B. Sc. (Sixth Semester) Examination Rural Technology. (Application of Remote Sensing) AR- 7967

Size: px
Start display at page:

Download "B. Sc. (Sixth Semester) Examination Rural Technology. (Application of Remote Sensing) AR- 7967"

Transcription

1 B. Sc. (Sixth Semester) Examination 2013 Rural Technology (Application of Remote Sensing) AR Que. 1. Multiple choice question : (i) Which is not the example of continuous data : Answer : Rainfall (ii) Which is not a property of Geo spatial data : Answer : Scale (iii) Geometrical arragements that completely cover a surface is called : Answer : Tessellation (iv) Which statement is not correct : Answer : Polygon are three dimensional entity. (v) What is primary KEY : Answer : To uniquely identify the data (vi) Which type of scanner used in IRS satellite : Answer : Both (a) and (b) (Vii) Preprocessing technique of any images are : Answer : All of these (viii) In the raster data model we represent the data in : Answer : Grid structure (ix) In the vector data model, we represent the data in : Answer : All of these (x) In which DBMS model, we show the one to many relationship between data : Answer : Hierarchical data base model

2 2. Write short answer : Que (i) : Describe the active sensor. Ans. : Active sensors provide their own energy source for illumination. The sensor emits radiation which is directed toward the target to be investigated. The radiation reflected from that target is detected and measured by the sensor. Advantages for active sensors include the ability to obtain measurements anytime, regardless of the time of day or season. Active sensors can be used for examining wavelengths that are not sufficiently provided by the sun, such as microwaves, or to better control the way a target is illuminated. However, active systems require the generation of a fairly large amount of energy to adequately illuminate targets. Some examples of active sensors are a laser fluoro sensor and a synthetic aperture radar (SAR). Que (ii) : Discuss the feature of any one LANDSAT satellite. Ans. : First launched in 1972, the LANDSAT satellite series constitutes one of the longest continuous records in Earth observation. The objective of the LANDSAT program was always been to provide multi-spectral imagery of the Earth's land areas at moderate to high resolution, ( meter horizontal resolution) to support resource assessment, land-cover mapping, and to track inter-annual changes in the environment. Applications of LANDSAT data are quite diverse, comprising Earth Science, commercial applications, mining applications, government and military use. A few examples include mapping land-cover change (forest change, urbanization, etc), monitoring agricultural productivity, monitoring wetland health, mapping geologic resources, and targeting habitats for vectorborne disease eradication. Type of sensor used in LANDSAT satellite are Multi-spectral Scanner (LANDSAT MSS), Thematic MAPPER (LANDSAT TM), Enhanced Thematic MAPPER Plus (LANDSAT ETM+). LANDSAT imagery is relatively highresolution earth observation data that is acquired through sensors on one of the NASA LANDSAT satellites. The satellite sensors acquire high integrity images of the planet surface in a systematic fashion. Users can take this imagery and use it to determine the health and type of vegetation, amount of built surfaces, success of agriculture, or apply it for a myriad other uses like various geological derived applications as well as various mineral exploration activities. LANDSAT imagery is acquired in a very precise manner, to better emphasize particular land cover aspects. Some of the parameters of this precision involve a scene's radiometry, providing distinct characteristics to components of the image scene. These measures help determine what the images are good for, from a science perspective. For example, Bands 1, 2 and 3 are used together to approximate how the real world appears. Bands 4, 5 or 7 from ETM+ are used in combination with 1, 2 or 3 to demonstrate vegetation conditions. Que (iii) : Why data base management system is needed in GIS. Ans : Management of GIS data consists of storing a variety of data categorised under two types, entity (spatial data) and attribute ( aspatial ) data in a way that permits us to retrieve or display any contributions of these data after analysis. GIS database comprises spatial or entity or graphical database, nonspatial or attribue database and a linkage mechanism for their topology, to show the relationship between the spatial data and attribute data for further analysis. Non-spatial data can be stored in any conventional database, whereas spatial data, which is the dominant data in GIS, should have the database, which is capable of handling spatial data. Therefore conventional database has bees adapted to GIS for handling attribute data. The DBMS must allow the definition of data, their attribute, relationship, as well as providing security, an interface between the end users, their application. The other work of DBMS are (i) creating, modifying and deleting the database structure, (ii) adding, updating and deleting records (iii) the extraction of information from data and (iv) maintenance of integrity and application building. (iv) Que : How remote sening and GIS help in disaster management. Ans. Remote sensing or Earth Observation System (EOS) and GIS are among many tools available to disaster management.professionals today making the effective project planning which are more accurate now then ever before. Repetitive or multi-temporal coverage is justified on the basis of the need to study various dynamic phenomena whose changes can be identified over time. These include natural hazard events, changing land

3 usepatterns, and hydrologic and geologic characteristics of the region.from the inherent characteristics, namely, spatial continuity, uniform accuracy and precision, multi-temporal coverage and complete coverage regardless of site location, the remotely sensed data can be used very effectively, for: Quickly assessing severity and impact of damage due to flooding, earthquakes, oil spills and other disasters; Planning efficient escape routes from coastal areas during hurricane season; Charting quickest routes for ambulances to reach victims; Locating places for shelter for victims or refugees; Calculating population density in disaster-prone areas; Rapidly identifying hardest-hit disaster areas in order to provide early warning of potential disasters; Pre-disaster assessments to facilitate planning for timely evacuation and recovery operations during a crisis; Monitoring reconstruction or rehabilitation after a major disaster; and Developing, maintaining or updating accurate base maps. Que (v): Write in brief about the raster format of data structure. Ans. Raster data structure is incorporate the use of a grid-cell data structure where the geographic area is divided into cells, identified by row and column. This data structure is commonly called raster. While the term raster implies a regularly spaced grid other tessellated data structures do exist in grid based GIS systems. The size of cells in a tessellated data structure is selected on the basis of the data accuracy and the resolution needed by the user. There is no explicit coding of geographic coordinates required since that is implicit in the layout of the cells. A raster data structure is in fact a matrix where any coordinate can be quickly calculated if the origin point is known, and the size of the grid cells is known. Since grid-cells can be handled as two-dimensional arrays in computer encoding many analytical operations are easy to program. Several tessellated data structures exist, however only two are commonly used in GIS's. The most popular cell structure is the regularly spaced matrix or raster structure. This data structure involves a division of spatial data into regularly spaced cells. Each cell is of the same shape and size. Squares are most commonly utilized. Since geographic data is rarely distinguished by regularly spaced shapes, cells must be classified as to the most common attribute for the cell. Most raster based GIS software requires that the raster cell contain only a single discrete value. (vi) Que. Discuss the feature of CARTOSAT satellite. Ans. India lanuched two CARTOSAT satellite for mapping purpose. CARTOSAT 1 is the first Indian Remote Sensing Satellite capable of providing in-orbit stereo images. The images are used for Cartographic applications meeting the global requirements. Cameras of this satellite have a resolution of 2.5m (can distinguish a small car). The Cartosat 1 provides stereo pairs required for generating Digital Elevation Models, Ortho Image products, and Value added products for various applications of Geographical Information System (GIS). Some details of CARTOSAT - 1 are given below : 1. Lauunch date - 5 May Lauunch site - SHAR Centre Sriharikota, India 3. Lauunch Vehicle - PSLV-C6 4. Orbit km Polar Sun Synchronous 5. Payloads - PAN FORE, PAN - AFT 6. Orbit Period - 97 min 7. Number of Orbits Per day Revisit - 5 days 9. Mission life - 5 years

4 Section 3 : Write long answer : Que. (1) How vegetative index help in categorization of image vegetations. Ans : Vegetation has a unique spectral signature that enables it to be distinguished readily from other types of land cover in an optical/near-infrared image. The reflectance is low in both the blue and red regions of the spectrum, due to absorption by chlorophyll for photosynthesis. It has a peak at the green region. In the near infrared (NIR) region, the reflectance is much higher than that in the visible band due to the cellular structure in the leaves. Hence, vegetation can be identified by the high NIR but generally low visible reflectance. The shape of the reflectance spectrum can be used for identification of vegetation type. The reflectance spectra of dry grass and green grass is distinguished although they exhibit the generally characteristics of high NIR but low visible reflectance. Dry grass has higher reflectance in the visible region but lower reflectance in the NIR region. For the same vegetation type, the reflectance spectrum also depends on other factors such as the leaf moisture content and health of the plants. These properties enable vegetation condition to be monitored using remotely sensed images. The remote sensing data is used extensively for large area vegetation monitoring.. In many cases of vegetation remote sensing studies, vegetation index has been used as a primary source of information related to the biophysical characteristics of vegetation over large geographic area. Vegetation index, derived from remote sensing data, is used as a single measure of such canopy characteristics as biomass, productivity, leaf area index, photo-synthetically active radiation, or canopy closure. This technique of vegetation index was developed from the unique spectral characteristics of green vegetation in visible and near-infrared wavelengths Most satellite multispectral sensors supply image data obtained at those two spectral bands of red and near-infrared spectrums. Vegetation index is a simple form of mathematical transformation to combine the two bands data into a scale to enhance the characteristics of vegetation. There are three such indices, simple vegetation indices, rational vegetation indces and normalised differential vegetation indices. These indices are computed from the equations VI = Near IR - RED RVI = Red/Near IR NDVI = (Near IR- Red)/ (Near IR + Red Although there are several methods of calculating vegetation index using two spectral bands, the normalized difference vegetation index (NDVI) has been most widely used in many fields of applied remote sensing community. NDVI is calculated by dividing the difference of two spectral reflectance values by the sum of two spectral reflectance values. NDVI = (NIR R) / (NIR + R) The use of NDVI is being expanded beyond the monitoring of seasonal and inter-annual variation of vegetation condition and the mapping of vegetation cover. Recent development of data analysis, it is now being used to extract rather quantitative and sophisticated information related to the biophysical characteristics of vegetation. The biophysical variables that are currently achieved from the satellite data derived NDVI data include leaf area index (LAI), net primary production, and a fraction of photo-synthetically active radiation (FPAR). Que. (ii) Explain the different type imaging and non imaging sensor.

5 Ans : Imaging sensors are sensors that build up a digital image of the field of view. The spatial distribution of the signal strength will be recorded in the spatial distribution of the sensor's response. Non-imaging sensors return a signal based on the intensity of the whole field of view. The response of the sensor doesn't record how the input varies across the field of view. The different type of imaging and non-imaging sensor are : Que. (iii) What is the importance of relational database model in GIS. Ans : A Relational Database Management System (RDBMS) is a software system that provides access to a relational database. The software system is a collection of software applications that can be used to create, maintain, manage and use the database. A "relational database" is a database structured on the "relational" model. Data are stored and presented in a tabular format, organized in rows and columns with one record per row. Some feature of the Relational Database Management System (RDBMS) are : : Data Structure : The table format is simple and easy for database users to understand and use. RDBMSs provide data access using a natural structure and organization of the data. Database queries can search any column for matching entries. Multi-User Access :RDBMSs allow multiple database users to access a database simultaneously. Built-in locking and transactions management functionality allow users to access data as it is being changed, prevents collisions between two users updating the data, and keeps users from accessing partially updated records. Privileges : Authorization and privilege control features in an RDBMS allow the database administrator to restrict access to authorized users, and grant privileges to individual users based on the types of database tasks they need to perform. Authorization can be defined based on the remote client IP address in combination with user authorization, restricting access to specific external computer systems.

6 Network Access :RDBMSs provide access to the database through a server daemon, a specialized software program that listens for requests on a network, and allows database clients to connect to and use the database. Network access allows developers to build desktop tools and Web applications to interact with databases. Speed : The relational database model is not the fastest data structure. RDBMS advantages, such as simplicity, make the slower speed a fair trade-off. Optimizations built into an RDBMS, and the design of the databases, enhance performance, allowing RDBMSs to perform more than fast enough for most applications and data sets. Improvements in technology, increasing processor speeds and decreasing memory and storage costs allow systems administrators to build incredibly fast systems that can overcome any database performance shortcomings. Maintenance : This feature of RDBMSs, provide database administrators with tools to easily maintain, test, repair and back up the databases housed in the system. Many of the functions can be automated using built-in automation in the RDBMS, or automation tools available on the operating system. Language : RDBMSs support a generic language called "Structured Query Language" (SQL). The SQL syntax is simple, and the language uses standard English language keywords and phrasing, making it fairly intuitive and easy to learn. Many RD Que : (iv) Describe the function of data base management system. Ans : The few functions in the DBMS are: 1. Data Dictionary Management The place were DBMS stores definitions of the data elements and their relationships (metadata) is called data dictionary. The DBMS uses this function to look up the required data component structures and relationships. When programs access data in a database they are basically going through the DBMS. This function removes structural and data dependency and provides the user with data abstraction. The Data Dictionary is often hidden from the user and is used by Database Administrators and Programmers. 2. Data Storage Management This particular function is used for the storage of data and any related data entry forms or screen definitions, report definitions, data validation rules, procedural code, and structures that can handle video and picture formats. Users do not need to know how data is stored or manipulated. Also involved with this structure is a term called performance tuning that relates to a database s efficiency in relation to storage and access speed. 3. Data Transformation and Presentation This function exists to transform any data entered into required data structures. By using the data transformation and presentation function the DBMS can determine the difference between logical and physical data formats. 4. Security Management This is one of the most important functions in the DBMS. Security management sets rules that determine specific users that are allowed to access the database. Users are given a username and password or sometimes through biometric authentication (such as a fingerprint or retina scan) but these types of authentication tend to be more costly. This function also sets restraints on what specific data any user can see or manage. 5. Multiuser Access Control Data integrity and data consistency are the basis of this function. Multiuser access control is a very useful tool in a DBMS, it enables multiple users to access the database simultaneously without affecting the integrity of the database. 6. Backup and Recovery Management

7 Backup and recovery is used to when there is potential outside threats to a database. For example if there is a power outage, recovery management is how long it takes to recover the database after the outage. Backup management refers to the data safety and integrity; for example backing up all your mp3 files on a disk. 7. Data Integrity Management The DBMS enforces these rules to reduce things such as data redundancy, which is when data is stored in more than one place unnecessarily, and maximizing data consistency, making sure database is returning correct/same answer each time for same question asked. 8. Database Access Languages and Application Programming Interfaces A query language is a nonprocedural language. An example of this is SQL (structured query language). SQL is the most common query language supported by the majority of DBMS vendors. The use of this language makes it easy for user to specify what they want done without the headache of explaining how to specifically do it. 9. Database Communication Interfaces This refers to how a DBMS can accept different end user requests through different network environments. An example of this can be easily related to the internet. A DBMS can provide access to the database using the Internet through Web Browsers.

A database management system (DBMS) is a software package with computer

A database management system (DBMS) is a software package with computer A database management system (DBMS) is system software for creating and managing databases. The DBMS provides users and programmers with a systematic way to create, retrieve, update and manage data. What

More information

Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics

Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics Operations What Do I Need? Classify Merge Combine Cross Scan Score Warp Respace Cover Subscene Rotate Translators

More information

Prof. Vidya Manian Dept. of Electrical l and Comptuer Engineering. INEL6007(Spring 2010) ECE, UPRM

Prof. Vidya Manian Dept. of Electrical l and Comptuer Engineering. INEL6007(Spring 2010) ECE, UPRM Inel 6007 Introduction to Remote Sensing Chapter 5 Spectral Transforms Prof. Vidya Manian Dept. of Electrical l and Comptuer Engineering Chapter 5-1 MSI Representation Image Space: Spatial information

More information

Defining Remote Sensing

Defining Remote Sensing Defining Remote Sensing Remote Sensing is a technology for sampling electromagnetic radiation to acquire and interpret non-immediate geospatial data from which to extract information about features, objects,

More information

LIDAR and Terrain Models: In 3D!

LIDAR and Terrain Models: In 3D! LIDAR and Terrain Models: In 3D! Stuart.green@teagasc.ie http://www.esri.com/library/whitepapers/pdfs/lidar-analysis-forestry.pdf http://www.csc.noaa.gov/digitalcoast/_/pdf/refinement_of_topographic_lidar_to_create_a_bare_e

More information

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE HYPERSPECTRAL (e.g. AVIRIS) SLAR Real Aperture

More information

Remote Sensing Introduction to the course

Remote Sensing Introduction to the course Remote Sensing Introduction to the course Remote Sensing (Prof. L. Biagi) Exploitation of remotely assessed data for information retrieval Data: Digital images of the Earth, obtained by sensors recording

More information

GEOBIA for ArcGIS (presentation) Jacek Urbanski

GEOBIA for ArcGIS (presentation) Jacek Urbanski GEOBIA for ArcGIS (presentation) Jacek Urbanski INTEGRATION OF GEOBIA WITH GIS FOR SEMI-AUTOMATIC LAND COVER MAPPING FROM LANDSAT 8 IMAGERY Presented at 5th GEOBIA conference 21 24 May in Thessaloniki.

More information

GIS in agriculture scale farm level - used in agricultural applications - managing crop yields, monitoring crop rotation techniques, and estimate

GIS in agriculture scale farm level - used in agricultural applications - managing crop yields, monitoring crop rotation techniques, and estimate Types of Input GIS in agriculture scale farm level - used in agricultural applications - managing crop yields, monitoring crop rotation techniques, and estimate soil loss from individual farms or agricultural

More information

Hyperspectral Remote Sensing

Hyperspectral Remote Sensing Hyperspectral Remote Sensing Multi-spectral: Several comparatively wide spectral bands Hyperspectral: Many (could be hundreds) very narrow spectral bands GEOG 4110/5100 30 AVIRIS: Airborne Visible/Infrared

More information

LECTURE 2 SPATIAL DATA MODELS

LECTURE 2 SPATIAL DATA MODELS LECTURE 2 SPATIAL DATA MODELS Computers and GIS cannot directly be applied to the real world: a data gathering step comes first. Digital computers operate in numbers and characters held internally as binary

More information

17/07/2013 RASTER DATA STRUCTURE GIS LECTURE 4 GIS DATA MODELS AND STRUCTURES RASTER DATA MODEL& STRUCTURE TIN- TRIANGULAR IRREGULAR NETWORK

17/07/2013 RASTER DATA STRUCTURE GIS LECTURE 4 GIS DATA MODELS AND STRUCTURES RASTER DATA MODEL& STRUCTURE TIN- TRIANGULAR IRREGULAR NETWORK RASTER DATA STRUCTURE GIS LECTURE 4 GIS DATA MODELS AND STRUCTURES Space is subdivided into regular grids of square grid cells or other forms of polygonal meshes known as picture elements (pixels) the

More information

Data: a collection of numbers or facts that require further processing before they are meaningful

Data: a collection of numbers or facts that require further processing before they are meaningful Digital Image Classification Data vs. Information Data: a collection of numbers or facts that require further processing before they are meaningful Information: Derived knowledge from raw data. Something

More information

Uttam Kumar and Ramachandra T.V. Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore

Uttam Kumar and Ramachandra T.V. Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore Remote Sensing and GIS for Monitoring Urban Dynamics Uttam Kumar and Ramachandra T.V. Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012. Remote

More information

Using ArcGIS for Landcover Classification. Presented by CORE GIS May 8, 2012

Using ArcGIS for Landcover Classification. Presented by CORE GIS May 8, 2012 Using ArcGIS for Landcover Classification Presented by CORE GIS May 8, 2012 How to use ArcGIS for Image Classification 1. Find and download the right data 2. Have a look at the data (true color/false color)

More information

Class #2. Data Models: maps as models of reality, geographical and attribute measurement & vector and raster (and other) data structures

Class #2. Data Models: maps as models of reality, geographical and attribute measurement & vector and raster (and other) data structures Class #2 Data Models: maps as models of reality, geographical and attribute measurement & vector and raster (and other) data structures Role of a Data Model Levels of Data Model Abstraction GIS as Digital

More information

Spatial Data Models. Raster uses individual cells in a matrix, or grid, format to represent real world entities

Spatial Data Models. Raster uses individual cells in a matrix, or grid, format to represent real world entities Spatial Data Models Raster uses individual cells in a matrix, or grid, format to represent real world entities Vector uses coordinates to store the shape of spatial data objects David Tenenbaum GEOG 7

More information

Longley Chapter 3. Representations

Longley Chapter 3. Representations Longley Chapter 3 Digital Geographic Data Representation Geographic Data Type Data Models Representing Spatial and Temporal Data Attributes The Nature of Geographic Data Representations Are needed to convey

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

Land Cover Classification Techniques

Land Cover Classification Techniques Land Cover Classification Techniques supervised classification and random forests Developed by remote sensing specialists at the USFS Geospatial Technology and Applications Center (GTAC), located in Salt

More information

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI AT09.98 Applied GIS and Remote Sensing for Disaster Mitigation #6 Data Acquisition for Built Environment 9 October, 2002 Fumio YAMAZAKI yamazaki@ait.ac.th http://www.star.ait.ac.th/~yamazaki/ Course Outline

More information

Terrain categorization using LIDAR and multi-spectral data

Terrain categorization using LIDAR and multi-spectral data Terrain categorization using LIDAR and multi-spectral data Angela M. Puetz, R. C. Olsen, Michael A. Helt U.S. Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943 ampuetz@nps.edu, olsen@nps.edu

More information

This is the general guide for landuse mapping using mid-resolution remote sensing data

This is the general guide for landuse mapping using mid-resolution remote sensing data This is the general guide for landuse mapping using mid-resolution remote sensing data February 11 2015 This document has been prepared for Training workshop on REDD+ Research Project in Peninsular Malaysia

More information

Synthetic Aperture Radar (SAR) Polarimetry for Wetland Mapping & Change Detection

Synthetic Aperture Radar (SAR) Polarimetry for Wetland Mapping & Change Detection Synthetic Aperture Radar (SAR) Polarimetry for Wetland Mapping & Change Detection Jennifer M. Corcoran, M.S. Remote Sensing & Geospatial Analysis Laboratory Natural Resource Science & Management PhD Program

More information

Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations,

Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations, Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations, readings, and hands on GIS lab exercises. Following the last

More information

Chapter 12 Databases and Database Management Systems

Chapter 12 Databases and Database Management Systems Chapter 12 Databases and Database Management Systems permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use. What Is a Database?

More information

9/14/2011. Contents. Lecture 3: Spatial Data Acquisition in GIS. Dr. Bo Wu Learning Outcomes. Data Input Stream in GIS

9/14/2011. Contents. Lecture 3: Spatial Data Acquisition in GIS. Dr. Bo Wu Learning Outcomes. Data Input Stream in GIS Contents Lecture 3: Spatial Data Acquisition in GIS Dr. Bo Wu lsbowu@polyu.edu.hk 1. Learning outcomes. Data acquisition: Manual digitization 3. Data acquisition: Field survey 4. Data acquisition: Remote

More information

GIS Data Collection. This chapter reviews the main methods of GIS data capture and transfer and introduces key practical management issues.

GIS Data Collection. This chapter reviews the main methods of GIS data capture and transfer and introduces key practical management issues. 9 GIS Data Collection OVERVIEW This chapter reviews the main methods of GIS data capture and transfer and introduces key practical management issues. It distinguishes between primary (direct measurement)

More information

Hands on Exercise Using ecognition Developer

Hands on Exercise Using ecognition Developer 1 Hands on Exercise Using ecognition Developer 2 Hands on Exercise Using ecognition Developer Hands on Exercise Using ecognition Developer Go the Windows Start menu and Click Start > All Programs> ecognition

More information

IMAGINE Objective. The Future of Feature Extraction, Update & Change Mapping

IMAGINE Objective. The Future of Feature Extraction, Update & Change Mapping IMAGINE ive The Future of Feature Extraction, Update & Change Mapping IMAGINE ive provides object based multi-scale image classification and feature extraction capabilities to reliably build and maintain

More information

Neighbourhood Operations Specific Theory

Neighbourhood Operations Specific Theory Neighbourhood Operations Specific Theory Neighbourhood operations are a method of analysing data in a GIS environment. They are especially important when a situation requires the analysis of relationships

More information

Topic 5: Raster and Vector Data Models

Topic 5: Raster and Vector Data Models Geography 38/42:286 GIS 1 Topic 5: Raster and Vector Data Models Chapters 3 & 4: Chang (Chapter 4: DeMers) 1 The Nature of Geographic Data Most features or phenomena occur as either: discrete entities

More information

The Feature Analyst Extension for ERDAS IMAGINE

The Feature Analyst Extension for ERDAS IMAGINE The Feature Analyst Extension for ERDAS IMAGINE Automated Feature Extraction Software for GIS Database Maintenance We put the information in GIS SM A Visual Learning Systems, Inc. White Paper September

More information

TELEDYNE GEOSPATIAL SOLUTIONS

TELEDYNE GEOSPATIAL SOLUTIONS GEOSPATIAL SOLUTIONS THE CONTENTS TELEDYNE GEOSPATIAL SOLUTIONS Capability Overview... 4 Hosted Payloads... 6 Payload Operations as a Service... 8 TCloud Data Management... 10 Imagery Sales... 12 About

More information

Potential of Sentinel-2 for retrieval of biophysical and biochemical vegetation parameters

Potential of Sentinel-2 for retrieval of biophysical and biochemical vegetation parameters Insert the title of your slide Potential of Sentinel-2 for retrieval of biophysical and biochemical vegetation parameters D. Scheffler, T. Kuester, K. Segl, D. Spengler and H. Kaufmann Motivation Insert

More information

Hyperspectral Remote Sensing in Acquisition of Geospatial Information for the Modern Warfare. Dr M R Bhutiyani,

Hyperspectral Remote Sensing in Acquisition of Geospatial Information for the Modern Warfare. Dr M R Bhutiyani, Hyperspectral Remote Sensing in Acquisition of Geospatial Information for the Modern Warfare Dr M R Bhutiyani, Ex-Director, DTRL, New Delhi Chairman, ISRS, Delhi Chapter Air photo-interpretation Multi-spectral

More information

Attribute Accuracy. Quantitative accuracy refers to the level of bias in estimating the values assigned such as estimated values of ph in a soil map.

Attribute Accuracy. Quantitative accuracy refers to the level of bias in estimating the values assigned such as estimated values of ph in a soil map. Attribute Accuracy Objectives (Entry) This basic concept of attribute accuracy has been introduced in the unit of quality and coverage. This unit will teach a basic technique to quantify the attribute

More information

UNIT 22. Remote Sensing and Photogrammetry. Start-up. Reading. In class discuss the following questions:

UNIT 22. Remote Sensing and Photogrammetry. Start-up. Reading. In class discuss the following questions: UNIT 22 Remote Sensing and Photogrammetry Start-up In class discuss the following questions: A. What do you know about remote sensing? B. What does photogrammetry do? C. Is there a connection between the

More information

MRR (Multi Resolution Raster) Revolutionizing Raster

MRR (Multi Resolution Raster) Revolutionizing Raster MRR (Multi Resolution Raster) Revolutionizing Raster Praveen Gupta Praveen.Gupta@pb.com Pitney Bowes, Noida, India T +91 120 4026000 M +91 9810 659 350 Pitney Bowes, pitneybowes.com/in 5 th Floor, Tower

More information

Exercise 1: Introduction to ILWIS with the Riskcity dataset

Exercise 1: Introduction to ILWIS with the Riskcity dataset Exercise 1: Introduction to ILWIS with the Riskcity dataset Expected time: 2.5 hour Data: data from subdirectory: CENN_DVD\ILWIS_ExerciseData\IntroRiskCity Objectives: After this exercise you will be able

More information

Introducing ArcScan for ArcGIS

Introducing ArcScan for ArcGIS Introducing ArcScan for ArcGIS An ESRI White Paper August 2003 ESRI 380 New York St., Redlands, CA 92373-8100, USA TEL 909-793-2853 FAX 909-793-5953 E-MAIL info@esri.com WEB www.esri.com Copyright 2003

More information

A State mosaic ready referral system

A State mosaic ready referral system A State mosaic ready referral system M.Nagamani, V. Subramanian, S. Rajendra Kumar, K.M.M. Rao National Remote Sensing Agency, Balanagar, Hyderabad 500-037, India. Keywords: Toposheet, Scale, Mosaic, Time

More information

APPENDIX E2. Vernal Pool Watershed Mapping

APPENDIX E2. Vernal Pool Watershed Mapping APPENDIX E2 Vernal Pool Watershed Mapping MEMORANDUM To: U.S. Fish and Wildlife Service From: Tyler Friesen, Dudek Subject: SSHCP Vernal Pool Watershed Analysis Using LIDAR Data Date: February 6, 2014

More information

2010 LiDAR Project. GIS User Group Meeting June 30, 2010

2010 LiDAR Project. GIS User Group Meeting June 30, 2010 2010 LiDAR Project GIS User Group Meeting June 30, 2010 LiDAR = Light Detection and Ranging Technology that utilizes lasers to determine the distance to an object or surface Measures the time delay between

More information

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA M. Lorraine Tighe Director, Geospatial Solutions Intermap Session: Photogrammetry & Image Processing

More information

Classification (or thematic) accuracy assessment. Lecture 8 March 11, 2005

Classification (or thematic) accuracy assessment. Lecture 8 March 11, 2005 Classification (or thematic) accuracy assessment Lecture 8 March 11, 2005 Why and how Remote sensing-derived thematic information are becoming increasingly important. Unfortunately, they contain errors.

More information

STRATEGIES FOR ALTERNATE APPROACHES FOR VEGETATION INDICES COMPOSITING USING PARALLEL TEMPORAL MAP ALGEBRA

STRATEGIES FOR ALTERNATE APPROACHES FOR VEGETATION INDICES COMPOSITING USING PARALLEL TEMPORAL MAP ALGEBRA STRATEGIES FOR ALTERNATE APPROACHES FOR VEGETATION INDICES COMPOSITING USING PARALLEL TEMPORAL MAP ALGEBRA Bijay Shrestha, Dr. Charles O Hara Dr. Nicholas H. Younan Mississippi State University OUTLINE

More information

The GIS Spatial Data Model

The GIS Spatial Data Model The GIS Spatial Data Model Introduction: Spatial data are what drive a GIS. Every piece of functionality that makes a GIS separate from another analytical environment is rooted in the spatially explicit

More information

ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL DATA

ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL DATA ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL DATA HarrisGeospatial.com BENEFITS Use one solution to work with all your data types Access a complete suite of analysis tools Customize

More information

Integration of airborne LiDAR and hyperspectral remote sensing data to support the Vegetation Resources Inventory and sustainable forest management

Integration of airborne LiDAR and hyperspectral remote sensing data to support the Vegetation Resources Inventory and sustainable forest management Integration of airborne LiDAR and hyperspectral remote sensing data to support the Vegetation Resources Inventory and sustainable forest management Executive Summary This project has addressed a number

More information

IMPROVING 2D CHANGE DETECTION BY USING AVAILABLE 3D DATA

IMPROVING 2D CHANGE DETECTION BY USING AVAILABLE 3D DATA IMPROVING 2D CHANGE DETECTION BY USING AVAILABLE 3D DATA C.J. van der Sande a, *, M. Zanoni b, B.G.H. Gorte a a Optical and Laser Remote Sensing, Department of Earth Observation and Space systems, Delft

More information

Lecture 06. Raster and Vector Data Models. Part (1) Common Data Models. Raster. Vector. Points. Points. ( x,y ) Area. Area Line.

Lecture 06. Raster and Vector Data Models. Part (1) Common Data Models. Raster. Vector. Points. Points. ( x,y ) Area. Area Line. Lecture 06 Raster and Vector Data Models Part (1) 1 Common Data Models Vector Raster Y Points Points ( x,y ) Line Area Line Area 2 X 1 3 Raster uses a grid cell structure Vector is more like a drawn map

More information

A Global Environment Analysis and Visualization System with Semantic Computing for Multi- Dimensional World Map

A Global Environment Analysis and Visualization System with Semantic Computing for Multi- Dimensional World Map Article A Global Environment Analysis and Visualization System with Semantic Computing for Multi- Dimensional World Map Yasushi Kiyoki Graduate School of Media and Governance, Keio University, SFC, 5322

More information

Geometric Rectification of Remote Sensing Images

Geometric Rectification of Remote Sensing Images Geometric Rectification of Remote Sensing Images Airborne TerrestriaL Applications Sensor (ATLAS) Nine flight paths were recorded over the city of Providence. 1 True color ATLAS image (bands 4, 2, 1 in

More information

From Multi-sensor Data to 3D Reconstruction of Earth Surface: Innovative, Powerful Methods for Geoscience and Other Applications

From Multi-sensor Data to 3D Reconstruction of Earth Surface: Innovative, Powerful Methods for Geoscience and Other Applications From Multi-sensor Data to 3D Reconstruction of Earth Surface: Innovative, Powerful Methods for Geoscience and Other Applications Bea Csatho, Toni Schenk*, Taehun Yoon* and Michael Sheridan, Department

More information

RASTER ANALYSIS GIS Analysis Winter 2016

RASTER ANALYSIS GIS Analysis Winter 2016 RASTER ANALYSIS GIS Analysis Winter 2016 Raster Data The Basics Raster Data Format Matrix of cells (pixels) organized into rows and columns (grid); each cell contains a value representing information.

More information

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications N.J.P.L.S. An Introduction to LiDAR Concepts and Applications Presentation Outline LIDAR Data Capture Advantages of Lidar Technology Basics Intensity and Multiple Returns Lidar Accuracy Airborne Laser

More information

HYPERSPECTRAL REMOTE SENSING

HYPERSPECTRAL REMOTE SENSING HYPERSPECTRAL REMOTE SENSING By Samuel Rosario Overview The Electromagnetic Spectrum Radiation Types MSI vs HIS Sensors Applications Image Analysis Software Feature Extraction Information Extraction 1

More information

Introduction :- Storage of GIS Database :- What is tiling?

Introduction :- Storage of GIS Database :- What is tiling? Introduction :- GIS storage and editing subsystems provides a variety of tools for storing and maintaining the digital representation of a study area. It also provide tools for examining each theme for

More information

Digital Image Processing Lectures 1 & 2

Digital Image Processing Lectures 1 & 2 Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Spring 2013 Introduction to DIP The primary interest in transmitting and handling images in digital

More information

Digital Image Classification Geography 4354 Remote Sensing

Digital Image Classification Geography 4354 Remote Sensing Digital Image Classification Geography 4354 Remote Sensing Lab 11 Dr. James Campbell December 10, 2001 Group #4 Mark Dougherty Paul Bartholomew Akisha Williams Dave Trible Seth McCoy Table of Contents:

More information

Appendix III: Ten (10) Specialty Areas - Remote Sensing/Imagry Science Curriculum Mapping to Knowledge Units-RS/Imagry Science Specialty Area

Appendix III: Ten (10) Specialty Areas - Remote Sensing/Imagry Science Curriculum Mapping to Knowledge Units-RS/Imagry Science Specialty Area III. Remote Sensing/Imagery Science Specialty Area 1. Knowledge Unit title: Remote Sensing Collection Platforms A. Knowledge Unit description and objective: Understand and be familiar with remote sensing

More information

ENVI ANALYTICS ANSWERS YOU CAN TRUST

ENVI ANALYTICS ANSWERS YOU CAN TRUST ENVI ANALYTICS ANSWERS YOU CAN TRUST HarrisGeospatial.com Since its launch in 1991, ENVI has enabled users to leverage remotely sensed data to better understand our complex world. Over the years, Harris

More information

Remote Sensed Image Classification based on Spatial and Spectral Features using SVM

Remote Sensed Image Classification based on Spatial and Spectral Features using SVM RESEARCH ARTICLE OPEN ACCESS Remote Sensed Image Classification based on Spatial and Spectral Features using SVM Mary Jasmine. E PG Scholar Department of Computer Science and Engineering, University College

More information

RASTER ANALYSIS GIS Analysis Fall 2013

RASTER ANALYSIS GIS Analysis Fall 2013 RASTER ANALYSIS GIS Analysis Fall 2013 Raster Data The Basics Raster Data Format Matrix of cells (pixels) organized into rows and columns (grid); each cell contains a value representing information. What

More information

UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA

UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA Aurelio Castro Cesar Piovanetti Geographic Mapping Technologies Corp. (GMT) Consultores en GIS info@gmtgis.com Geographic

More information

Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Cadastre - Preliminary Results

Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Cadastre - Preliminary Results Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Pankaj Kumar 1*, Alias Abdul Rahman 1 and Gurcan Buyuksalih 2 ¹Department of Geoinformation Universiti

More information

Quality assessment of RS data. Remote Sensing (GRS-20306)

Quality assessment of RS data. Remote Sensing (GRS-20306) Quality assessment of RS data Remote Sensing (GRS-20306) Quality assessment General definition for quality assessment (Wikipedia) includes evaluation, grading and measurement process to assess design,

More information

Onshore remote sensing applications: an overview

Onshore remote sensing applications: an overview Onshore remote sensing applications: an overview Dr. Richard Teeuw and Dr. Malcolm Whitworth School of Earth and Environmental Sciences, University of Portsmouth, UK. Overview Presentation on the applications

More information

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification DIGITAL IMAGE ANALYSIS Image Classification: Object-based Classification Image classification Quantitative analysis used to automate the identification of features Spectral pattern recognition Unsupervised

More information

Graphic Display of Vector Object

Graphic Display of Vector Object What is GIS? GIS stands for Geographic Information Systems, although the term Geographic Information Science is gaining popularity. A GIS is a software platform for storing, organizing, viewing, querying,

More information

Spatial Density Distribution

Spatial Density Distribution GeoCue Group Support Team 5/28/2015 Quality control and quality assurance checks for LIDAR data continue to evolve as the industry identifies new ways to help ensure that data collections meet desired

More information

Geodatabase over Taita Hills, Kenya

Geodatabase over Taita Hills, Kenya Geodatabase over Taita Hills, Kenya Anna Broberg & Antero Keskinen Abstract This article introduces the basics of geographical information systems (GIS) and explains how the Taita Hills project can benefit

More information

EVALUATION OF CONVENTIONAL DIGITAL CAMERA SCENES FOR THEMATIC INFORMATION EXTRACTION ABSTRACT

EVALUATION OF CONVENTIONAL DIGITAL CAMERA SCENES FOR THEMATIC INFORMATION EXTRACTION ABSTRACT EVALUATION OF CONVENTIONAL DIGITAL CAMERA SCENES FOR THEMATIC INFORMATION EXTRACTION H. S. Lim, M. Z. MatJafri and K. Abdullah School of Physics Universiti Sains Malaysia, 11800 Penang ABSTRACT A study

More information

Outlier and Target Detection in Aerial Hyperspectral Imagery: A Comparison of Traditional and Percentage Occupancy Hit or Miss Transform Techniques

Outlier and Target Detection in Aerial Hyperspectral Imagery: A Comparison of Traditional and Percentage Occupancy Hit or Miss Transform Techniques Outlier and Target Detection in Aerial Hyperspectral Imagery: A Comparison of Traditional and Percentage Occupancy Hit or Miss Transform Techniques Andrew Young a, Stephen Marshall a, and Alison Gray b

More information

GEO-SPATIAL METADATA SERVICES ISRO S INITIATIVE

GEO-SPATIAL METADATA SERVICES ISRO S INITIATIVE GEO-SPATIAL METADATA SERVICES ISRO S INITIATIVE Pushpalata B Shah, Navita J Thakkar Space Applications Centre (ISRO) Ahmedabad 380 015 - pushpa@sac.isro.gov.in Commission IV, Working Group IV/5 KEYWORDS:

More information

GEOMETRY AND RADIATION QUALITY EVALUATION OF GF-1 AND GF-2 SATELLITE IMAGERY. Yong Xie

GEOMETRY AND RADIATION QUALITY EVALUATION OF GF-1 AND GF-2 SATELLITE IMAGERY. Yong Xie Prepared by CNSA Agenda Item: WG.3 GEOMETRY AND RADIATION QUALITY EVALUATION OF GF-1 AND GF-2 SATELLITE IMAGERY Yong Xie Institute of Remote Sensing and Digital Earth, Chinese Academy of Science GF-1 and

More information

GIS Data Models. 4/9/ GIS Data Models

GIS Data Models. 4/9/ GIS Data Models GIS Data Models 1 Conceptual models of the real world The real world can be described using two conceptually different models: 1. As discrete objects, possible to represent as points, lines or polygons.

More information

InSAR Operational and Processing Steps for DEM Generation

InSAR Operational and Processing Steps for DEM Generation InSAR Operational and Processing Steps for DEM Generation By F. I. Okeke Department of Geoinformatics and Surveying, University of Nigeria, Enugu Campus Tel: 2-80-5627286 Email:francisokeke@yahoo.com Promoting

More information

Airborne Laser Scanning: Remote Sensing with LiDAR

Airborne Laser Scanning: Remote Sensing with LiDAR Airborne Laser Scanning: Remote Sensing with LiDAR ALS / LIDAR OUTLINE Laser remote sensing background Basic components of an ALS/LIDAR system Two distinct families of ALS systems Waveform Discrete Return

More information

Understanding Geospatial Data Models

Understanding Geospatial Data Models Understanding Geospatial Data Models 1 A geospatial data model is a formal means of representing spatially referenced information. It is a simplified view of physical entities and a conceptualization of

More information

LiForest Software White paper. TRGS, 3070 M St., Merced, 93610, Phone , LiForest

LiForest Software White paper. TRGS, 3070 M St., Merced, 93610, Phone ,   LiForest 0 LiForest LiForest is a platform to manipulate large LiDAR point clouds and extract useful information specifically for forest applications. It integrates a variety of advanced LiDAR processing algorithms

More information

EVOLUTION OF POINT CLOUD

EVOLUTION OF POINT CLOUD Figure 1: Left and right images of a stereo pair and the disparity map (right) showing the differences of each pixel in the right and left image. (source: https://stackoverflow.com/questions/17607312/difference-between-disparity-map-and-disparity-image-in-stereo-matching)

More information

4.0 DIGITIZATION, EDITING AND STRUCTURING OF MAP DATA

4.0 DIGITIZATION, EDITING AND STRUCTURING OF MAP DATA .0 DIGITIZATION, EDITING AND STRUCTURING OF MAP DATA The process of digitizing existing maps is a transformation from one analog) form of information to another digital) form. Data input is the operation

More information

Matthew Heric, Geoscientist and Kevin D. Potter, Product Manager. Autometric, Incorporated 5301 Shawnee Road Alexandria, Virginia USA

Matthew Heric, Geoscientist and Kevin D. Potter, Product Manager. Autometric, Incorporated 5301 Shawnee Road Alexandria, Virginia USA INTEGRATIONS OF STRUCTURED QUERY LANGUAGE WITH GEOGRAPHIC INFORMATION SYSTEM PROCESSING: GeoServer Matthew Heric, Geoscientist and Kevin D. Potter, Product Manager Autometric, Incorporated 5301 Shawnee

More information

The Gain setting for Landsat 7 (High or Low Gain) depends on: Sensor Calibration - Application. the surface cover types of the earth and the sun angle

The Gain setting for Landsat 7 (High or Low Gain) depends on: Sensor Calibration - Application. the surface cover types of the earth and the sun angle Sensor Calibration - Application Station Identifier ASN Scene Center atitude 34.840 (34 3'0.64"N) Day Night DAY Scene Center ongitude 33.03270 (33 0'7.72"E) WRS Path WRS Row 76 036 Corner Upper eft atitude

More information

Introduction to the Google Earth Engine Workshop

Introduction to the Google Earth Engine Workshop Introduction to the Google Earth Engine Workshop This workshop will introduce the user to the Graphical User Interface (GUI) version of the Google Earth Engine. It assumes the user has a basic understanding

More information

DATA FUSION, DE-NOISING, AND FILTERING TO PRODUCE CLOUD-FREE TEMPORAL COMPOSITES USING PARALLEL TEMPORAL MAP ALGEBRA

DATA FUSION, DE-NOISING, AND FILTERING TO PRODUCE CLOUD-FREE TEMPORAL COMPOSITES USING PARALLEL TEMPORAL MAP ALGEBRA DATA FUSION, DE-NOISING, AND FILTERING TO PRODUCE CLOUD-FREE TEMPORAL COMPOSITES USING PARALLEL TEMPORAL MAP ALGEBRA Bijay Shrestha Dr. Charles O Hara Preeti Mali GeoResources Institute Mississippi State

More information

MODULE 3. FACTORS AFFECTING 3D LASER SCANNING

MODULE 3. FACTORS AFFECTING 3D LASER SCANNING MODULE 3. FACTORS AFFECTING 3D LASER SCANNING Learning Outcomes: This module discusses factors affecting 3D laser scanner performance. Students should be able to explain the impact of various factors on

More information

Imagery and Raster Data in ArcGIS. Abhilash and Abhijit

Imagery and Raster Data in ArcGIS. Abhilash and Abhijit Imagery and Raster Data in ArcGIS Abhilash and Abhijit Agenda Imagery in ArcGIS Mosaic datasets Raster processing ArcGIS is a Comprehensive Imagery System Integrating All Types, Sources, and Sensor Models

More information

INTRODUCTION TO IDRISI

INTRODUCTION TO IDRISI INTRODUCTION TO IDRISI Introduction The aim of this practical is to familiarise yourself with the IDRISI GIS environment. IDRISI is primarily designed to process and analyse raster information (remember,

More information

Multi-Spectral Image Analysis and NURBS-based 3D Visualization of Land Maps

Multi-Spectral Image Analysis and NURBS-based 3D Visualization of Land Maps Multi-Spectral Image Analysis and URBS-based 3D Visualization of Land Maps Dilshan Jayathilaka and Ravinda G.. Meegama Centre for Computer Studies Sabaragamuwa University P.O. Box 2, Belihuloya SRI LAKA

More information

LIDAR an Introduction and Overview

LIDAR an Introduction and Overview LIDAR an Introduction and Overview Rooster Rock State Park & Crown Point. Oregon DOGAMI Lidar Project Presented by Keith Marcoe GEOG581, Fall 2007. Portland State University. Light Detection And Ranging

More information

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM Lecture 13: Advanced Data Models: Terrain mapping and Analysis Contents of Lecture Surface Data Models DEM GRID Model TIN Model Visibility Analysis Geography 373 Spring, 2006 Changjoo Kim 11/29/2006 1

More information

By Colin Childs, ESRI Education Services. Catalog

By Colin Childs, ESRI Education Services. Catalog s resolve many traditional raster management issues By Colin Childs, ESRI Education Services Source images ArcGIS 10 introduces Catalog Mosaicked images Sources, mosaic methods, and functions are used

More information

LSGI 521: Principles of GIS. Lecture 5: Spatial Data Management in GIS. Dr. Bo Wu

LSGI 521: Principles of GIS. Lecture 5: Spatial Data Management in GIS. Dr. Bo Wu Lecture 5: Spatial Data Management in GIS Dr. Bo Wu lsbowu@polyu.edu.hk Department of Land Surveying & Geo-Informatics The Hong Kong Polytechnic University Contents 1. Learning outcomes 2. From files to

More information

Geographic Information Systems. using QGIS

Geographic Information Systems. using QGIS Geographic Information Systems using QGIS 1 - INTRODUCTION Generalities A GIS (Geographic Information System) consists of: -Computer hardware -Computer software - Digital Data Generalities GIS softwares

More information

Integrated Multi-Source LiDAR and Imagery

Integrated Multi-Source LiDAR and Imagery Figure 1: AirDaC aerial scanning system Integrated Multi-Source LiDAR and Imagery The derived benefits of LiDAR scanning in the fields of engineering, surveying, and planning are well documented. It has

More information

CORRECTING RS SYSTEM DETECTOR ERROR GEOMETRIC CORRECTION

CORRECTING RS SYSTEM DETECTOR ERROR GEOMETRIC CORRECTION 1 CORRECTING RS SYSTEM DETECTOR ERROR GEOMETRIC CORRECTION Lecture 1 Correcting Remote Sensing 2 System Detector Error Ideally, the radiance recorded by a remote sensing system in various bands is an accurate

More information

Review of Cartographic Data Types and Data Models

Review of Cartographic Data Types and Data Models Review of Cartographic Data Types and Data Models GIS Data Models Raster Versus Vector in GIS Analysis Fundamental element used to represent spatial features: Raster: pixel or grid cell. Vector: x,y coordinate

More information