrivia. Administrivia. CIS 565: GPU Programming and Architecture. Meeting CIS 565: GPU Programming and Architecture Original Slides by: Suresh Venkatasubramanian Updates by Joseph Kider and Patrick Cozzi Meeting Monday and Wednesday 6:00 7:30pm Moore 212 Recorded lectures upon

More information

Accelerating High Performance Computing.

Accelerating High Performance Computing. Accelerating High Performance Computing http://www.nvidia.com/tesla Computing The 3 rd Pillar of Science Drug Design Molecular Dynamics Seismic Imaging Reverse Time Migration Automotive Design Computational

More information

Parallel Programming

Parallel Programming Parallel Programming Introduction Diego Fabregat-Traver and Prof. Paolo Bientinesi HPAC, RWTH Aachen fabregat@aices.rwth-aachen.de WS15/16 Acknowledgements Prof. Felix Wolf, TU Darmstadt Prof. Matthias

More information

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Aim High Intel Technical Update Teratec 07 Symposium June 20, 2007 Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Risk Factors Today s s presentations contain forward-looking statements.

More information

GPUs and GPGPUs. Greg Blanton John T. Lubia

GPUs and GPGPUs. Greg Blanton John T. Lubia GPUs and GPGPUs Greg Blanton John T. Lubia PROCESSOR ARCHITECTURAL ROADMAP Design CPU Optimized for sequential performance ILP increasingly difficult to extract from instruction stream Control hardware

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation

Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation Tiny GPU Cluster for Big Spatial Data: A Preliminary Performance Evaluation Jianting Zhang 1,2 Simin You 2, Le Gruenwald 3 1 Depart of Computer Science, CUNY City College (CCNY) 2 Department of Computer

More information

Parallel Computer Architecture - Basics -

Parallel Computer Architecture - Basics - Parallel Computer Architecture - Basics - Christian Terboven 19.03.2012 / Aachen, Germany Stand: 15.03.2012 Version 2.3 Rechen- und Kommunikationszentrum (RZ) Agenda Processor

More information

SUPPORT FOR ADVANCED COMPUTING IN PROJECT CHRONO

SUPPORT FOR ADVANCED COMPUTING IN PROJECT CHRONO SUPPORT FOR ADVANCED COMPUTING IN PROJECT CHRONO Dan Negrut Vilas Associate Professor NVIDIA CUDA Fellow Simulation-Based Engineering Lab University of Wisconsin-Madison December 9, 2015 Acknowledgement

More information

COMP 322 / ELEC 323: Fundamentals of Parallel Programming

COMP 322 / ELEC 323: Fundamentals of Parallel Programming COMP 322 / ELEC 323: Fundamentals of Parallel Programming Lecture 1: Task Creation & Termination (async, finish) Instructors: Vivek Sarkar, Mack Joyner Department of Computer Science, Rice University {vsarkar,

More information

NVIDIA Update and Directions on GPU Acceleration for Earth System Models

NVIDIA Update and Directions on GPU Acceleration for Earth System Models NVIDIA Update and Directions on GPU Acceleration for Earth System Models Stan Posey, HPC Program Manager, ESM and CFD, NVIDIA, Santa Clara, CA, USA Carl Ponder, PhD, Applications Software Engineer, NVIDIA,

More information

EE 7722 GPU Microarchitecture. Offered by: Prerequisites By Topic: Text EE 7722 GPU Microarchitecture. URL:

EE 7722 GPU Microarchitecture. Offered by: Prerequisites By Topic: Text EE 7722 GPU Microarchitecture. URL: 00 1 EE 7722 GPU Microarchitecture 00 1 EE 7722 GPU Microarchitecture URL: http://www.ece.lsu.edu/gp/. Offered by: David M. Koppelman 345 ERAD, 578-5482, koppel@ece.lsu.edu, http://www.ece.lsu.edu/koppel

More information

MANY-CORE COMPUTING. 7-Oct Ana Lucia Varbanescu, UvA. Original slides: Rob van Nieuwpoort, escience Center

MANY-CORE COMPUTING. 7-Oct Ana Lucia Varbanescu, UvA. Original slides: Rob van Nieuwpoort, escience Center MANY-CORE COMPUTING 7-Oct-2013 Ana Lucia Varbanescu, UvA Original slides: Rob van Nieuwpoort, escience Center Schedule 2 1. Introduction, performance metrics & analysis 2. Programming: basics (10-10-2013)

More information

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010 Introduction to Multicore architecture Tao Zhang Oct. 21, 2010 Overview Part1: General multicore architecture Part2: GPU architecture Part1: General Multicore architecture Uniprocessor Performance (ECint)

More information

IBM Deep Learning Solutions

IBM Deep Learning Solutions IBM Deep Learning Solutions Reference Architecture for Deep Learning on POWER8, P100, and NVLink October, 2016 How do you teach a computer to Perceive? 2 Deep Learning: teaching Siri to recognize a bicycle

More information

Computer Architecture s Changing Definition

Computer Architecture s Changing Definition Computer Architecture s Changing Definition 1950s Computer Architecture Computer Arithmetic 1960s Operating system support, especially memory management 1970s to mid 1980s Computer Architecture Instruction

More information

Architectural Trends and Programming Model Strategies for Large-Scale Machines

Architectural Trends and Programming Model Strategies for Large-Scale Machines Architectural Trends and Programming Model Strategies for Large-Scale Machines Katherine Yelick U.C. Berkeley and Lawrence Berkeley National Lab http://titanium.cs.berkeley.edu http://upc.lbl.gov 1 Kathy

More information

HW Trends and Architectures

HW Trends and Architectures Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 1/29 HW Trends and Architectures prof. Ing. Pavel Tvrdík CSc. Ing. Jiří Kašpar Department of Computer Systems Faculty

More information

INF5063: Programming heterogeneous multi-core processors Introduction

INF5063: Programming heterogeneous multi-core processors Introduction INF5063: Programming heterogeneous multi-core processors Introduction Håkon Kvale Stensland August 19 th, 2012 INF5063 Overview Course topic and scope Background for the use and parallel processing using

More information

Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC?

Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC? Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC? Nikola Rajovic, Paul M. Carpenter, Isaac Gelado, Nikola Puzovic, Alex Ramirez, Mateo Valero SC 13, November 19 th 2013, Denver, CO, USA

More information

ACCELERATED COMPUTING: THE PATH FORWARD. Jen-Hsun Huang, Co-Founder and CEO, NVIDIA SC15 Nov. 16, 2015

ACCELERATED COMPUTING: THE PATH FORWARD. Jen-Hsun Huang, Co-Founder and CEO, NVIDIA SC15 Nov. 16, 2015 ACCELERATED COMPUTING: THE PATH FORWARD Jen-Hsun Huang, Co-Founder and CEO, NVIDIA SC15 Nov. 16, 2015 COMMODITY DISRUPTS CUSTOM SOURCE: Top500 ACCELERATED COMPUTING: THE PATH FORWARD It s time to start

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

The Art of Parallel Processing

The Art of Parallel Processing The Art of Parallel Processing Ahmad Siavashi April 2017 The Software Crisis As long as there were no machines, programming was no problem at all; when we had a few weak computers, programming became a

More information

GPU Programming. Lecture 1: Introduction. Miaoqing Huang University of Arkansas 1 / 27

GPU Programming. Lecture 1: Introduction. Miaoqing Huang University of Arkansas 1 / 27 1 / 27 GPU Programming Lecture 1: Introduction Miaoqing Huang University of Arkansas 2 / 27 Outline Course Introduction GPUs as Parallel Computers Trend and Design Philosophies Programming and Execution

More information

Roadmap and Change. Presentation to 2004 Workshop on Extreme Supercomputing Panel: How Much and How Fast. Thomas Sterling

Roadmap and Change. Presentation to 2004 Workshop on Extreme Supercomputing Panel: How Much and How Fast. Thomas Sterling Presentation to 2004 Workshop on Extreme Supercomputing Panel: Roadmap and Change How Much and How Fast Thomas Sterling California Institute of Technology and NS Jet Propulsion aboratory October 12, 2004

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS Agenda Forming a GPGPU WG 1 st meeting Future meetings Activities Forming a GPGPU WG To raise needs and enhance information sharing A platform for knowledge

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

(software agnostic) Computational Considerations

(software agnostic) Computational Considerations (software agnostic) Computational Considerations The Issues CPU GPU Emerging - FPGA, Phi, Nervana Storage Networking CPU 2 Threads core core Processor/Chip Processor/Chip Computer CPU Threads vs. Cores

More information

The Road from Peta to ExaFlop

The Road from Peta to ExaFlop The Road from Peta to ExaFlop Andreas Bechtolsheim June 23, 2009 HPC Driving the Computer Business Server Unit Mix (IDC 2008) Enterprise HPC Web 100 75 50 25 0 2003 2008 2013 HPC grew from 13% of units

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

Parallelism in Hardware

Parallelism in Hardware Parallelism in Hardware Minsoo Ryu Department of Computer Science and Engineering 2 1 Advent of Multicore Hardware 2 Multicore Processors 3 Amdahl s Law 4 Parallelism in Hardware 5 Q & A 2 3 Moore s Law

More information

FYS Data acquisition & control. Introduction. Spring 2018 Lecture #1. Reading: RWI (Real World Instrumentation) Chapter 1.

FYS Data acquisition & control. Introduction. Spring 2018 Lecture #1. Reading: RWI (Real World Instrumentation) Chapter 1. FYS3240-4240 Data acquisition & control Introduction Spring 2018 Lecture #1 Reading: RWI (Real World Instrumentation) Chapter 1. Bekkeng 14.01.2018 Topics Instrumentation: Data acquisition and control

More information

What is this class all about?

What is this class all about? EE141-Fall 2007 Digital Integrated Circuits Instructor: Elad Alon TuTh 3:30-5pm 155 Donner 1 1 What is this class all about? Introduction to digital integrated circuit design engineering Will describe

More information

ECE 588/688 Advanced Computer Architecture II

ECE 588/688 Advanced Computer Architecture II ECE 588/688 Advanced Computer Architecture II Instructor: Alaa Alameldeen alaa@ece.pdx.edu Fall 2009 Portland State University Copyright by Alaa Alameldeen and Haitham Akkary 2009 1 When and Where? When:

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville COSC 594 Lecture Notes March 22, 2017 1/20 Outline Introduction - Hardware

More information

An Introduction to Parallel Programming

An Introduction to Parallel Programming An Introduction to Parallel Programming Ing. Andrea Marongiu (a.marongiu@unibo.it) Includes slides from Multicore Programming Primer course at Massachusetts Institute of Technology (MIT) by Prof. SamanAmarasinghe

More information