Towards Jungle Computing with Ibis/Constellation

Size: px
Start display at page:

Download "Towards Jungle Computing with Ibis/Constellation"

Transcription

1 Towards Jungle Computing with Ibis/Constellation Jason Maassen, Niels Drost Henri Bal, Frank Seinstra Department of Computer Science VU University, Amsterdam, The Netherlands

2 Introduction HPC is entering many domains Not just: physics / chemistry / climate modelling Also: semantic web / medical / multimedia analysis / neuroinformatics / remote sensing / astronomy /... HPC is becoming more complex Not just large SMP or clusters, instead: Clusters of SMPs / Grids / Clouds / Supers /... Heterogenous machines using GPU / Cell / FPGA It s a jungle out there 3DAPAS Workshop

3 Example Domain Computational Astrophysics (amusecode.org)

4 Jungle Computing Worst case computing... as required by users Arbitrary combination of distributed, hierarchical, and heterogenous computing 3DAPAS Workshop

5 Many Task Computing According to Raicu, Foster, et al [SC 08] High-performance computations comprising multiple distinct activities, coupled via file system operations or message passing. Tasks may be small or large, uni-processor or multi-processor, compute-intensive or data-intensive. The set of tasks may be static or dynamic, homogeneous or heterogeneous, loosely coupled or tightly coupled. The aggregate number of tasks, quantity of computing, and volumes of data may be extremely large. Applications are dynamic and heterogeneous workflows / DAGs of activities 3DAPAS Workshop

6 MTC in the Jungle MTC has advantages for Jungle Computing Many distinct activities Can be implemented independently using the tools and targeted to the HPC architecture, that best suit them Reduced programming complexity Complete applications are constructed using sequences and combinations of activities 3DAPAS Workshop

7 Constellation MTC system for Jungle Computing Model based on: activities (tasks) executors (resources) contexts (matchmaking) events (communication) 3DAPAS Workshop

8 Constellation Model Application Application: set of activities Distinct tasks Size and complexity may vary Targeted at specific HPC platform (Loosly) Coupled using events Often wrapper around existing code Similar to workflow or DAG of tasks Dynamic and unlimited in size 3DAPAS Workshop

9 Constellation Model Hardware Hardware: set of executors Capable of running activities May represent anything from a single core to an entire cluster, a GPU, etc. May be application specific Provides an application specific heterogeneous resource pool 3DAPAS Workshop

10 Constellation Model Context Both activities and executors are tagged with a context Application defined label (+ rank) Used to defines relationship between activites and executors, e.g.: Data dependencies, hardware requirements,... May combine contexts Executors may have preference for label or rank 3DAPAS WorkShop

11 Constellation Model Matchmaking RTS performs load-balancing and match-making Ensures activities are forwarded to a suitable executor Tries to keep all executors busy Uses context-aware work-stealing RTS also performs event routing Based on unique activity identifier ComplexHPC Spring School

12 Constellation API 3DAPAS Workshop

13 Constellation API 3DAPAS Workshop

14 DACH 2008 Data Challenge in conjunction with IEEE Cluster/Grid 2008 Supernova detection Analyse 1052 image pairs on 11 clusters (Intrigger) Sequential executable provided 3DAPAS Workshop

15 DACH 2008 Problem Main problems: Data distribution Heterogeneity of work and hardware Load balancing 3DAPAS Workshop

16 DACH 2008 Workflow Winning approach in 2008: Parallelize workflow to improve hardware utilization Create hierarchical master worker framework Scheduling heuristics using data location and size 3DAPAS Workshop

17 Constellation Version Option 1: Monolythic Wrap entire application in a single activity One activity per image pair Wrap each machine in one executor Multiple cores per executor Use context to influence order and placement of each of activities 3DAPAS Workshop

18 Evaluation Intrigger not available Instead we use DAS3+DAS4 5+6 clusters in the Netherlands Mix of 2/4/8/12/48 core machines Various types of GPUs Three Scenarios Data locality (Executor granularity) Heterogeneous processing 3DAPAS Workshop

19 Scenario 1 Data Locality Data distributed over 4 clusters of DAS3 + DAS4 Use context to express data locality and preferred processing order Adapt context to tune application No change in application 3DAPAS Workshop

20 Scenario 1 Results Activity Executor Effect any any Random order any,50 VU3, VU4,50 any, biggest VU3, biggest Sorted by size Local only Sorted by size VU3, VU4, any,50 VU3, any, biggest Preference for local Fallback to any, Sorted by size 3DAPAS Workshop

21 Constellation Version Option 2: Workflow Wrap each stage in activity Wrap each core executor Use context to influence order and placement of each of the jobs 3DAPAS Workshop

22 Scenario 3: Heterogeneous System 18 node GPU cluster 8 cores + 1 GPU per node Activity: single task Executor: 1 core (top) 1 core or GPU (bottom) Replaced activity 7.2 with GPU version. Label activities and executors accordingly Significant performance gain. ComplexHPC Spring School

23 Conclusions We think Jungle Computing is a neccesity for some application areas. Constellation offers a suitable model (MTC) to create such applications. Initial experiments show that Constellation works well for a wide range of hardware configurations Easy to reconfigure applications to match resources Allows integration of specialized accellerator codes Suitable basis for a Jungle Computing model 3DAPAS Workshop

24 Future Work Application development AMUSE Remote Sensing Climate modelling Platform improvements Easier integration of existing codes Smart/automatic deployment/tuning of executors Improve data handling Better monitoring 3DAPAS Workshop

25 Questions? 3DAPAS Workshop

26 Scenario 2 Executor Granularity 30 largest images only Single 48 core machine Activity: entire application (a-c) single task (d) Executor: [n]-cores No change in application for experiment (a-c) Only change executor config. Completely ported application in (d) Significant performance gain! 3DAPAS Workshop

MOHA: Many-Task Computing Framework on Hadoop

MOHA: Many-Task Computing Framework on Hadoop Apache: Big Data North America 2017 @ Miami MOHA: Many-Task Computing Framework on Hadoop Soonwook Hwang Korea Institute of Science and Technology Information May 18, 2017 Table of Contents Introduction

More information

Synonymous with supercomputing Tightly-coupled applications Implemented using Message Passing Interface (MPI) Large of amounts of computing for short

Synonymous with supercomputing Tightly-coupled applications Implemented using Message Passing Interface (MPI) Large of amounts of computing for short Synonymous with supercomputing Tightly-coupled applications Implemented using Message Passing Interface (MPI) Large of amounts of computing for short periods of time Usually requires low latency interconnects

More information

Distributed ASCI Supercomputer DAS-1 DAS-2 DAS-3 DAS-4 DAS-5

Distributed ASCI Supercomputer DAS-1 DAS-2 DAS-3 DAS-4 DAS-5 Distributed ASCI Supercomputer DAS-1 DAS-2 DAS-3 DAS-4 DAS-5 Paper IEEE Computer (May 2016) What is DAS? Distributed common infrastructure for Dutch Computer Science Distributed: multiple (4-6) clusters

More information

Typically applied in clusters and grids Loosely-coupled applications with sequential jobs Large amounts of computing for long periods of times

Typically applied in clusters and grids Loosely-coupled applications with sequential jobs Large amounts of computing for long periods of times Typically applied in clusters and grids Loosely-coupled applications with sequential jobs Large amounts of computing for long periods of times Measured in operations per month or years 2 Bridge the gap

More information

Distributed ASCI Supercomputer DAS-1 DAS-2 DAS-3 DAS-4 DAS-5

Distributed ASCI Supercomputer DAS-1 DAS-2 DAS-3 DAS-4 DAS-5 Distributed ASCI Supercomputer DAS-1 DAS-2 DAS-3 DAS-4 DAS-5 Paper IEEE Computer (May 2016) What is DAS? Distributed common infrastructure for Dutch Computer Science Distributed: multiple (4-6) clusters

More information

Automating Real-time Seismic Analysis

Automating Real-time Seismic Analysis Automating Real-time Seismic Analysis Through Streaming and High Throughput Workflows Rafael Ferreira da Silva, Ph.D. http://pegasus.isi.edu Do we need seismic analysis? Pegasus http://pegasus.isi.edu

More information

Grid Scheduling Architectures with Globus

Grid Scheduling Architectures with Globus Grid Scheduling Architectures with Workshop on Scheduling WS 07 Cetraro, Italy July 28, 2007 Ignacio Martin Llorente Distributed Systems Architecture Group Universidad Complutense de Madrid 1/38 Contents

More information

MATE-EC2: A Middleware for Processing Data with Amazon Web Services

MATE-EC2: A Middleware for Processing Data with Amazon Web Services MATE-EC2: A Middleware for Processing Data with Amazon Web Services Tekin Bicer David Chiu* and Gagan Agrawal Department of Compute Science and Engineering Ohio State University * School of Engineering

More information

Zorilla: a peer-to-peer middleware for real-world distributed systems

Zorilla: a peer-to-peer middleware for real-world distributed systems CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Computat.: Pract. Exper. (2011) Published online in Wiley Online Library (wileyonlinelibrary.com)..1713 Zorilla: a peer-to-peer middleware

More information

PERFORMANCE ANALYSIS AND OPTIMIZATION OF MULTI-CLOUD COMPUITNG FOR LOOSLY COUPLED MTC APPLICATIONS

PERFORMANCE ANALYSIS AND OPTIMIZATION OF MULTI-CLOUD COMPUITNG FOR LOOSLY COUPLED MTC APPLICATIONS PERFORMANCE ANALYSIS AND OPTIMIZATION OF MULTI-CLOUD COMPUITNG FOR LOOSLY COUPLED MTC APPLICATIONS V. Prasathkumar, P. Jeevitha Assiatant Professor, Department of Information Technology Sri Shakthi Institute

More information

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical Identify a problem Review approaches to the problem Propose a novel approach to the problem Define, design, prototype an implementation to evaluate your approach Could be a real system, simulation and/or

More information

Semantic Web in a Constrained Environment

Semantic Web in a Constrained Environment Semantic Web in a Constrained Environment Laurens Rietveld and Stefan Schlobach Department of Computer Science, VU University Amsterdam, The Netherlands {laurens.rietveld,k.s.schlobach}@vu.nl Abstract.

More information

Workloads Programmierung Paralleler und Verteilter Systeme (PPV)

Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Workloads Programmierung Paralleler und Verteilter Systeme (PPV) Sommer 2015 Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc., Prof. Dr. Andreas Polze Workloads 2 Hardware / software execution environment

More information

UVA HPC & BIG DATA COURSE INTRODUCTORY LECTURES. Adam Belloum

UVA HPC & BIG DATA COURSE INTRODUCTORY LECTURES. Adam Belloum UVA HPC & BIG DATA COURSE INTRODUCTORY LECTURES Adam Belloum Introduction to Parallel programming distributed systems Parallel programming MPI/openMP/RMI Service Oriented Architecture and Web Service Grid

More information

Introduction & Motivation Problem Statement Proposed Work Evaluation Conclusions Future Work

Introduction & Motivation Problem Statement Proposed Work Evaluation Conclusions Future Work Introduction & Motivation Problem Statement Proposed Work Evaluation Conclusions Future Work Introduction & Motivation Problem Statement Proposed Work Evaluation Conclusions Future Work Today (2014):

More information

Adaptive Cluster Computing using JavaSpaces

Adaptive Cluster Computing using JavaSpaces Adaptive Cluster Computing using JavaSpaces Jyoti Batheja and Manish Parashar The Applied Software Systems Lab. ECE Department, Rutgers University Outline Background Introduction Related Work Summary of

More information

EFFICIENT ALLOCATION OF DYNAMIC RESOURCES IN A CLOUD

EFFICIENT ALLOCATION OF DYNAMIC RESOURCES IN A CLOUD EFFICIENT ALLOCATION OF DYNAMIC RESOURCES IN A CLOUD S.THIRUNAVUKKARASU 1, DR.K.P.KALIYAMURTHIE 2 Assistant Professor, Dept of IT, Bharath University, Chennai-73 1 Professor& Head, Dept of IT, Bharath

More information

Overview Past Work Future Work. Motivation Proposal. Work-in-Progress

Overview Past Work Future Work. Motivation Proposal. Work-in-Progress Overview Past Work Future Work Motivation Proposal Work-in-Progress 2 HPC: High-Performance Computing Synonymous with supercomputing Tightly-coupled applications Implemented using Message Passing Interface

More information

FACULTY OF ENGINEERING B.E. 4/4 (CSE) II Semester (Old) Examination, June Subject : Information Retrieval Systems (Elective III) Estelar

FACULTY OF ENGINEERING B.E. 4/4 (CSE) II Semester (Old) Examination, June Subject : Information Retrieval Systems (Elective III) Estelar B.E. 4/4 (CSE) II Semester (Old) Examination, June 2014 Subject : Information Retrieval Systems Code No. 6306 / O 1 Define Information retrieval systems. 3 2 What is precision and recall? 3 3 List the

More information

Grid Scheduler. Grid Information Service. Local Resource Manager L l Resource Manager. Single CPU (Time Shared Allocation) (Space Shared Allocation)

Grid Scheduler. Grid Information Service. Local Resource Manager L l Resource Manager. Single CPU (Time Shared Allocation) (Space Shared Allocation) Scheduling on the Grid 1 2 Grid Scheduling Architecture User Application Grid Scheduler Grid Information Service Local Resource Manager Local Resource Manager Local L l Resource Manager 2100 2100 2100

More information

The Use of Cloud Computing Resources in an HPC Environment

The Use of Cloud Computing Resources in an HPC Environment The Use of Cloud Computing Resources in an HPC Environment Bill, Labate, UCLA Office of Information Technology Prakashan Korambath, UCLA Institute for Digital Research & Education Cloud computing becomes

More information

Collaboration Support in Open Hypermedia Environments

Collaboration Support in Open Hypermedia Environments Collaboration Support in Open Hypermedia Environments Jörg M. Haake & Weigang Wang GMD - German National Research Center for Information Technology Integrated Publication and Information Systems Institute

More information

Parallel VS Distributed

Parallel VS Distributed Parallel VS Distributed The distributed systems tend to be multicomputers whose nodes made of processor plus its private memory whereas parallel computer refers to a shared memory multiprocessor. In Parallel

More information

Grid-Based Genetic Algorithm Approach to Colour Image Segmentation

Grid-Based Genetic Algorithm Approach to Colour Image Segmentation Grid-Based Genetic Algorithm Approach to Colour Image Segmentation Marco Gallotta Keri Woods Supervised by Audrey Mbogho Image Segmentation Identifying and extracting distinct, homogeneous regions from

More information

Advanced School in High Performance and GRID Computing November Introduction to Grid computing.

Advanced School in High Performance and GRID Computing November Introduction to Grid computing. 1967-14 Advanced School in High Performance and GRID Computing 3-14 November 2008 Introduction to Grid computing. TAFFONI Giuliano Osservatorio Astronomico di Trieste/INAF Via G.B. Tiepolo 11 34131 Trieste

More information

MULTI-THREADED QUERIES

MULTI-THREADED QUERIES 15-721 Project 3 Final Presentation MULTI-THREADED QUERIES Wendong Li (wendongl) Lu Zhang (lzhang3) Rui Wang (ruiw1) Project Objective Intra-operator parallelism Use multiple threads in a single executor

More information

Hybrid Model Parallel Programs

Hybrid Model Parallel Programs Hybrid Model Parallel Programs Charlie Peck Intermediate Parallel Programming and Cluster Computing Workshop University of Oklahoma/OSCER, August, 2010 1 Well, How Did We Get Here? Almost all of the clusters

More information

Module 1: Introduction

Module 1: Introduction Module 1: Introduction What is an operating system? Simple Batch Systems Multiprogramming Batched Systems Time-Sharing Systems Personal-Computer Systems Parallel Systems Distributed Systems Real -Time

More information

Parallel DBMS. Parallel Database Systems. PDBS vs Distributed DBS. Types of Parallelism. Goals and Metrics Speedup. Types of Parallelism

Parallel DBMS. Parallel Database Systems. PDBS vs Distributed DBS. Types of Parallelism. Goals and Metrics Speedup. Types of Parallelism Parallel DBMS Parallel Database Systems CS5225 Parallel DB 1 Uniprocessor technology has reached its limit Difficult to build machines powerful enough to meet the CPU and I/O demands of DBMS serving large

More information

Pegasus. Automate, recover, and debug scientific computations. Rafael Ferreira da Silva.

Pegasus. Automate, recover, and debug scientific computations. Rafael Ferreira da Silva. Pegasus Automate, recover, and debug scientific computations. Rafael Ferreira da Silva http://pegasus.isi.edu Experiment Timeline Scientific Problem Earth Science, Astronomy, Neuroinformatics, Bioinformatics,

More information

Grid Computing. Lectured by: Dr. Pham Tran Vu Faculty of Computer and Engineering HCMC University of Technology

Grid Computing. Lectured by: Dr. Pham Tran Vu   Faculty of Computer and Engineering HCMC University of Technology Grid Computing Lectured by: Dr. Pham Tran Vu Email: ptvu@cse.hcmut.edu.vn 1 Grid Architecture 2 Outline Layer Architecture Open Grid Service Architecture 3 Grid Characteristics Large-scale Need for dynamic

More information

Overview of research activities Toward portability of performance

Overview of research activities Toward portability of performance Overview of research activities Toward portability of performance Do dynamically what can t be done statically Understand evolution of architectures Enable new programming models Put intelligence into

More information

Dynamic Load-Balanced Multicast for Data-Intensive Applications on Clouds 1

Dynamic Load-Balanced Multicast for Data-Intensive Applications on Clouds 1 Dynamic Load-Balanced Multicast for Data-Intensive Applications on Clouds 1 Contents: Introduction Multicast on parallel distributed systems Multicast on P2P systems Multicast on clouds High performance

More information

Auto Management for Apache Kafka and Distributed Stateful System in General

Auto Management for Apache Kafka and Distributed Stateful System in General Auto Management for Apache Kafka and Distributed Stateful System in General Jiangjie (Becket) Qin Data Infrastructure @LinkedIn GIAC 2017, 12/23/17@Shanghai Agenda Kafka introduction and terminologies

More information

Workflows and Scheduling

Workflows and Scheduling Workflows and Scheduling Frank Röder Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg 14-12-2015 Frank Röder

More information

Connecting the e-infrastructure chain

Connecting the e-infrastructure chain Connecting the e-infrastructure chain Internet2 Spring Meeting, Arlington, April 23 rd, 2012 Peter Hinrich & Migiel de Vos Topics - About SURFnet - Motivation: Big data & collaboration - Collaboration

More information

Generic Framework for Parallel and Distributed Processing of Video-Data

Generic Framework for Parallel and Distributed Processing of Video-Data Generic Framework for Parallel and Distributed Processing of Video-Data Dirk Farin and Peter H. N. de With,2 University Eindhoven, Signal Processing Systems, LG., 56 MB Eindhoven, Netherlands d.s.farin@tue.nl

More information

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI CMPE 655- MULTIPLE PROCESSOR SYSTEMS OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI What is MULTI PROCESSING?? Multiprocessing is the coordinated processing

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Computing Environments

More information

Parallel Architectures

Parallel Architectures Parallel Architectures CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Parallel Architectures Spring 2018 1 / 36 Outline 1 Parallel Computer Classification Flynn s

More information

ECE 574 Cluster Computing Lecture 1

ECE 574 Cluster Computing Lecture 1 ECE 574 Cluster Computing Lecture 1 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 22 January 2019 ECE574 Distribute and go over syllabus http://web.eece.maine.edu/~vweaver/classes/ece574/ece574_2019s.pdf

More information

Parallel Computing with MATLAB

Parallel Computing with MATLAB Parallel Computing with MATLAB CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University

More information

MediaTek CorePilot 2.0. Delivering extreme compute performance with maximum power efficiency

MediaTek CorePilot 2.0. Delivering extreme compute performance with maximum power efficiency MediaTek CorePilot 2.0 Heterogeneous Computing Technology Delivering extreme compute performance with maximum power efficiency In July 2013, MediaTek delivered the industry s first mobile system on a chip

More information

DRYAD / DRYADLINQ OVERVIEW. Xavier Pillons, Principal Program Manager, Technical Computing Customer Advocate Team

DRYAD / DRYADLINQ OVERVIEW. Xavier Pillons, Principal Program Manager, Technical Computing Customer Advocate Team DRYAD / DRYADLINQ OVERVIEW Xavier Pillons, Principal Program Manager, Technical Computing Customer Advocate Team Data Intensive Scalable Computing (DISC) Market Customer needs for DISC lie on a spectrum

More information

A Fully Automated Faulttolerant. Distributed Video Processing and Off site Replication

A Fully Automated Faulttolerant. Distributed Video Processing and Off site Replication A Fully Automated Faulttolerant System for Distributed Video Processing and Off site Replication George Kola, Tevfik Kosar and Miron Livny University of Wisconsin-Madison June 2004 What is the talk about?

More information

Energy Efficient Computing Systems (EECS) Magnus Jahre Coordinator, EECS

Energy Efficient Computing Systems (EECS) Magnus Jahre Coordinator, EECS Energy Efficient Computing Systems (EECS) Magnus Jahre Coordinator, EECS Who am I? Education Master of Technology, NTNU, 2007 PhD, NTNU, 2010. Title: «Managing Shared Resources in Chip Multiprocessor Memory

More information

Introduction to Parallel Programming

Introduction to Parallel Programming Introduction to Parallel Programming David Lifka lifka@cac.cornell.edu May 23, 2011 5/23/2011 www.cac.cornell.edu 1 y What is Parallel Programming? Using more than one processor or computer to complete

More information

Distributed Systems. Thoai Nam Faculty of Computer Science and Engineering HCMC University of Technology

Distributed Systems. Thoai Nam Faculty of Computer Science and Engineering HCMC University of Technology Distributed Systems Thoai Nam Faculty of Computer Science and Engineering HCMC University of Technology Chapter 1: Introduction Distributed Systems Hardware & software Transparency Scalability Distributed

More information

L3.4. Data Management Techniques. Frederic Desprez Benjamin Isnard Johan Montagnat

L3.4. Data Management Techniques. Frederic Desprez Benjamin Isnard Johan Montagnat Grid Workflow Efficient Enactment for Data Intensive Applications L3.4 Data Management Techniques Authors : Eddy Caron Frederic Desprez Benjamin Isnard Johan Montagnat Summary : This document presents

More information

Multiple Broker Support by Grid Portals* Extended Abstract

Multiple Broker Support by Grid Portals* Extended Abstract 1. Introduction Multiple Broker Support by Grid Portals* Extended Abstract Attila Kertesz 1,3, Zoltan Farkas 1,4, Peter Kacsuk 1,4, Tamas Kiss 2,4 1 MTA SZTAKI Computer and Automation Research Institute

More information

DAS 1-4: Experiences with the Distributed ASCI Supercomputers

DAS 1-4: Experiences with the Distributed ASCI Supercomputers DAS 1-4: Experiences with the Distributed ASCI Supercomputers Henri Bal bal@cs.vu.nl Kees Verstoep versto@cs.vu.nl Vrije Universiteit Amsterdam Introduction DAS: shared distributed infrastructure for experimental

More information

Introduction to Parallel Programming

Introduction to Parallel Programming Introduction to Parallel Programming January 14, 2015 www.cac.cornell.edu What is Parallel Programming? Theoretically a very simple concept Use more than one processor to complete a task Operationally

More information

Storage and Compute Resource Management via DYRE, 3DcacheGrid, and CompuStore Ioan Raicu, Ian Foster

Storage and Compute Resource Management via DYRE, 3DcacheGrid, and CompuStore Ioan Raicu, Ian Foster Storage and Compute Resource Management via DYRE, 3DcacheGrid, and CompuStore Ioan Raicu, Ian Foster. Overview Both the industry and academia have an increase demand for good policies and mechanisms to

More information

SUPPORTING EFFICIENT EXECUTION OF MANY-TASK APPLICATIONS WITH EVEREST

SUPPORTING EFFICIENT EXECUTION OF MANY-TASK APPLICATIONS WITH EVEREST SUPPORTING EFFICIENT EXECUTION OF MANY-TASK APPLICATIONS WITH EVEREST O.V. Sukhoroslov Centre for Distributed Computing, Institute for Information Transmission Problems, Bolshoy Karetny per. 19 build.1,

More information

BUYING SERVER HARDWARE FOR A SCALABLE VIRTUAL INFRASTRUCTURE

BUYING SERVER HARDWARE FOR A SCALABLE VIRTUAL INFRASTRUCTURE E-Guide BUYING SERVER HARDWARE FOR A SCALABLE VIRTUAL INFRASTRUCTURE SearchServer Virtualization P art 1 of this series explores how trends in buying server hardware have been influenced by the scale-up

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Introduction to Parallel Computing Bootcamp for SahasraT 7th September 2018 Aditya Krishna Swamy adityaks@iisc.ac.in SERC, IISc Acknowledgments Akhila, SERC S. Ethier, PPPL P. Messina, ECP LLNL HPC tutorials

More information

CloudKon: a Cloud enabled Distributed task execution framework

CloudKon: a Cloud enabled Distributed task execution framework CloudKon: a Cloud enabled Distributed task execution framework Iman Sadooghi, Ioan Raicu isadoogh@iit.edu, iraicu@cs.iit.edu Department of Computer Science, Illinois Institute of Technology, Chicago IL,

More information

Job-Oriented Monitoring of Clusters

Job-Oriented Monitoring of Clusters Job-Oriented Monitoring of Clusters Vijayalaxmi Cigala Dhirajkumar Mahale Monil Shah Sukhada Bhingarkar Abstract There has been a lot of development in the field of clusters and grids. Recently, the use

More information

Federated XDMoD Requirements

Federated XDMoD Requirements Federated XDMoD Requirements Date Version Person Change 2016-04-08 1.0 draft XMS Team Initial version Summary Definitions Assumptions Data Collection Local XDMoD Installation Module Support Data Federation

More information

Chapter 1: Distributed Information Systems

Chapter 1: Distributed Information Systems Chapter 1: Distributed Information Systems Contents - Chapter 1 Design of an information system Layers and tiers Bottom up design Top down design Architecture of an information system One tier Two tier

More information

FLAT DATACENTER STORAGE. Paper-3 Presenter-Pratik Bhatt fx6568

FLAT DATACENTER STORAGE. Paper-3 Presenter-Pratik Bhatt fx6568 FLAT DATACENTER STORAGE Paper-3 Presenter-Pratik Bhatt fx6568 FDS Main discussion points A cluster storage system Stores giant "blobs" - 128-bit ID, multi-megabyte content Clients and servers connected

More information

Use cases. Faces tagging in photo and video, enabling: sharing media editing automatic media mashuping entertaining Augmented reality Games

Use cases. Faces tagging in photo and video, enabling: sharing media editing automatic media mashuping entertaining Augmented reality Games Viewdle Inc. 1 Use cases Faces tagging in photo and video, enabling: sharing media editing automatic media mashuping entertaining Augmented reality Games 2 Why OpenCL matter? OpenCL is going to bring such

More information

Technology for a better society. SINTEF ICT, Applied Mathematics, Heterogeneous Computing Group

Technology for a better society. SINTEF ICT, Applied Mathematics, Heterogeneous Computing Group Technology for a better society SINTEF, Applied Mathematics, Heterogeneous Computing Group Trond Hagen GPU Computing Seminar, SINTEF Oslo, October 23, 2009 1 Agenda 12:30 Introduction and welcoming Trond

More information

Introduction to Operating Systems

Introduction to Operating Systems Introduction to Operating Systems B. Ramamurthy (adapted from C. Egert s and W. Stallings slides) 1/25/02 CSE421, Spring 2002 1 Introduction A computer system consists of hardware system programs application

More information

MapReduce for Data Intensive Scientific Analyses

MapReduce for Data Intensive Scientific Analyses apreduce for Data Intensive Scientific Analyses Jaliya Ekanayake Shrideep Pallickara Geoffrey Fox Department of Computer Science Indiana University Bloomington, IN, 47405 5/11/2009 Jaliya Ekanayake 1 Presentation

More information

MediaTek CorePilot. Heterogeneous Multi-Processing Technology. Delivering extreme compute performance with maximum power efficiency

MediaTek CorePilot. Heterogeneous Multi-Processing Technology. Delivering extreme compute performance with maximum power efficiency MediaTek CorePilot Heterogeneous Multi-Processing Technology Delivering extreme compute performance with maximum power efficiency In July 2013, MediaTek delivered the industry s first mobile system on

More information

Forming an ad-hoc nearby storage, based on IKAROS and social networking services

Forming an ad-hoc nearby storage, based on IKAROS and social networking services Forming an ad-hoc nearby storage, based on IKAROS and social networking services Christos Filippidis1, Yiannis Cotronis2 and Christos Markou1 1 Institute of Nuclear & Particle Physics, NCSR Demokritos,

More information

The Cray Rainier System: Integrated Scalar/Vector Computing

The Cray Rainier System: Integrated Scalar/Vector Computing THE SUPERCOMPUTER COMPANY The Cray Rainier System: Integrated Scalar/Vector Computing Per Nyberg 11 th ECMWF Workshop on HPC in Meteorology Topics Current Product Overview Cray Technology Strengths Rainier

More information

Scheduling Algorithms in Large Scale Distributed Systems

Scheduling Algorithms in Large Scale Distributed Systems Scheduling Algorithms in Large Scale Distributed Systems Prof.dr.ing. Florin Pop University Politehnica of Bucharest, Faculty of Automatic Control and Computers (ACS-UPB) National Institute for Research

More information

Models for model integration

Models for model integration Models for model integration Oxford, UK, June 27, 2017 Daniel S. Katz Assistant Director for Scientific Software & Applications, NCSA Research Associate Professor, CS Research Associate Professor, ECE

More information

An Introduction to GPFS

An Introduction to GPFS IBM High Performance Computing July 2006 An Introduction to GPFS gpfsintro072506.doc Page 2 Contents Overview 2 What is GPFS? 3 The file system 3 Application interfaces 4 Performance and scalability 4

More information

Operating Systems Fundamentals. What is an Operating System? Focus. Computer System Components. Chapter 1: Introduction

Operating Systems Fundamentals. What is an Operating System? Focus. Computer System Components. Chapter 1: Introduction Operating Systems Fundamentals Overview of Operating Systems Ahmed Tawfik Modern Operating Systems are increasingly complex Operating System Millions of Lines of Code DOS 0.015 Windows 95 11 Windows 98

More information

Cloud Programming. Programming Environment Oct 29, 2015 Osamu Tatebe

Cloud Programming. Programming Environment Oct 29, 2015 Osamu Tatebe Cloud Programming Programming Environment Oct 29, 2015 Osamu Tatebe Cloud Computing Only required amount of CPU and storage can be used anytime from anywhere via network Availability, throughput, reliability

More information

Disk Cache-Aware Task Scheduling

Disk Cache-Aware Task Scheduling Disk ache-aware Task Scheduling For Data-Intensive and Many-Task Workflow Masahiro Tanaka and Osamu Tatebe University of Tsukuba, JST/REST Japan Science and Technology Agency IEEE luster 2014 2014-09-24

More information

Overcoming Data Locality: an In-Memory Runtime File System with Symmetrical Data Distribution

Overcoming Data Locality: an In-Memory Runtime File System with Symmetrical Data Distribution Overcoming Data Locality: an In-Memory Runtime File System with Symmetrical Data Distribution Alexandru Uta a,, Andreea Sandu a, Thilo Kielmann a a Dept. of Computer Science, VU University Amsterdam, The

More information

Computing over the Internet: Beyond Embarrassingly Parallel Applications. BOINC Workshop 09. Fernando Costa

Computing over the Internet: Beyond Embarrassingly Parallel Applications. BOINC Workshop 09. Fernando Costa Computing over the Internet: Beyond Embarrassingly Parallel Applications BOINC Workshop 09 Barcelona Fernando Costa University of Coimbra Overview Motivation Computing over Large Datasets Supporting new

More information

COMP528: Multi-core and Multi-Processor Computing

COMP528: Multi-core and Multi-Processor Computing COMP528: Multi-core and Multi-Processor Computing Dr Michael K Bane, G14, Computer Science, University of Liverpool m.k.bane@liverpool.ac.uk https://cgi.csc.liv.ac.uk/~mkbane/comp528 2X So far Why and

More information

IBM Data Science Experience White paper. SparkR. Transforming R into a tool for big data analytics

IBM Data Science Experience White paper. SparkR. Transforming R into a tool for big data analytics IBM Data Science Experience White paper R Transforming R into a tool for big data analytics 2 R Executive summary This white paper introduces R, a package for the R statistical programming language that

More information

MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA

MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA MPI Optimizations via MXM and FCA for Maximum Performance on LS-DYNA Gilad Shainer 1, Tong Liu 1, Pak Lui 1, Todd Wilde 1 1 Mellanox Technologies Abstract From concept to engineering, and from design to

More information

Processor Architecture and Interconnect

Processor Architecture and Interconnect Processor Architecture and Interconnect What is Parallelism? Parallel processing is a term used to denote simultaneous computation in CPU for the purpose of measuring its computation speeds. Parallel Processing

More information

Portable Heterogeneous High-Performance Computing via Domain-Specific Virtualization. Dmitry I. Lyakh.

Portable Heterogeneous High-Performance Computing via Domain-Specific Virtualization. Dmitry I. Lyakh. Portable Heterogeneous High-Performance Computing via Domain-Specific Virtualization Dmitry I. Lyakh liakhdi@ornl.gov This research used resources of the Oak Ridge Leadership Computing Facility at the

More information

White. Paper. EMC Isilon Scale-out Without Compromise. July, 2012

White. Paper. EMC Isilon Scale-out Without Compromise. July, 2012 White Paper EMC Isilon Scale-out Without Compromise By Terri McClure, Senior Analyst July, 2012 This ESG White Paper was commissioned by EMC and is distributed under license from ESG. 2012, The Enterprise

More information

Adventures in Load Balancing at Scale: Successes, Fizzles, and Next Steps

Adventures in Load Balancing at Scale: Successes, Fizzles, and Next Steps Adventures in Load Balancing at Scale: Successes, Fizzles, and Next Steps Rusty Lusk Mathematics and Computer Science Division Argonne National Laboratory Outline Introduction Two abstract programming

More information

Ian Foster, An Overview of Distributed Systems

Ian Foster, An Overview of Distributed Systems The advent of computation can be compared, in terms of the breadth and depth of its impact on research and scholarship, to the invention of writing and the development of modern mathematics. Ian Foster,

More information

Mark Sandstrom ThroughPuter, Inc.

Mark Sandstrom ThroughPuter, Inc. Hardware Implemented Scheduler, Placer, Inter-Task Communications and IO System Functions for Many Processors Dynamically Shared among Multiple Applications Mark Sandstrom ThroughPuter, Inc mark@throughputercom

More information

NFS, GPFS, PVFS, Lustre Batch-scheduled systems: Clusters, Grids, and Supercomputers Programming paradigm: HPC, MTC, and HTC

NFS, GPFS, PVFS, Lustre Batch-scheduled systems: Clusters, Grids, and Supercomputers Programming paradigm: HPC, MTC, and HTC Segregated storage and compute NFS, GPFS, PVFS, Lustre Batch-scheduled systems: Clusters, Grids, and Supercomputers Programming paradigm: HPC, MTC, and HTC Co-located storage and compute HDFS, GFS Data

More information

Executing dynamic heterogeneous workloads on Blue Waters with RADICAL-Pilot

Executing dynamic heterogeneous workloads on Blue Waters with RADICAL-Pilot Executing dynamic heterogeneous workloads on Blue Waters with RADICAL-Pilot Research in Advanced DIstributed Cyberinfrastructure & Applications Laboratory (RADICAL) Rutgers University http://radical.rutgers.edu

More information

PBS PROFESSIONAL VS. MICROSOFT HPC PACK

PBS PROFESSIONAL VS. MICROSOFT HPC PACK PBS PROFESSIONAL VS. MICROSOFT HPC PACK On the Microsoft Windows Platform PBS Professional offers many features which are not supported by Microsoft HPC Pack. SOME OF THE IMPORTANT ADVANTAGES OF PBS PROFESSIONAL

More information

Case Studies in Storage Access by Loosely Coupled Petascale Applications

Case Studies in Storage Access by Loosely Coupled Petascale Applications Case Studies in Storage Access by Loosely Coupled Petascale Applications Justin M Wozniak and Michael Wilde Petascale Data Storage Workshop at SC 09 Portland, Oregon November 15, 2009 Outline Scripted

More information

QOS BASED SCHEDULING OF WORKFLOWS IN CLOUD COMPUTING UPNP ARCHITECTURE

QOS BASED SCHEDULING OF WORKFLOWS IN CLOUD COMPUTING UPNP ARCHITECTURE QOS BASED SCHEDULING OF WORKFLOWS IN CLOUD COMPUTING UPNP ARCHITECTURE 1 K. Ramkumar, 2 Dr.G.Gunasekaran 1Research Scholar, Computer Science and Engineering Manonmaniam Sundaranar University Tirunelveli

More information

Pervasive DataRush TM

Pervasive DataRush TM Pervasive DataRush TM Parallel Data Analysis with KNIME www.pervasivedatarush.com Company Overview Global Software Company Tens of thousands of users across the globe Americas, EMEA, Asia ~230 employees

More information

BUILDING A GPU-FOCUSED CI SOLUTION

BUILDING A GPU-FOCUSED CI SOLUTION BUILDING A GPU-FOCUSED CI SOLUTION Mike Wendt @mike_wendt github.com/nvidia github.com/mike-wendt Need for CPU CI Challenges of GPU CI Methods to Implement GPU CI AGENDA Improving GPU CI Today Demo Lessons

More information

Karthik Narayanan, Santosh Madiraju EEL Embedded Systems Seminar 1/41 1

Karthik Narayanan, Santosh Madiraju EEL Embedded Systems Seminar 1/41 1 Karthik Narayanan, Santosh Madiraju EEL6935 - Embedded Systems Seminar 1/41 1 Efficient Search Space Exploration for HW-SW Partitioning Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS

More information

Parallel Programming. Presentation to Linux Users of Victoria, Inc. November 4th, 2015

Parallel Programming. Presentation to Linux Users of Victoria, Inc. November 4th, 2015 Parallel Programming Presentation to Linux Users of Victoria, Inc. November 4th, 2015 http://levlafayette.com 1.0 What Is Parallel Programming? 1.1 Historically, software has been written for serial computation

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction What is an operating system? Simple Batch Systems Multiprogramming Batched Systems Time-Sharing Systems Personal-Computer Systems Parallel Systems Distributed Systems Real -Time

More information

HPC learning using Cloud infrastructure

HPC learning using Cloud infrastructure HPC learning using Cloud infrastructure Florin MANAILA IT Architect florin.manaila@ro.ibm.com Cluj-Napoca 16 March, 2010 Agenda 1. Leveraging Cloud model 2. HPC on Cloud 3. Recent projects - FutureGRID

More information

Cees de Laat University of Amsterdam

Cees de Laat University of Amsterdam GreenClouds Cees de Laat University of Amsterdam Towards Hybrid Networking! Costs of photonic equipment 10% of switching 10 % of full routing for same throughput! Photonic vs Optical (optical used for

More information

Ioan Raicu Distributed Systems Laboratory Computer Science Department University of Chicago

Ioan Raicu Distributed Systems Laboratory Computer Science Department University of Chicago Falkon, a Fast and Light-weight task execution framework for Clusters, Grids, and Supercomputers Ioan Raicu Distributed Systems Laboratory Computer Science Department University of Chicago In Collaboration

More information

CSD3 The Cambridge Service for Data Driven Discovery. A New National HPC Service for Data Intensive science

CSD3 The Cambridge Service for Data Driven Discovery. A New National HPC Service for Data Intensive science CSD3 The Cambridge Service for Data Driven Discovery A New National HPC Service for Data Intensive science Dr Paul Calleja Director of Research Computing University of Cambridge Problem statement Today

More information

Spark and HPC for High Energy Physics Data Analyses

Spark and HPC for High Energy Physics Data Analyses Spark and HPC for High Energy Physics Data Analyses Marc Paterno, Jim Kowalkowski, and Saba Sehrish 2017 IEEE International Workshop on High-Performance Big Data Computing Introduction High energy physics

More information