Algorithms for Auto- tuning OpenACC Accelerated Kernels

Size: px
Start display at page:

Download "Algorithms for Auto- tuning OpenACC Accelerated Kernels"

Transcription

1 Outline Algorithms for Auto- tuning OpenACC Accelerated Kernels Fatemah Al- Zayer 1, Ameerah Al- Mu2ry 1, Mona Al- Shahrani 1, Saber Feki 2, and David Keyes 1 1 Extreme Compu,ng Research Center, 2 KAUST Supercompu,ng Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia GTC 2016 San Jose- CA April 6 th 2016 GPU Technology Conference 2016

2 Outline Mo,va,on Auto- Tuning Methodology Performance Results Toward a Vector Model Preliminary Results Conclusion and Future work GPU Technology Conference

3 Tuning loops execu,ons is one important step to op,mize the performance of your OpenACC accelerated code. Gang (num_gangs) and Vector (vector_length) clauses Tile Collapse Mo,va,on Manually tuning these parameters can be tedious and,me consuming. Auto- Tuning GPU Technology Conference

4 Tuning Time! Using brute force search is very,me consuming Ø Historic Learning Approach Ø Using faster deriva,ve- free search algorithms: Random Search Simulated Annealing Gene,c Algorithm Nelder- Mead Ø A hybrid solu,on using search algorithms combined with historic learning. GPU Technology Conference

5 Automa,c Performance Tuning Method GPU Technology Conference

6 Seismic Imaging Kernel Solve the acous,c wave equa,on (Isotropic case) Finite difference scheme, 2 nd order in,me, 4 th or 8 th order in space GPU Technology Conference

7 Seismic Imaging Kernel CPU version GPU Technology Conference

8 Seismic Imaging Kernel: OpenACC Implementa,on GPU Technology Conference

9 Experimental Results Seismic kernel solving the acous,c wave equa,on, finite difference scheme 8th and 4th order in space. Performance reported on NVIDIA K20 and K40 GPUs. NVIDIA recommends the vector size to be mul,ple of warp size (32) on thus we explored the values [32,64,96,,1024] Gang values tested on increments of 2 star,ng from 2 up,ll 1024 Performance and tuning,me while using different search algorithm and in combina,on with historic learning. GPU Technology Conference

10 K20-8th order Speedup Speedup Problem Size Brute Force Random Walk Simulated Annealing Nelder- Mead Gene,c Algorithm 1 Gene,c Algorithm 2 GPU Technology Conference

11 K20-8th order Tuning,me Time (Sec) Problem Size Brute Force Random Walk Simulated Annealing Nelder- Mead Gene,c Algorithm 1 Gene,c Algorithm 2 GPU Technology Conference

12 K20-4th order Speedup Speedup Problem Size Brute Force Random Walk Simulated Annealing Nelder- Mead Gene,c Algorithm 1 Gene,c Algorithm 2 GPU Technology Conference

13 K20-4th order Tuning,me Time (Sec) Problem Size Brute Force Random Walk Simulated Annealing Nelder- Mead Gene,c Algorithm 1 Gene,c Algorithm 2 GPU Technology Conference

14 K40-8th order Speedup Speedup Problem Size Brute Force Random Walk Simulated Annealing Nelde- Mead Gene,c Algorithm 1 Gene,c Algorithm 2 GPU Technology Conference

15 K40-8th order Tuning,me Time (Sec) Problem Size Brute Force Random Walk Simulated Annealing Nelder- Mead Gene,c Algorithm 1 Gene,c Algoithm 2 GPU Technology Conference

16 K20-8th order Speedup with historical learning Brute Force Historic Learning and Brute Force Historic Learning and Random Walk Historic Learning and Nelder- Mead Historic Learning and Gene,c Algorithm Speedup x140x x150x15 120x83x402 98x418x x288x288 Problem Size GPU Technology Conference

17 K20-8th order Tuning,me historical learning Brute Force Historic Learning and Brute Force Historic Learning and Random Walk Historic Learning and Nelder- Mead Historic Learning and Gene,c Algorithm Time (Sec) x140x x150x15 120x83x402 98x418x x288x Problem Size GPU Technology Conference

18 Model for gang and vector? Can we provide a beier model to the compiler to use for selec,ng the best gang and/or vector values? For a given: Three- dimensional problem size Applica,on: e.g. 8 th order vs 4 th order GPU Specifica,on: K20 (K40 results: work in progress) Correla2ons between the problem size and the best values for gang and vector parameters. Which dimensions? GPU Technology Conference

19 Vector as func,on of Z dimension 8th order on K Best Vector Value Z - Dimension GPU Technology Conference

20 Vector Models as func,on of Z dimension Vector Value BF Vector M1 Vector M2 Vector Vector Value BF Vector M3 Vector M4 Vector Z - Dimension Z - Dimension GPU Technology Conference

21 Performance Speedup (I) Best value: average speedup over all problem sizes using (g AT,v AT ) with the auto- tuning in comparison to the compiler (g c,v c ) We report the average speedup while using the model value for vector and: Computed value of gang: (g c *v c /v M, v M ) Auto- Tuned value of gang: (g AT,v M ) Compiler value of gang: (g c,v M ) GPU Technology Conference

22 Performance Speedup (II) Model 1 Performance Speedup Model 3 and Model 4 Performance Speedup 40.00% 35.00% 30.00% 25.00% 50.00% 45.00% 40.00% 35.00% 30.00% Model 3 Model % 25.00% 15.00% 10.00% 5.00% 20.00% 15.00% 10.00% 5.00% 0.00% Auto- Tuned values of gang and vector Computed value of gang Auto- Tuned value of gang Compiler value of gang 0.00% Auto- Tuned values of gang and vector Computed value of gang Auto- Tuned value of gang Compiler value of gang Small/Medium Z dimension Larger Z dimension GPU Technology Conference

23 Performance Speedup (III) 4 th Order Kernel with 8 th order Kernel Model 1 for all Z- dimension values: 45.00% 40.00% 35.00% 30.00% 25.00% 20.00% 15.00% 10.00% 5.00% Model 1 Performance Speedup 0.00% Auto- Tuned values of gang and vector Auto- Tuned value of gang Compiler value of gang GPU Technology Conference

24 Conclusions Auto- tuning gang and vector parameters using different algorithms results in a performance boost of the OpenACC accelerated kernels. A hybrid of historic learning and Nelder- Mead delivers the best balance of high performance and low tuning effort. Suggested a vector model that can complement the gang choice of the compiler for a near auto- tuned performance. GPU Technology Conference

25 Future Work Validate the vector model with different OpenACC kernels and correlate it with kernels profile. Extrapola,on of the vector model across architectures different NVIDIA GPUs genera,ons other accelerators Targe,ng other parameters in OpenACC 2.5 features such as the,le clause. GPU Technology Conference

26 Outline Algorithms for Auto- tuning OpenACC Accelerated Kernels Thank You! GTC 2016 San Jose- CA April 6 th 2016 GPU Technology Conference 2016

27 Thanks! GPU Technology Conference

OPENACC ONLINE COURSE 2018

OPENACC ONLINE COURSE 2018 OPENACC ONLINE COURSE 2018 Week 3 Loop Optimizations with OpenACC Jeff Larkin, Senior DevTech Software Engineer, NVIDIA ABOUT THIS COURSE 3 Part Introduction to OpenACC Week 1 Introduction to OpenACC Week

More information

OpenACC. Part 2. Ned Nedialkov. McMaster University Canada. CS/SE 4F03 March 2016

OpenACC. Part 2. Ned Nedialkov. McMaster University Canada. CS/SE 4F03 March 2016 OpenACC. Part 2 Ned Nedialkov McMaster University Canada CS/SE 4F03 March 2016 Outline parallel construct Gang loop Worker loop Vector loop kernels construct kernels vs. parallel Data directives c 2013

More information

Register Alloca.on Deconstructed. David Ryan Koes Seth Copen Goldstein

Register Alloca.on Deconstructed. David Ryan Koes Seth Copen Goldstein Register Alloca.on Deconstructed David Ryan Koes Seth Copen Goldstein 12th Interna+onal Workshop on So3ware and Compilers for Embedded Systems April 24, 12009 Register Alloca:on Problem unbounded number

More information

A Script- Based Autotuning Compiler System to Generate High- Performance CUDA code

A Script- Based Autotuning Compiler System to Generate High- Performance CUDA code A Script- Based Autotuning Compiler System to Generate High- Performance CUDA code Malik Khan, Protonu Basu, Gabe Rudy, Mary Hall, Chun Chen, Jacqueline Chame Mo:va:on Challenges to programming the GPU

More information

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman)

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) Parallel Programming with Message Passing and Directives 2 MPI + OpenMP Some applications can

More information

Overview of Performance Prediction Tools for Better Development and Tuning Support

Overview of Performance Prediction Tools for Better Development and Tuning Support Overview of Performance Prediction Tools for Better Development and Tuning Support Universidade Federal Fluminense Rommel Anatoli Quintanilla Cruz / Master's Student Esteban Clua / Associate Professor

More information

An Introduc+on to OpenACC Part II

An Introduc+on to OpenACC Part II An Introduc+on to OpenACC Part II Wei Feinstein HPC User Services@LSU LONI Parallel Programming Workshop 2015 Louisiana State University 4 th HPC Parallel Programming Workshop An Introduc+on to OpenACC-

More information

Analysis of Performance Gap Between OpenACC and the Native Approach on P100 GPU and SW26010: A Case Study with GTC-P

Analysis of Performance Gap Between OpenACC and the Native Approach on P100 GPU and SW26010: A Case Study with GTC-P Analysis of Performance Gap Between OpenACC and the Native Approach on P100 GPU and SW26010: A Case Study with GTC-P Stephen Wang 1, James Lin 1, William Tang 2, Stephane Ethier 2, Bei Wang 2, Simon See

More information

Efficient Memory and Bandwidth Management for Industrial Strength Kirchhoff Migra<on

Efficient Memory and Bandwidth Management for Industrial Strength Kirchhoff Migra<on Efficient Memory and Bandwidth Management for Industrial Strength Kirchhoff Migra

More information

CUDA Development Using NVIDIA Nsight, Eclipse Edition. David Goodwin

CUDA Development Using NVIDIA Nsight, Eclipse Edition. David Goodwin CUDA Development Using NVIDIA Nsight, Eclipse Edition David Goodwin NVIDIA Nsight Eclipse Edition CUDA Integrated Development Environment Project Management Edit Build Debug Profile SC'12 2 Powered By

More information

Physis: An Implicitly Parallel Framework for Stencil Computa;ons

Physis: An Implicitly Parallel Framework for Stencil Computa;ons Physis: An Implicitly Parallel Framework for Stencil Computa;ons Naoya Maruyama RIKEN AICS (Formerly at Tokyo Tech) GTC12, May 2012 1 è Good performance with low programmer produc;vity Mul;- GPU Applica;on

More information

BLAS. Basic Linear Algebra Subprograms

BLAS. Basic Linear Algebra Subprograms BLAS Basic opera+ons with vectors and matrices dominates scien+fic compu+ng programs To achieve high efficiency and clean computer programs an effort has been made in the last few decades to standardize

More information

Accelerating Financial Applications on the GPU

Accelerating Financial Applications on the GPU Accelerating Financial Applications on the GPU Scott Grauer-Gray Robert Searles William Killian John Cavazos Department of Computer and Information Science University of Delaware Sixth Workshop on General

More information

Soft GPGPUs for Embedded FPGAS: An Architectural Evaluation

Soft GPGPUs for Embedded FPGAS: An Architectural Evaluation Soft GPGPUs for Embedded FPGAS: An Architectural Evaluation 2nd International Workshop on Overlay Architectures for FPGAs (OLAF) 2016 Kevin Andryc, Tedy Thomas and Russell Tessier University of Massachusetts

More information

Optimizing OpenACC Codes. Peter Messmer, NVIDIA

Optimizing OpenACC Codes. Peter Messmer, NVIDIA Optimizing OpenACC Codes Peter Messmer, NVIDIA Outline OpenACC in a nutshell Tune an example application Data motion optimization Asynchronous execution Loop scheduling optimizations Interface OpenACC

More information

The Design and Implementation of OpenMP 4.5 and OpenACC Backends for the RAJA C++ Performance Portability Layer

The Design and Implementation of OpenMP 4.5 and OpenACC Backends for the RAJA C++ Performance Portability Layer The Design and Implementation of OpenMP 4.5 and OpenACC Backends for the RAJA C++ Performance Portability Layer William Killian Tom Scogland, Adam Kunen John Cavazos Millersville University of Pennsylvania

More information

Heterogeneous CPU+GPU Molecular Dynamics Engine in CHARMM

Heterogeneous CPU+GPU Molecular Dynamics Engine in CHARMM Heterogeneous CPU+GPU Molecular Dynamics Engine in CHARMM 25th March, GTC 2014, San Jose CA AnE- Pekka Hynninen ane.pekka.hynninen@nrel.gov NREL is a na*onal laboratory of the U.S. Department of Energy,

More information

Optimization of finite-difference kernels on multi-core architectures for seismic applications

Optimization of finite-difference kernels on multi-core architectures for seismic applications Optimization of finite-difference kernels on multi-core architectures for seismic applications V. Etienne 1, T. Tonellot 1, K. Akbudak 2, H. Ltaief 2, S. Kortas 3, T. Malas 4, P. Thierry 4, D. Keyes 2

More information

OpenACC2 vs.openmp4. James Lin 1,2 and Satoshi Matsuoka 2

OpenACC2 vs.openmp4. James Lin 1,2 and Satoshi Matsuoka 2 2014@San Jose Shanghai Jiao Tong University Tokyo Institute of Technology OpenACC2 vs.openmp4 he Strong, the Weak, and the Missing to Develop Performance Portable Applica>ons on GPU and Xeon Phi James

More information

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives José M. Andión, Manuel Arenaz, François Bodin, Gabriel Rodríguez and Juan Touriño 7th International Symposium on High-Level Parallel

More information

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Hybrid Computing @ KAUST Many Cores and OpenACC Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Agenda Hybrid Computing n Hybrid Computing n From Multi-Physics

More information

Applica'ons So-ware Example

Applica'ons So-ware Example Applica'ons So-ware Example How to run an applica'on on Cluster? Rooh Khurram Supercompu2ng Laboratory King Abdullah University of Science and Technology (KAUST), Saudi Arabia Cluster Training: Applica2ons

More information

Achieving Portable Performance for GTC-P with OpenACC on GPU, multi-core CPU, and Sunway Many-core Processor

Achieving Portable Performance for GTC-P with OpenACC on GPU, multi-core CPU, and Sunway Many-core Processor Achieving Portable Performance for GTC-P with OpenACC on GPU, multi-core CPU, and Sunway Many-core Processor Stephen Wang 1, James Lin 1,4, William Tang 2, Stephane Ethier 2, Bei Wang 2, Simon See 1,3

More information

Lecture 2. White- box Tes2ng and Structural Coverage (see Amman and Offut, Chapter 2)

Lecture 2. White- box Tes2ng and Structural Coverage (see Amman and Offut, Chapter 2) Lecture 2 White- box Tes2ng and Structural Coverage (see Amman and Offut, Chapter 2) White- box Tes2ng (aka. Glass- box or structural tes2ng) An error may exist at one (or more) loca2on(s) Line numbers

More information

Concurrency-Optimized I/O For Visualizing HPC Simulations: An Approach Using Dedicated I/O Cores

Concurrency-Optimized I/O For Visualizing HPC Simulations: An Approach Using Dedicated I/O Cores Concurrency-Optimized I/O For Visualizing HPC Simulations: An Approach Using Dedicated I/O Cores Ma#hieu Dorier, Franck Cappello, Marc Snir, Bogdan Nicolae, Gabriel Antoniu 4th workshop of the Joint Laboratory

More information

CUDA. Matthew Joyner, Jeremy Williams

CUDA. Matthew Joyner, Jeremy Williams CUDA Matthew Joyner, Jeremy Williams Agenda What is CUDA? CUDA GPU Architecture CPU/GPU Communication Coding in CUDA Use cases of CUDA Comparison to OpenCL What is CUDA? What is CUDA? CUDA is a parallel

More information

Starchart*: GPU Program Power/Performance Op7miza7on Using Regression Trees

Starchart*: GPU Program Power/Performance Op7miza7on Using Regression Trees Starchart*: GPU Program Power/Performance Op7miza7on Using Regression Trees Wenhao Jia, Princeton University Kelly A. Shaw, University of Richmond Margaret Martonosi, Princeton University *Sta7s7cal Tuning

More information

SENSEI / SENSEI-Lite / SENEI-LDC Updates

SENSEI / SENSEI-Lite / SENEI-LDC Updates SENSEI / SENSEI-Lite / SENEI-LDC Updates Chris Roy and Brent Pickering Aerospace and Ocean Engineering Dept. Virginia Tech July 23, 2014 Collaborations with Math Collaboration on the implicit SENSEI-LDC

More information

: Advanced Compiler Design. 8.0 Instruc?on scheduling

: Advanced Compiler Design. 8.0 Instruc?on scheduling 6-80: Advanced Compiler Design 8.0 Instruc?on scheduling Thomas R. Gross Computer Science Department ETH Zurich, Switzerland Overview 8. Instruc?on scheduling basics 8. Scheduling for ILP processors 8.

More information

Lecture 2. White- box Tes2ng and Structural Coverage (see Amman and Offut, Chapter 2)

Lecture 2. White- box Tes2ng and Structural Coverage (see Amman and Offut, Chapter 2) Lecture 2 White- box Tes2ng and Structural Coverage (see Amman and Offut, Chapter 2) White- box Tes2ng (aka. Glass- box or structural tes2ng) An error may exist at one (or more) loca2on(s) Line numbers

More information

Advanced branch predic.on algorithms. Ryan Gabrys Ilya Kolykhmatov

Advanced branch predic.on algorithms. Ryan Gabrys Ilya Kolykhmatov Advanced branch predic.on algorithms Ryan Gabrys Ilya Kolykhmatov Context Branches are frequent: 15-25 % A branch predictor allows the processor to specula.vely fetch and execute instruc.ons down the predicted

More information

Towards an Efficient CPU-GPU Code Hybridization: a Simple Guideline for Code Optimizations on Modern Architecture with OpenACC and CUDA

Towards an Efficient CPU-GPU Code Hybridization: a Simple Guideline for Code Optimizations on Modern Architecture with OpenACC and CUDA Towards an Efficient CPU-GPU Code Hybridization: a Simple Guideline for Code Optimizations on Modern Architecture with OpenACC and CUDA L. Oteski, G. Colin de Verdière, S. Contassot-Vivier, S. Vialle,

More information

Allevia'ng memory bandwidth pressure with wavefront temporal blocking and diamond 'ling Tareq Malas* Georg Hager Gerhard Wellein David Keyes*

Allevia'ng memory bandwidth pressure with wavefront temporal blocking and diamond 'ling Tareq Malas* Georg Hager Gerhard Wellein David Keyes* Allevia'ng memory bandwidth pressure with wavefront temporal blocking and diamond 'ling Tareq Malas* Georg Hager Gerhard Wellein David Keyes* Erlangen Regional Compu0ng Center, Germany *King Abdullah Univ.

More information

Optimizing Memory-Bound Numerical Kernels on GPU Hardware Accelerators

Optimizing Memory-Bound Numerical Kernels on GPU Hardware Accelerators Optimizing Memory-Bound Numerical Kernels on GPU Hardware Accelerators Ahmad Abdelfattah 1, Jack Dongarra 2, David Keyes 1 and Hatem Ltaief 3 1 KAUST Division of Mathematical and Computer Sciences and

More information

A Distributed Data- Parallel Execu3on Framework in the Kepler Scien3fic Workflow System

A Distributed Data- Parallel Execu3on Framework in the Kepler Scien3fic Workflow System A Distributed Data- Parallel Execu3on Framework in the Kepler Scien3fic Workflow System Ilkay Al(ntas and Daniel Crawl San Diego Supercomputer Center UC San Diego Jianwu Wang UMBC WorDS.sdsc.edu Computa3onal

More information

Compiler Optimization Intermediate Representation

Compiler Optimization Intermediate Representation Compiler Optimization Intermediate Representation Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology

More information

Is OpenMP 4.5 Target Off-load Ready for Real Life? A Case Study of Three Benchmark Kernels

Is OpenMP 4.5 Target Off-load Ready for Real Life? A Case Study of Three Benchmark Kernels National Aeronautics and Space Administration Is OpenMP 4.5 Target Off-load Ready for Real Life? A Case Study of Three Benchmark Kernels Jose M. Monsalve Diaz (UDEL), Gabriele Jost (NASA), Sunita Chandrasekaran

More information

GST, from Sensor to Decision

GST, from Sensor to Decision GST, from Sensor to Decision Videos Signals Mul2Media sound, images 2D, 3D,.. GST: Created in september 2011 12 persons (10 in R&D and 2 in Business) Technology based on neuro-inspired algorithms: E m

More information

Por$ng Monte Carlo Algorithms to the GPU. Ryan Bergmann UC Berkeley Serpent Users Group Mee$ng 9/20/2012 Madrid, Spain

Por$ng Monte Carlo Algorithms to the GPU. Ryan Bergmann UC Berkeley Serpent Users Group Mee$ng 9/20/2012 Madrid, Spain Por$ng Monte Carlo Algorithms to the GPU Ryan Bergmann UC Berkeley Serpent Users Group Mee$ng 9/20/2012 Madrid, Spain 1 Outline Introduc$on to GPUs Why they are interes$ng How they operate Pros and cons

More information

OpenACC programming for GPGPUs: Rotor wake simulation

OpenACC programming for GPGPUs: Rotor wake simulation DLR.de Chart 1 OpenACC programming for GPGPUs: Rotor wake simulation Melven Röhrig-Zöllner, Achim Basermann Simulations- und Softwaretechnik DLR.de Chart 2 Outline Hardware-Architecture (CPU+GPU) GPU computing

More information

S Comparing OpenACC 2.5 and OpenMP 4.5

S Comparing OpenACC 2.5 and OpenMP 4.5 April 4-7, 2016 Silicon Valley S6410 - Comparing OpenACC 2.5 and OpenMP 4.5 James Beyer, NVIDIA Jeff Larkin, NVIDIA GTC16 April 7, 2016 History of OpenMP & OpenACC AGENDA Philosophical Differences Technical

More information

Use of Synthetic Benchmarks for Machine- Learning-based Performance Auto-tuning

Use of Synthetic Benchmarks for Machine- Learning-based Performance Auto-tuning Use of Synthetic Benchmarks for Machine- Learning-based Performance Auto-tuning Tianyi David Han and Tarek S. Abdelrahman The Edward S. Rogers Department of Electrical and Computer Engineering University

More information

Advanced OpenACC. John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center. Copyright 2016

Advanced OpenACC. John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center. Copyright 2016 Advanced OpenACC John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2016 Outline Loop Directives Data Declaration Directives Data Regions Directives Cache directives Wait

More information

Verifiable Cloud Outsourcing for Network Func9ons (+ Verifiable Resource Accoun9ng for Cloud Services)

Verifiable Cloud Outsourcing for Network Func9ons (+ Verifiable Resource Accoun9ng for Cloud Services) 1 Verifiable Cloud Outsourcing for Network Func9ons (+ Verifiable Resource Accoun9ng for Cloud Services) Vyas Sekar vnfo joint with Seyed Fayazbakhsh, Mike Reiter VRA joint with Chen Chen, Petros Mania9s,

More information

OpenACC. Introduction and Evolutions Sebastien Deldon, GPU Compiler engineer

OpenACC. Introduction and Evolutions Sebastien Deldon, GPU Compiler engineer OpenACC Introduction and Evolutions Sebastien Deldon, GPU Compiler engineer 3 WAYS TO ACCELERATE APPLICATIONS Applications Libraries Compiler Directives Programming Languages Easy to use Most Performance

More information

Empirical Modeling: an Auto-tuning Method for Linear Algebra Routines on CPU plus Multi-GPU Platforms

Empirical Modeling: an Auto-tuning Method for Linear Algebra Routines on CPU plus Multi-GPU Platforms Empirical Modeling: an Auto-tuning Method for Linear Algebra Routines on CPU plus Multi-GPU Platforms Javier Cuenca Luis-Pedro García Domingo Giménez Francisco J. Herrera Scientific Computing and Parallel

More information

A Simple Guideline for Code Optimizations on Modern Architectures with OpenACC and CUDA

A Simple Guideline for Code Optimizations on Modern Architectures with OpenACC and CUDA A Simple Guideline for Code Optimizations on Modern Architectures with OpenACC and CUDA L. Oteski, G. Colin de Verdière, S. Contassot-Vivier, S. Vialle, J. Ryan Acks.: CEA/DIFF, IDRIS, GENCI, NVIDIA, Région

More information

7 Ways to Increase Your Produc2vity with Revolu2on R Enterprise 3.0. David Smith, REvolu2on Compu2ng

7 Ways to Increase Your Produc2vity with Revolu2on R Enterprise 3.0. David Smith, REvolu2on Compu2ng 7 Ways to Increase Your Produc2vity with Revolu2on R Enterprise 3.0 David Smith, REvolu2on Compu2ng REvolu2on Compu2ng: The R Company REvolu2on R Free, high- performance binary distribu2on of R REvolu2on

More information

Objective. GPU Teaching Kit. OpenACC. To understand the OpenACC programming model. Introduction to OpenACC

Objective. GPU Teaching Kit. OpenACC. To understand the OpenACC programming model. Introduction to OpenACC GPU Teaching Kit Accelerated Computing OpenACC Introduction to OpenACC Objective To understand the OpenACC programming model basic concepts and pragma types simple examples 2 2 OpenACC The OpenACC Application

More information

Network Coding: Theory and Applica7ons

Network Coding: Theory and Applica7ons Network Coding: Theory and Applica7ons PhD Course Part IV Tuesday 9.15-12.15 18.6.213 Muriel Médard (MIT), Frank H. P. Fitzek (AAU), Daniel E. Lucani (AAU), Morten V. Pedersen (AAU) Plan Hello World! Intra

More information

Hybrid Implementation of 3D Kirchhoff Migration

Hybrid Implementation of 3D Kirchhoff Migration Hybrid Implementation of 3D Kirchhoff Migration Max Grossman, Mauricio Araya-Polo, Gladys Gonzalez GTC, San Jose March 19, 2013 Agenda 1. Motivation 2. The Problem at Hand 3. Solution Strategy 4. GPU Implementation

More information

GPUs: The Hype, The Reality, and The Future

GPUs: The Hype, The Reality, and The Future Uppsala Programming for Multicore Architectures Research Center GPUs: The Hype, The Reality, and The Future David Black- Schaffer Assistant Professor, Department of Informa

More information

Profiling & Tuning Applica1ons. CUDA Course July István Reguly

Profiling & Tuning Applica1ons. CUDA Course July István Reguly Profiling & Tuning Applica1ons CUDA Course July 21-25 István Reguly Introduc1on Why is my applica1on running slow? Work it out on paper Instrument code Profile it NVIDIA Visual Profiler Works with CUDA,

More information

Using Graph- Based Characteriza4on for Predic4ve Modeling of Vectorizable Loop Nests

Using Graph- Based Characteriza4on for Predic4ve Modeling of Vectorizable Loop Nests Using Graph- Based Characteriza4on for Predic4ve Modeling of Vectorizable Loop Nests William Killian PhD Prelimary Exam Presenta4on Department of Computer and Informa4on Science CommiIee John Cavazos and

More information

Automatic Compiler-Based Optimization of Graph Analytics for the GPU. Sreepathi Pai The University of Texas at Austin. May 8, 2017 NVIDIA GTC

Automatic Compiler-Based Optimization of Graph Analytics for the GPU. Sreepathi Pai The University of Texas at Austin. May 8, 2017 NVIDIA GTC Automatic Compiler-Based Optimization of Graph Analytics for the GPU Sreepathi Pai The University of Texas at Austin May 8, 2017 NVIDIA GTC Parallel Graph Processing is not easy 299ms HD-BFS 84ms USA Road

More information

An Introduction to OpenACC. Zoran Dabic, Rusell Lutrell, Edik Simonian, Ronil Singh, Shrey Tandel

An Introduction to OpenACC. Zoran Dabic, Rusell Lutrell, Edik Simonian, Ronil Singh, Shrey Tandel An Introduction to OpenACC Zoran Dabic, Rusell Lutrell, Edik Simonian, Ronil Singh, Shrey Tandel Chapter 1 Introduction OpenACC is a software accelerator that uses the host and the device. It uses compiler

More information

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU GPGPU opens the door for co-design HPC, moreover middleware-support embedded system designs to harness the power of GPUaccelerated

More information

OpenACC. Part I. Ned Nedialkov. McMaster University Canada. October 2016

OpenACC. Part I. Ned Nedialkov. McMaster University Canada. October 2016 OpenACC. Part I Ned Nedialkov McMaster University Canada October 2016 Outline Introduction Execution model Memory model Compiling pgaccelinfo Example Speedups Profiling c 2016 Ned Nedialkov 2/23 Why accelerators

More information

OpenACC 2.6 Proposed Features

OpenACC 2.6 Proposed Features OpenACC 2.6 Proposed Features OpenACC.org June, 2017 1 Introduction This document summarizes features and changes being proposed for the next version of the OpenACC Application Programming Interface, tentatively

More information

Getting Started with Directive-based Acceleration: OpenACC

Getting Started with Directive-based Acceleration: OpenACC Getting Started with Directive-based Acceleration: OpenACC Ahmad Lashgar Member of High-Performance Computing Research Laboratory, School of Computer Science Institute for Research in Fundamental Sciences

More information

Designing and Optimizing LQCD code using OpenACC

Designing and Optimizing LQCD code using OpenACC Designing and Optimizing LQCD code using OpenACC E Calore, S F Schifano, R Tripiccione Enrico Calore University of Ferrara and INFN-Ferrara, Italy GPU Computing in High Energy Physics Pisa, Sep. 10 th,

More information

Parallel multi-frontal solver for isogeometric finite element methods on GPU

Parallel multi-frontal solver for isogeometric finite element methods on GPU Parallel multi-frontal solver for isogeometric finite element methods on GPU Maciej Paszyński Department of Computer Science, AGH University of Science and Technology, Kraków, Poland email: paszynsk@agh.edu.pl

More information

OpenStaPLE, an OpenACC Lattice QCD Application

OpenStaPLE, an OpenACC Lattice QCD Application OpenStaPLE, an OpenACC Lattice QCD Application Enrico Calore Postdoctoral Researcher Università degli Studi di Ferrara INFN Ferrara Italy GTC Europe, October 10 th, 2018 E. Calore (Univ. and INFN Ferrara)

More information

A Preliminary evalua.on of OpenPOWER through op.mizing stencil based algorithms

A Preliminary evalua.on of OpenPOWER through op.mizing stencil based algorithms A Preliminary evalua.on of OpenPOWER through op.mizing stencil based algorithms Speaker: Jingheng Xu Tsinghua University Revolu'onizing the Datacenter Join the Conversa'on #OpenPOWERSummit Contents 1 About

More information

OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4

OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4 OpenACC Course Class #1 Q&A Contents OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4 OpenACC/CUDA/OpenMP Q: Is OpenACC an NVIDIA standard or is it accepted

More information

HYBRID DIRECT AND ITERATIVE SOLVER FOR H ADAPTIVE MESHES WITH POINT SINGULARITIES

HYBRID DIRECT AND ITERATIVE SOLVER FOR H ADAPTIVE MESHES WITH POINT SINGULARITIES HYBRID DIRECT AND ITERATIVE SOLVER FOR H ADAPTIVE MESHES WITH POINT SINGULARITIES Maciej Paszyński Department of Computer Science, AGH University of Science and Technology, Kraków, Poland email: paszynsk@agh.edu.pl

More information

RAMSES on the GPU: An OpenACC-Based Approach

RAMSES on the GPU: An OpenACC-Based Approach RAMSES on the GPU: An OpenACC-Based Approach Claudio Gheller (ETHZ-CSCS) Giacomo Rosilho de Souza (EPFL Lausanne) Romain Teyssier (University of Zurich) Markus Wetzstein (ETHZ-CSCS) PRACE-2IP project EU

More information

Today s Objec4ves. Data Center. Virtualiza4on Cloud Compu4ng Amazon Web Services. What did you think? 10/23/17. Oct 23, 2017 Sprenkle - CSCI325

Today s Objec4ves. Data Center. Virtualiza4on Cloud Compu4ng Amazon Web Services. What did you think? 10/23/17. Oct 23, 2017 Sprenkle - CSCI325 Today s Objec4ves Virtualiza4on Cloud Compu4ng Amazon Web Services Oct 23, 2017 Sprenkle - CSCI325 1 Data Center What did you think? Oct 23, 2017 Sprenkle - CSCI325 2 1 10/23/17 Oct 23, 2017 Sprenkle -

More information

Directed Optimization On Stencil-based Computational Fluid Dynamics Application(s)

Directed Optimization On Stencil-based Computational Fluid Dynamics Application(s) Directed Optimization On Stencil-based Computational Fluid Dynamics Application(s) Islam Harb 08/21/2015 Agenda Motivation Research Challenges Contributions & Approach Results Conclusion Future Work 2

More information

PERFORMANCE PORTABILITY WITH OPENACC. Jeff Larkin, NVIDIA, November 2015

PERFORMANCE PORTABILITY WITH OPENACC. Jeff Larkin, NVIDIA, November 2015 PERFORMANCE PORTABILITY WITH OPENACC Jeff Larkin, NVIDIA, November 2015 TWO TYPES OF PORTABILITY FUNCTIONAL PORTABILITY PERFORMANCE PORTABILITY The ability for a single code to run anywhere. The ability

More information

Use of QE in HPC: overview of implementa?on and usage of the QE- GPU

Use of QE in HPC: overview of implementa?on and usage of the QE- GPU Use of QE in HPC: overview of implementa?on and usage of the QE- GPU Ivan Giro*o igiro*o@ictp.it Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP)...

More information

2015 Qadeemah Fault Survey and Supervirtual Inteferometry Abdullah Alhadab Maximillian Kosmicki

2015 Qadeemah Fault Survey and Supervirtual Inteferometry Abdullah Alhadab Maximillian Kosmicki 2015 Qadeemah Fault Survey and Supervirtual Inteferometry Abdullah Alhadab Maximillian Kosmicki Earth Science and Engineering Department (ErSE), King Abdullah University of Science and Technology Outline

More information

OpenWorld 2015 Oracle Par22oning

OpenWorld 2015 Oracle Par22oning OpenWorld 2015 Oracle Par22oning Did You Think It Couldn t Get Any Be6er? Safe Harbor Statement The following is intended to outline our general product direc2on. It is intended for informa2on purposes

More information

Advanced OpenACC. Steve Abbott November 17, 2017

Advanced OpenACC. Steve Abbott November 17, 2017 Advanced OpenACC Steve Abbott , November 17, 2017 AGENDA Expressive Parallelism Pipelining Routines 2 The loop Directive The loop directive gives the compiler additional information

More information

OpenACC Fundamentals. Steve Abbott November 13, 2016

OpenACC Fundamentals. Steve Abbott November 13, 2016 OpenACC Fundamentals Steve Abbott , November 13, 2016 Who Am I? 2005 B.S. Physics Beloit College 2007 M.S. Physics University of Florida 2015 Ph.D. Physics University of New Hampshire

More information

General Purpose GPU Programming. Advanced Operating Systems Tutorial 9

General Purpose GPU Programming. Advanced Operating Systems Tutorial 9 General Purpose GPU Programming Advanced Operating Systems Tutorial 9 Tutorial Outline Review of lectured material Key points Discussion OpenCL Future directions 2 Review of Lectured Material Heterogeneous

More information

Predic've Modeling in a Polyhedral Op'miza'on Space

Predic've Modeling in a Polyhedral Op'miza'on Space Predic've Modeling in a Polyhedral Op'miza'on Space Eunjung EJ Park 1, Louis- Noël Pouchet 2, John Cavazos 1, Albert Cohen 3, and P. Sadayappan 2 1 University of Delaware 2 The Ohio State University 3

More information

Recent Advances in Heterogeneous Computing using Charm++

Recent Advances in Heterogeneous Computing using Charm++ Recent Advances in Heterogeneous Computing using Charm++ Jaemin Choi, Michael Robson Parallel Programming Laboratory University of Illinois Urbana-Champaign April 12, 2018 1 / 24 Heterogeneous Computing

More information

Energy Efficient Transparent Library Accelera4on with CAPI Heiner Giefers IBM Research Zurich

Energy Efficient Transparent Library Accelera4on with CAPI Heiner Giefers IBM Research Zurich Energy Efficient Transparent Library Accelera4on with CAPI Heiner Giefers IBM Research Zurich Revolu'onizing the Datacenter Datacenter Join the Conversa'on #OpenPOWERSummit Towards highly efficient data

More information

PhD in Computer And Control Engineering XXVII cycle. Torino February 27th, 2015.

PhD in Computer And Control Engineering XXVII cycle. Torino February 27th, 2015. PhD in Computer And Control Engineering XXVII cycle Torino February 27th, 2015. Parallel and reconfigurable systems are more and more used in a wide number of applica7ons and environments, ranging from

More information

MAGMA. Matrix Algebra on GPU and Multicore Architectures

MAGMA. Matrix Algebra on GPU and Multicore Architectures MAGMA Matrix Algebra on GPU and Multicore Architectures Innovative Computing Laboratory Electrical Engineering and Computer Science University of Tennessee Piotr Luszczek (presenter) web.eecs.utk.edu/~luszczek/conf/

More information

Producing Broadband Synthe3c Time Histories

Producing Broadband Synthe3c Time Histories Producing Broadband Synthe3c Time Histories for Central and Eastern North America By: Alireza Shahjouei and Shahram Pezeshk Department of Civil Engineering The University of Memphis May 2013 Outline: Ø

More information

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

A GPU Sparse Direct Solver for AX=B

A GPU Sparse Direct Solver for AX=B 1 / 25 A GPU Sparse Direct Solver for AX=B Jonathan Hogg, Evgueni Ovtchinnikov, Jennifer Scott* STFC Rutherford Appleton Laboratory 26 March 2014 GPU Technology Conference San Jose, California * Thanks

More information

Lecture: Manycore GPU Architectures and Programming, Part 4 -- Introducing OpenMP and HOMP for Accelerators

Lecture: Manycore GPU Architectures and Programming, Part 4 -- Introducing OpenMP and HOMP for Accelerators Lecture: Manycore GPU Architectures and Programming, Part 4 -- Introducing OpenMP and HOMP for Accelerators CSCE 569 Parallel Computing Department of Computer Science and Engineering Yonghong Yan yanyh@cse.sc.edu

More information

Using Sequen+al Run+me Distribu+ons for the Parallel Speedup Predic+on of SAT Local Search

Using Sequen+al Run+me Distribu+ons for the Parallel Speedup Predic+on of SAT Local Search Using Sequen+al Run+me Distribu+ons for the Parallel Speedup Predic+on of SAT Local Search Alejandro Arbelaez - CharloBe Truchet - Philippe Codognet JFLI University of Tokyo LINA, UMR 6241 University of

More information

Op#mizing PGAS overhead in a mul#-locale Chapel implementa#on of CoMD

Op#mizing PGAS overhead in a mul#-locale Chapel implementa#on of CoMD Op#mizing PGAS overhead in a mul#-locale Chapel implementa#on of CoMD Riyaz Haque and David F. Richards This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore

More information

The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy.! Thomas C.

The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy.! Thomas C. The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy! Thomas C. Schulthess ENES HPC Workshop, Hamburg, March 17, 2014 T. Schulthess!1

More information

MAGMA: a New Generation

MAGMA: a New Generation 1.3 MAGMA: a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Jack Dongarra T. Dong, M. Gates, A. Haidar, S. Tomov, and I. Yamazaki University of Tennessee, Knoxville Release

More information

Productive Performance on the Cray XK System Using OpenACC Compilers and Tools

Productive Performance on the Cray XK System Using OpenACC Compilers and Tools Productive Performance on the Cray XK System Using OpenACC Compilers and Tools Luiz DeRose Sr. Principal Engineer Programming Environments Director Cray Inc. 1 The New Generation of Supercomputers Hybrid

More information

Ar#ficial Intelligence

Ar#ficial Intelligence Ar#ficial Intelligence Advanced Searching Prof Alexiei Dingli Gene#c Algorithms Charles Darwin Genetic Algorithms are good at taking large, potentially huge search spaces and navigating them, looking for

More information

SEDA An architecture for Well Condi6oned, scalable Internet Services

SEDA An architecture for Well Condi6oned, scalable Internet Services SEDA An architecture for Well Condi6oned, scalable Internet Services Ma= Welsh, David Culler, and Eric Brewer University of California, Berkeley Symposium on Operating Systems Principles (SOSP), October

More information

Porting a parallel rotor wake simulation to GPGPU accelerators using OpenACC

Porting a parallel rotor wake simulation to GPGPU accelerators using OpenACC DLR.de Chart 1 Porting a parallel rotor wake simulation to GPGPU accelerators using OpenACC Melven Röhrig-Zöllner DLR, Simulations- und Softwaretechnik DLR.de Chart 2 Outline Hardware-Architecture (CPU+GPU)

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v6.5 August 2014 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

Auto-tuning a High-Level Language Targeted to GPU Codes. By Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, John Cavazos

Auto-tuning a High-Level Language Targeted to GPU Codes. By Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, John Cavazos Auto-tuning a High-Level Language Targeted to GPU Codes By Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, John Cavazos GPU Computing Utilization of GPU gives speedup on many algorithms

More information

Lattice Simulations using OpenACC compilers. Pushan Majumdar (Indian Association for the Cultivation of Science, Kolkata)

Lattice Simulations using OpenACC compilers. Pushan Majumdar (Indian Association for the Cultivation of Science, Kolkata) Lattice Simulations using OpenACC compilers Pushan Majumdar (Indian Association for the Cultivation of Science, Kolkata) OpenACC is a programming standard for parallel computing developed by Cray, CAPS,

More information

Feature- Oriented Programming with Family Polymorphism

Feature- Oriented Programming with Family Polymorphism Feature- Oriented Programming with Family Polymorphism Fuminobu Takeyama Shigeru Chiba Tokyo Ins@tute of Technology 2012/03/25 Feature- Oriented Programming with Family Polymorphism 1 /24 Feature- oriented

More information

OpenACC Accelerator Directives. May 3, 2013

OpenACC Accelerator Directives. May 3, 2013 OpenACC Accelerator Directives May 3, 2013 OpenACC is... An API Inspired by OpenMP Implemented by Cray, PGI, CAPS Includes functions to query device(s) Evolving Plan to integrate into OpenMP Support of

More information

TiDA: High Level Programming Abstrac8ons for Data Locality Management

TiDA: High Level Programming Abstrac8ons for Data Locality Management h#p://parcorelab.ku.edu.tr TiDA: High Level Programming Abstrac8ons for Data Locality Management Didem Unat, Muhammed Nufail Farooqi, Burak Bastem Koç University, Turkey Tan Nguyen, Weiqun Zhang, George

More information

Single and mul,threaded processes

Single and mul,threaded processes 1 Single and mul,threaded processes Why threads? Express concurrency Web server (mul,ple requests), Browser (GUI + network I/O + rendering), most GUI programs for(;;) { struct request *req = get_request();

More information