QDP++/Chroma on IBM PowerXCell 8i Processor

Size: px
Start display at page:

Download "QDP++/Chroma on IBM PowerXCell 8i Processor"

Transcription

1 QDP++/Chroma on IBM PowerXCell 8i Processor Frank Winter (QCDSF Collaboration) University Regensburg NIC, DESY-Zeuthen STRONGnet 2010 Conference Hadron Physics in Lattice QCD Paphos, Cyprus from August 24 to 27, 2010 Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 1 / 18

2 Outline 1 Motivation 2 QDP++/Chroma 3 IBM PowerXCell 8i Processor 4 Implementation 5 Benchmarks Results 6 Conclusion and Outlook Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 2 / 18

3 Motivation: QDP++/Chroma on QPACE New type of massive parallel scalable supercomputer 200 TFlops aggregate performance (double precision) based on IBM PowerXCell 8i Processor Chroma Very successful versatile lattice QCD application suite Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 3 / 18

4 Motivation: Generic and Retargetable Addresses QDP++ Generic, i.e. includes all functions Chroma as application Retargetable Code-Generator retargetable Right now just one target architecture: IBM PowerXCell 8i Processor includes: Single core Processors Symmetric Multiprocessing Processors Heterogeneous multi-core Processors Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 4 / 18

5 SciDAC Software Components Involved in Chroma Main developers: B. Joó and R. Edwards Chroma (main application) QDP++ (QCD Data Parallel) QMP (QCD Message Passing) QMT (QCD Multi-Threading) Several specialized kernels: BAGEL (P. Boyle) QUDA (M. Clark) Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 5 / 18

6 Chroma (Main Application) First CVS stamp 2002, in production since citations (Aug 2010) Spectroscopy, decay constant, nucleon form factor, structure function moment,... Actions: Wilson, domain wall, overlap fermion operators,... Numerous inverters: MR, CG, BiCGStab,... builds on top of QDP++ Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 6 / 18

7 QDP++ (QCD Data Parallel) C++ class library for Lattice Field Theory, basis for Chroma Lattice wide datatypes QCD tensor structure nested template instantiation Data parallel operations PETE (Portable Expression Template Engine) eliminates lattice temporaries C++ operator overloading Hides architectural details to the user Make code highly portable and generic But drawback: moderate performance High performance requires specialized/optimized code Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 7 / 18

8 Optimized Kernels by Specialization Chroma Level Accesses Raw Data of QDP++ Lattice Datatypes Directly BAGEL Wilson DSlash BAGEL Clover QUDA QDP++ Level SSE Kernels BAGEL QDP Optimizations for Clusters (Myrinet, Infiniband,...) QCDOC, BlueGene L/P Cray XT 3/4/5/6 systems all by template specialization Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 8 / 18

9 Symmetric Multiprocessing Processors (SMP) Computer industry goes Multi-Core IBM Power7 Intel Nehalem AMD Opteron/Barcelona Cray XT4/5/6 JLab s Answer to SMP QMT (QCD Multi-Threading) Performance gain over pure QMP/MPI but: SMP (Symmetric Multi-Processing) required Homogeneous multi-core architecture required Latest Trend: Heterogeneous multi-core acceleration IBM PowerXCell 8i Processor Larrabee CUDA not supported Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 9 / 18

10 Hardware Overview: IBM PowerXCell 8i Processor Cell Broadband Engine Architecture (CBEA) 1 PowerPC Processing Element (PPE) 8 Synergistic Processing Elements (SPE) Element Interconnect Bus (EIB) shared by all Processing Elements Memory Interface Controller (MIC), I/O Interface (IOIF) Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 10 / 18

11 Hardware Overview: Synergistic Processing Element (SPE) Synergistic Processing Unit (SPU) RISC Processor with 128-bit SIMD organization 256 KB Local Storage (LS) for Instructions and Data 128-Entry 128-bit Register File 2 Instruction Pipelines Feature Dual-Issue Floating Point Pipeline Supports Fused Multiply-Add/Sub Memory Flow Controller (MFC) Interfaces the LS to Main Memory DMA Controller Transfers Data in Parallel to SPU Execution Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 11 / 18

12 How to get Chroma/QDP++ on the Cell? Problem: Build of Chroma/QDP++ for PPE is possible But, executes with poor performance Exploiting SPU s floating-point performance and DMA controller necessary! But, build of Chroma/QDP++ for SPU impossible (SIMD, LS size, no I/O)! Solution: Build only required functions for SPU Build remaining parts of Chroma for PPE Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 12 / 18

13 New Components Modified QDP++ for PPE generates SPU Meta-Code Lightweight QDP++ for SPU SPU Code Generator Boost Meta-Programming Library (MPL) for Compile-Time Calculations Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 13 / 18

14 Integration of New Components into Build Process Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 14 / 18

15 Benchmark Measurements 60 QDP++ Functions were selected for Benchmarking from: Propagator Calculation Smearing Routines, and Hadron Spectrum Calculation n QDP++ function index range 1006 M i,j = M i,j {i, 1, 3}{j, 1, 3} 1007 M i,j = (M M ) i,j {i, 1, 3}{j, 1, 3} 1014 Mi,j,k,l+ SC = (M C M SC + M SC ) i,j,k,l {i, 1, 3}{j, 1, 3}{k, 1, 4}{l, 1, 4} Test Hardware: Jülich Super-Computing Center (JSC) QS22 Cell Blades (dual IBM PowerXCell 8i Processor) Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 15 / 18

16 Benchmark Results: Pure DMA good overall memory bandwidth saturation some drops for very small functions, i.e. 1022: LatticeBool = LatticeInt > ScalarInt (execution time negligible) Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 16 / 18

17 Benchmark Results: Computation Switched On 50% of functions already at highest performance some functions floating-point performance limited Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 17 / 18

18 Conclusion and Outlook Pro First step towards Chroma on QPACE is done But bigger goal: We are generic and address all functions (not only a few found in the hot spot of a program) Good memory bandwidth saturation Con Build process still a little crude Outlook Parallelization step to QPACE nodes Build process enhancement, some parts go into the compiler Frank Winter (DESY/University Regensburg) QDP++/Chroma on IBM PowerXCell 8i Processor STRONGnet 2010 Conference 18 / 18

QDP-JIT/PTX: A QDP++ Implementation for CUDA-Enabled GPUs

QDP-JIT/PTX: A QDP++ Implementation for CUDA-Enabled GPUs : A QDP++ Implementation for CUDA-Enabled GPUs, R. G. Edwards Thomas Jefferson National Accelerator Facility, 236 Newport News, VA E-mail: fwinter@jlab.org These proceedings describe briefly the framework

More information

Cell Processor and Playstation 3

Cell Processor and Playstation 3 Cell Processor and Playstation 3 Guillem Borrell i Nogueras February 24, 2009 Cell systems Bad news More bad news Good news Q&A IBM Blades QS21 Cell BE based. 8 SPE 460 Gflops Float 20 GFLops Double QS22

More information

COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors

COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors Edgar Gabriel Fall 2018 References Intel Larrabee: [1] L. Seiler, D. Carmean, E.

More information

QDP++ on Cell BE WEI WANG. June 8, 2009

QDP++ on Cell BE WEI WANG. June 8, 2009 QDP++ on Cell BE WEI WANG June 8, 2009 MSc in High Performance Computing The University of Edinburgh Year of Presentation: 2009 Abstract The Cell BE provides large peak floating point performance with

More information

Progress Report on QDP-JIT

Progress Report on QDP-JIT Progress Report on QDP-JIT F. T. Winter Thomas Jefferson National Accelerator Facility USQCD Software Meeting 14 April 16-17, 14 at Jefferson Lab F. Winter (Jefferson Lab) QDP-JIT USQCD-Software 14 1 /

More information

Cell Broadband Engine. Spencer Dennis Nicholas Barlow

Cell Broadband Engine. Spencer Dennis Nicholas Barlow Cell Broadband Engine Spencer Dennis Nicholas Barlow The Cell Processor Objective: [to bring] supercomputer power to everyday life Bridge the gap between conventional CPU s and high performance GPU s History

More information

Roadrunner. By Diana Lleva Julissa Campos Justina Tandar

Roadrunner. By Diana Lleva Julissa Campos Justina Tandar Roadrunner By Diana Lleva Julissa Campos Justina Tandar Overview Roadrunner background On-Chip Interconnect Number of Cores Memory Hierarchy Pipeline Organization Multithreading Organization Roadrunner

More information

How to Write Fast Code , spring th Lecture, Mar. 31 st

How to Write Fast Code , spring th Lecture, Mar. 31 st How to Write Fast Code 18-645, spring 2008 20 th Lecture, Mar. 31 st Instructor: Markus Püschel TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred) Introduction Parallelism: definition Carrying

More information

CellSs Making it easier to program the Cell Broadband Engine processor

CellSs Making it easier to program the Cell Broadband Engine processor Perez, Bellens, Badia, and Labarta CellSs Making it easier to program the Cell Broadband Engine processor Presented by: Mujahed Eleyat Outline Motivation Architecture of the cell processor Challenges of

More information

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies John C. Linford John Michalakes Manish Vachharajani Adrian Sandu IMAGe TOY 2009 Workshop 2 Virginia

More information

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Informática Architectures for Embedded Computing MEIC-A, MEIC-T, MERC Lecture Slides Version 3.0 - English Lecture 12

More information

A Brief Introduction to Chroma. S. Collins, University of Regensburg

A Brief Introduction to Chroma. S. Collins, University of Regensburg A Brief Introduction to Chroma S. Collins, University of Regensburg Outline What is chroma? What can it do? Design. XML input and running chroma. How to get it. How to compile it. 2 Other chroma lectures

More information

Parallel Computing: Parallel Architectures Jin, Hai

Parallel Computing: Parallel Architectures Jin, Hai Parallel Computing: Parallel Architectures Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology Peripherals Computer Central Processing Unit Main Memory Computer

More information

arxiv: v1 [hep-lat] 1 Dec 2017

arxiv: v1 [hep-lat] 1 Dec 2017 arxiv:1712.00143v1 [hep-lat] 1 Dec 2017 MILC Code Performance on High End CPU and GPU Supercomputer Clusters Carleton DeTar 1, Steven Gottlieb 2,, Ruizi Li 2,, and Doug Toussaint 3 1 Department of Physics

More information

arxiv: v1 [hep-lat] 13 Jun 2008

arxiv: v1 [hep-lat] 13 Jun 2008 Continuing Progress on a Lattice QCD Software Infrastructure arxiv:0806.2312v1 [hep-lat] 13 Jun 2008 Bálint Joó on behalf of the USQCD Collaboration Thomas Jefferson National Laboratory, 12000 Jefferson

More information

QCD Data Parallel (Expressive C++ API for Lattice Field Theory) for GPUs

QCD Data Parallel (Expressive C++ API for Lattice Field Theory) for GPUs QCD Data Parallel (Expressive C++ API for Lattice Field Theory) for GPUs Frank Winter Jefferson Lab GPU Technology Conference 2013 March 18-21, San Jose, California Frank Winter (Jefferson Lab) QDP-JIT

More information

( ZIH ) Center for Information Services and High Performance Computing. Event Tracing and Visualization for Cell Broadband Engine Systems

( ZIH ) Center for Information Services and High Performance Computing. Event Tracing and Visualization for Cell Broadband Engine Systems ( ZIH ) Center for Information Services and High Performance Computing Event Tracing and Visualization for Cell Broadband Engine Systems ( daniel.hackenberg@zih.tu-dresden.de ) Daniel Hackenberg Cell Broadband

More information

Interconnection of Clusters of Various Architectures in Grid Systems

Interconnection of Clusters of Various Architectures in Grid Systems Journal of Applied Computer Science & Mathematics, no. 12 (6) /2012, Suceava Interconnection of Clusters of Various Architectures in Grid Systems 1 Ovidiu GHERMAN, 2 Ioan UNGUREAN, 3 Ştefan G. PENTIUC

More information

arxiv: v1 [hep-lat] 9 Oct 2008

arxiv: v1 [hep-lat] 9 Oct 2008 arxiv:0810.1559v1 [hep-lat] 9 Oct 2008 H. Baier 1, H. Boettiger 1, M. Drochner 2, N. Eicker 2,3, U. Fischer 1, Z. Fodor 3, G. Goldrian 1, S. Heybrock 4, D. Hierl 4, T. Huth 1, B. Krill 1, J. Lauritsen

More information

IBM Cell Processor. Gilbert Hendry Mark Kretschmann

IBM Cell Processor. Gilbert Hendry Mark Kretschmann IBM Cell Processor Gilbert Hendry Mark Kretschmann Architectural components Architectural security Programming Models Compiler Applications Performance Power and Cost Conclusion Outline Cell Architecture:

More information

Parallel and Distributed Computing

Parallel and Distributed Computing Parallel and Distributed Computing NUMA; OpenCL; MapReduce José Monteiro MSc in Information Systems and Computer Engineering DEA in Computational Engineering Department of Computer Science and Engineering

More information

Evaluating the Portability of UPC to the Cell Broadband Engine

Evaluating the Portability of UPC to the Cell Broadband Engine Evaluating the Portability of UPC to the Cell Broadband Engine Dipl. Inform. Ruben Niederhagen JSC Cell Meeting CHAIR FOR OPERATING SYSTEMS Outline Introduction UPC Cell UPC on Cell Mapping Compiler and

More information

Parallel Exact Inference on the Cell Broadband Engine Processor

Parallel Exact Inference on the Cell Broadband Engine Processor Parallel Exact Inference on the Cell Broadband Engine Processor Yinglong Xia and Viktor K. Prasanna {yinglonx, prasanna}@usc.edu University of Southern California http://ceng.usc.edu/~prasanna/ SC 08 Overview

More information

Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi Coprocessor

Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi Coprocessor Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi Coprocessor Intel K. K. E-mail: hirokazu.kobayashi@intel.com Yoshifumi Nakamura RIKEN AICS E-mail: nakamura@riken.jp Shinji Takeda

More information

High-Performance Modular Multiplication on the Cell Broadband Engine

High-Performance Modular Multiplication on the Cell Broadband Engine High-Performance Modular Multiplication on the Cell Broadband Engine Joppe W. Bos Laboratory for Cryptologic Algorithms EPFL, Lausanne, Switzerland joppe.bos@epfl.ch 1 / 21 Outline Motivation and previous

More information

Crypto On the Playstation 3

Crypto On the Playstation 3 Crypto On the Playstation 3 Neil Costigan School of Computing, DCU. neil.costigan@computing.dcu.ie +353.1.700.6916 PhD student / 2 nd year of research. Supervisor : - Dr Michael Scott. IRCSET funded. Playstation

More information

QUDA Programming For Staggered Quarks

QUDA Programming For Staggered Quarks QUDA Programming For Staggered Quarks Steven Gottlieb, Guochun Shi, Aaron Torok, Volodymyr Kindratenko National Center for Supercomputing Applications & Indiana University 1 Outline Background New staggered

More information

Cluster Computing. Chip Watson Jefferson Lab High Performance Computing. Acknowledgements to Don Holmgren, Fermilab,, USQCD Facilities Project

Cluster Computing. Chip Watson Jefferson Lab High Performance Computing. Acknowledgements to Don Holmgren, Fermilab,, USQCD Facilities Project Cluster Computing Chip Watson Jefferson Lab High Performance Computing Acknowledgements to Don Holmgren, Fermilab,, USQCD Facilities Project Jie Chen, Ying Chen, Balint Joo, JLab HPC Group Distributed

More information

INF5063: Programming heterogeneous multi-core processors Introduction

INF5063: Programming heterogeneous multi-core processors Introduction INF5063: Programming heterogeneous multi-core processors Introduction Håkon Kvale Stensland August 19 th, 2012 INF5063 Overview Course topic and scope Background for the use and parallel processing using

More information

OpenMP on the IBM Cell BE

OpenMP on the IBM Cell BE OpenMP on the IBM Cell BE PRACE Barcelona Supercomputing Center (BSC) 21-23 October 2009 Marc Gonzalez Tallada Index OpenMP programming and code transformations Tiling and Software Cache transformations

More information

Experts in Application Acceleration Synective Labs AB

Experts in Application Acceleration Synective Labs AB Experts in Application Acceleration 1 2009 Synective Labs AB Magnus Peterson Synective Labs Synective Labs quick facts Expert company within software acceleration Based in Sweden with offices in Gothenburg

More information

Cell Programming Tips & Techniques

Cell Programming Tips & Techniques Cell Programming Tips & Techniques Course Code: L3T2H1-58 Cell Ecosystem Solutions Enablement 1 Class Objectives Things you will learn Key programming techniques to exploit cell hardware organization and

More information

Optimizing Data Sharing and Address Translation for the Cell BE Heterogeneous CMP

Optimizing Data Sharing and Address Translation for the Cell BE Heterogeneous CMP Optimizing Data Sharing and Address Translation for the Cell BE Heterogeneous CMP Michael Gschwind IBM T.J. Watson Research Center Cell Design Goals Provide the platform for the future of computing 10

More information

Technology Trends Presentation For Power Symposium

Technology Trends Presentation For Power Symposium Technology Trends Presentation For Power Symposium 2006 8-23-06 Darryl Solie, Distinguished Engineer, Chief System Architect IBM Systems & Technology Group From Ingenuity to Impact Copyright IBM Corporation

More information

All About the Cell Processor

All About the Cell Processor All About the Cell H. Peter Hofstee, Ph. D. IBM Systems and Technology Group SCEI/Sony Toshiba IBM Design Center Austin, Texas Acknowledgements Cell is the result of a deep partnership between SCEI/Sony,

More information

Computer Systems Architecture I. CSE 560M Lecture 19 Prof. Patrick Crowley

Computer Systems Architecture I. CSE 560M Lecture 19 Prof. Patrick Crowley Computer Systems Architecture I CSE 560M Lecture 19 Prof. Patrick Crowley Plan for Today Announcement No lecture next Wednesday (Thanksgiving holiday) Take Home Final Exam Available Dec 7 Due via email

More information

Cell Programming Maciej Cytowski (ICM) PRACE Workshop New Languages & Future Technology Prototypes, March 1-2, LRZ, Germany

Cell Programming Maciej Cytowski (ICM) PRACE Workshop New Languages & Future Technology Prototypes, March 1-2, LRZ, Germany Cell Programming Maciej Cytowski (ICM) PRACE Workshop New Languages & Future Technology Prototypes, March 1-2, LRZ, Germany Agenda Introduction to technology Cell programming models SPE runtime management

More information

Introduction to CELL B.E. and GPU Programming. Agenda

Introduction to CELL B.E. and GPU Programming. Agenda Introduction to CELL B.E. and GPU Programming Department of Electrical & Computer Engineering Rutgers University Agenda Background CELL B.E. Architecture Overview CELL B.E. Programming Environment GPU

More information

An Extension of the StarSs Programming Model for Platforms with Multiple GPUs

An Extension of the StarSs Programming Model for Platforms with Multiple GPUs An Extension of the StarSs Programming Model for Platforms with Multiple GPUs Eduard Ayguadé 2 Rosa M. Badia 2 Francisco Igual 1 Jesús Labarta 2 Rafael Mayo 1 Enrique S. Quintana-Ortí 1 1 Departamento

More information

Computation for Beyond Standard Model Physics

Computation for Beyond Standard Model Physics Computation for Beyond Standard Model Physics Xiao-Yong Jin Argonne National Laboratory Lattice for BSM Physics 2018 Boulder, Colorado April 6, 2018 2 My PhD years at Columbia Lattice gauge theory Large

More information

The need for speed... Bálint Joó, Scientific Computing Group Jefferson Lab

The need for speed... Bálint Joó, Scientific Computing Group Jefferson Lab The need for speed... Bálint Joó, Scientific Computing Group Jefferson Lab Alternative Title: Reduce, Reuse, Recycle (as much as you possibly can) Bálint Joó, Scientific Computing Group Jefferson Lab Outline

More information

Iuliana Bacivarov, Wolfgang Haid, Kai Huang, Lars Schor, and Lothar Thiele

Iuliana Bacivarov, Wolfgang Haid, Kai Huang, Lars Schor, and Lothar Thiele Iuliana Bacivarov, Wolfgang Haid, Kai Huang, Lars Schor, and Lothar Thiele ETH Zurich, Switzerland Efficient i Execution on MPSoC Efficiency regarding speed-up small memory footprint portability Distributed

More information

Sony/Toshiba/IBM (STI) CELL Processor. Scientific Computing for Engineers: Spring 2008

Sony/Toshiba/IBM (STI) CELL Processor. Scientific Computing for Engineers: Spring 2008 Sony/Toshiba/IBM (STI) CELL Processor Scientific Computing for Engineers: Spring 2008 Nec Hercules Contra Plures Chip's performance is related to its cross section same area 2 performance (Pollack's Rule)

More information

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms Complexity and Advanced Algorithms Introduction to Parallel Algorithms Why Parallel Computing? Save time, resources, memory,... Who is using it? Academia Industry Government Individuals? Two practical

More information

What does Heterogeneity bring?

What does Heterogeneity bring? What does Heterogeneity bring? Ken Koch Scientific Advisor, CCS-DO, LANL LACSI 2006 Conference October 18, 2006 Some Terminology Homogeneous Of the same or similar nature or kind Uniform in structure or

More information

arxiv: v2 [hep-lat] 3 Nov 2016

arxiv: v2 [hep-lat] 3 Nov 2016 MILC staggered conjugate gradient performance on Intel KNL arxiv:1611.00728v2 [hep-lat] 3 Nov 2016 Department of Physics, Indiana University, Bloomington IN 47405, USA E-mail: ruizli@umail.iu.edu Carleton

More information

Memory Architectures. Week 2, Lecture 1. Copyright 2009 by W. Feng. Based on material from Matthew Sottile.

Memory Architectures. Week 2, Lecture 1. Copyright 2009 by W. Feng. Based on material from Matthew Sottile. Week 2, Lecture 1 Copyright 2009 by W. Feng. Based on material from Matthew Sottile. Directory-Based Coherence Idea Maintain pointers instead of simple states with each cache block. Ingredients Data owners

More information

Trends in HPC Architectures

Trends in HPC Architectures Mitglied der Helmholtz-Gemeinschaft Trends in HPC Architectures Norbert Eicker Institute for Advanced Simulation Jülich Supercomputing Centre PRACE/LinkSCEEM-2 CyI 2011 Winter School Nikosia, Cyprus Forschungszentrum

More information

high performance medical reconstruction using stream programming paradigms

high performance medical reconstruction using stream programming paradigms high performance medical reconstruction using stream programming paradigms This Paper describes the implementation and results of CT reconstruction using Filtered Back Projection on various stream programming

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim PowerPC-base Core @3.2GHz 1 VMX vector unit per core 512KB L2 cache 7 x SPE @3.2GHz 7 x 128b 128 SIMD GPRs 7 x 256KB SRAM for SPE 1 of 8 SPEs reserved for redundancy total

More information

Performance Analysis and Modeling of the SciDAC MILC Code on Four Large-scale Clusters

Performance Analysis and Modeling of the SciDAC MILC Code on Four Large-scale Clusters Performance Analysis and Modeling of the SciDAC MILC Code on Four Large-scale Clusters Xingfu Wu and Valerie Taylor Department of Computer Science, Texas A&M University Email: {wuxf, taylor}@cs.tamu.edu

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

Massively Parallel Architectures

Massively Parallel Architectures Massively Parallel Architectures A Take on Cell Processor and GPU programming Joel Falcou - LRI joel.falcou@lri.fr Bat. 490 - Bureau 104 20 janvier 2009 Motivation The CELL processor Harder,Better,Faster,Stronger

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 10 Thread and Task Level Parallelism Computer Architecture Part 10 page 1 of 36 Prof. Dr. Uwe Brinkschulte,

More information

Parallel Hyperbolic PDE Simulation on Clusters: Cell versus GPU

Parallel Hyperbolic PDE Simulation on Clusters: Cell versus GPU Parallel Hyperbolic PDE Simulation on Clusters: Cell versus GPU Scott Rostrup and Hans De Sterck Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada Abstract Increasingly,

More information

Software Development Kit for Multicore Acceleration Version 3.0

Software Development Kit for Multicore Acceleration Version 3.0 Software Development Kit for Multicore Acceleration Version 3.0 Programming Tutorial SC33-8410-00 Software Development Kit for Multicore Acceleration Version 3.0 Programming Tutorial SC33-8410-00 Note

More information

arxiv: v1 [physics.comp-ph] 4 Nov 2013

arxiv: v1 [physics.comp-ph] 4 Nov 2013 arxiv:1311.0590v1 [physics.comp-ph] 4 Nov 2013 Performance of Kepler GTX Titan GPUs and Xeon Phi System, Weonjong Lee, and Jeonghwan Pak Lattice Gauge Theory Research Center, CTP, and FPRD, Department

More information

Amir Khorsandi Spring 2012

Amir Khorsandi Spring 2012 Introduction to Amir Khorsandi Spring 2012 History Motivation Architecture Software Environment Power of Parallel lprocessing Conclusion 5/7/2012 9:48 PM ٢ out of 37 5/7/2012 9:48 PM ٣ out of 37 IBM, SCEI/Sony,

More information

Applications on emerging paradigms in parallel computing

Applications on emerging paradigms in parallel computing Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2010 Applications on emerging paradigms in parallel computing Abhinav Sarje Iowa State University Follow this

More information

High Performance Computing: Blue-Gene and Road Runner. Ravi Patel

High Performance Computing: Blue-Gene and Road Runner. Ravi Patel High Performance Computing: Blue-Gene and Road Runner Ravi Patel 1 HPC General Information 2 HPC Considerations Criterion Performance Speed Power Scalability Number of nodes Latency bottlenecks Reliability

More information

OpenMP on the IBM Cell BE

OpenMP on the IBM Cell BE OpenMP on the IBM Cell BE 15th meeting of ScicomP Barcelona Supercomputing Center (BSC) May 18-22 2009 Marc Gonzalez Tallada Index OpenMP programming and code transformations Tiling and Software cache

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Neil Costigan School of Computing, Dublin City University PhD student / 2 nd year of research.

Neil Costigan School of Computing, Dublin City University PhD student / 2 nd year of research. Crypto On the Cell Neil Costigan School of Computing, Dublin City University. neil.costigan@computing.dcu.ie +353.1.700.6916 PhD student / 2 nd year of research. Supervisor : - Dr Michael Scott. IRCSET

More information

arxiv: v1 [astro-ph.im] 2 Feb 2017

arxiv: v1 [astro-ph.im] 2 Feb 2017 International Journal of Parallel Programming manuscript No. (will be inserted by the editor) Correlating Radio Astronomy Signals with Many-Core Hardware Rob V. van Nieuwpoort John W. Romein arxiv:1702.00844v1

More information

Lattice QCD on Graphics Processing Units?

Lattice QCD on Graphics Processing Units? Lattice QCD on Graphics Processing Units? Zhaofeng Liu LPT, INRIA-Futurs(Orsay), PRISM(Versailles), IRISA/INRIA(Rennes), CAPS-Entreprise June 14, 2007 Outline Background Graphics Processing Units(GPU)

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

Parallel Computing Platforms

Parallel Computing Platforms Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3054: Multicore Systems, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Hybrid programming with MPI and OpenMP On the way to exascale

Hybrid programming with MPI and OpenMP On the way to exascale Institut du Développement et des Ressources en Informatique Scientifique www.idris.fr Hybrid programming with MPI and OpenMP On the way to exascale 1 Trends of hardware evolution Main problematic : how

More information

CISC 879 Software Support for Multicore Architectures Spring Student Presentation 6: April 8. Presenter: Pujan Kafle, Deephan Mohan

CISC 879 Software Support for Multicore Architectures Spring Student Presentation 6: April 8. Presenter: Pujan Kafle, Deephan Mohan CISC 879 Software Support for Multicore Architectures Spring 2008 Student Presentation 6: April 8 Presenter: Pujan Kafle, Deephan Mohan Scribe: Kanik Sem The following two papers were presented: A Synchronous

More information

Claude Tadonki. Mines ParisTech Centre de Recherche Informatique

Claude Tadonki. Mines ParisTech Centre de Recherche Informatique Claude Tadonki Mines ParisTech Centre de Recherche Informatique claude.tadonki@mines-paristech.fr Maths & Systems SEMINAR Mines ParisTech, Bd Saint-Michel Lattice Quantum ChromoDynamics (LQCD) Quantum

More information

Nucleon Structure from the Lattice and Status of the QPACE Project

Nucleon Structure from the Lattice and Status of the QPACE Project Nucleon Structure from the Lattice and Status of the QPACE Project Dirk Pleiter DESY Zeuthen 12 March 2009, CCS, Tsukuba Outline Part 1: Nucleon Structure from the Lattice QCDSF dynamical fermion simulations

More information

The Mont-Blanc approach towards Exascale

The Mont-Blanc approach towards Exascale http://www.montblanc-project.eu The Mont-Blanc approach towards Exascale Alex Ramirez Barcelona Supercomputing Center Disclaimer: Not only I speak for myself... All references to unavailable products are

More information

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism Motivation for Parallelism Motivation for Parallelism The speed of an application is determined by more than just processor speed. speed Disk speed Network speed... Multiprocessors typically improve the

More information

Reconstruction of Trees from Laser Scan Data and further Simulation Topics

Reconstruction of Trees from Laser Scan Data and further Simulation Topics Reconstruction of Trees from Laser Scan Data and further Simulation Topics Helmholtz-Research Center, Munich Daniel Ritter http://www10.informatik.uni-erlangen.de Overview 1. Introduction of the Chair

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

Scalable, Hybrid-Parallel Multiscale Methods using DUNE

Scalable, Hybrid-Parallel Multiscale Methods using DUNE MÜNSTER Scalable Hybrid-Parallel Multiscale Methods using DUNE R. Milk S. Kaulmann M. Ohlberger December 1st 2014 Outline MÜNSTER Scalable Hybrid-Parallel Multiscale Methods using DUNE 2 /28 Abstraction

More information

A Transport Kernel on the Cell Broadband Engine

A Transport Kernel on the Cell Broadband Engine A Transport Kernel on the Cell Broadband Engine Paul Henning Los Alamos National Laboratory LA-UR 06-7280 Cell Chip Overview Cell Broadband Engine * (Cell BE) Developed under Sony-Toshiba-IBM efforts Current

More information

High Performance Computing. University questions with solution

High Performance Computing. University questions with solution High Performance Computing University questions with solution Q1) Explain the basic working principle of VLIW processor. (6 marks) The following points are basic working principle of VLIW processor. The

More information

Programming for Performance on the Cell BE processor & Experiences at SSSU. Sri Sathya Sai University

Programming for Performance on the Cell BE processor & Experiences at SSSU. Sri Sathya Sai University Programming for Performance on the Cell BE processor & Experiences at SSSU Sri Sathya Sai University THE STI CELL PROCESSOR The Inevitable Shift to the era of Multi-Core Computing The 9-core Cell Microprocessor

More information

Compilation for Heterogeneous Platforms

Compilation for Heterogeneous Platforms Compilation for Heterogeneous Platforms Grid in a Box and on a Chip Ken Kennedy Rice University http://www.cs.rice.edu/~ken/presentations/heterogeneous.pdf Senior Researchers Ken Kennedy John Mellor-Crummey

More information

PoS(LATTICE2014)028. The FUEL code project

PoS(LATTICE2014)028. The FUEL code project Argonne Leadership Computing Facility 9700 S. Cass Ave. Argonne, IL 60439, USA E-mail: osborn@alcf.anl.gov We give an introduction to the FUEL project for lattice field theory code. The code being developed

More information

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Elements of a Parallel Computer Hardware Multiple processors Multiple

More information

arxiv: v1 [hep-lat] 29 Oct 2008

arxiv: v1 [hep-lat] 29 Oct 2008 arxiv:0810.5365v1 [hep-lat] 29 Oct 2008 Kipton Barros E-mail: kbarros@bu.edu Ronald Babich E-mail: rbabich@bu.edu Richard Brower E-mail: brower@bu.edu Michael A. Clark Center for Computational Science,

More information

The University of Texas at Austin

The University of Texas at Austin EE382N: Principles in Computer Architecture Parallelism and Locality Fall 2009 Lecture 24 Stream Processors Wrapup + Sony (/Toshiba/IBM) Cell Broadband Engine Mattan Erez The University of Texas at Austin

More information

Parallel Programming with MPI

Parallel Programming with MPI Parallel Programming with MPI Science and Technology Support Ohio Supercomputer Center 1224 Kinnear Road. Columbus, OH 43212 (614) 292-1800 oschelp@osc.edu http://www.osc.edu/supercomputing/ Functions

More information

OpenStaPLE, an OpenACC Lattice QCD Application

OpenStaPLE, an OpenACC Lattice QCD Application OpenStaPLE, an OpenACC Lattice QCD Application Enrico Calore Postdoctoral Researcher Università degli Studi di Ferrara INFN Ferrara Italy GTC Europe, October 10 th, 2018 E. Calore (Univ. and INFN Ferrara)

More information

A Brief View of the Cell Broadband Engine

A Brief View of the Cell Broadband Engine A Brief View of the Cell Broadband Engine Cris Capdevila Adam Disney Yawei Hui Alexander Saites 02 Dec 2013 1 Introduction The cell microprocessor, also known as the Cell Broadband Engine (CBE), is a Power

More information

Modeling Multigrain Parallelism on Heterogeneous Multi-core Processors

Modeling Multigrain Parallelism on Heterogeneous Multi-core Processors Modeling Multigrain Parallelism on Heterogeneous Multi-core Processors Filip Blagojevic, Xizhou Feng, Kirk W. Cameron and Dimitrios S. Nikolopoulos Center for High-End Computing Systems Department of Computer

More information

SIMD Exploitation in (JIT) Compilers

SIMD Exploitation in (JIT) Compilers SIMD Exploitation in (JIT) Compilers Hiroshi Inoue, IBM Research - Tokyo 1 What s SIMD? Single Instruction Multiple Data Same operations applied for multiple elements in a vector register input 1 A0 input

More information

arxiv: v1 [hep-lat] 12 Nov 2013

arxiv: v1 [hep-lat] 12 Nov 2013 Lattice Simulations using OpenACC compilers arxiv:13112719v1 [hep-lat] 12 Nov 2013 Indian Association for the Cultivation of Science, Kolkata E-mail: tppm@iacsresin OpenACC compilers allow one to use Graphics

More information

Portable Parallel Programming for Multicore Computing

Portable Parallel Programming for Multicore Computing Portable Parallel Programming for Multicore Computing? Vivek Sarkar Rice University vsarkar@rice.edu FPU ISU ISU FPU IDU FXU FXU IDU IFU BXU U U IFU BXU L2 L2 L2 L3 D Acknowledgments Rice Habanero Multicore

More information

Turbostream: A CFD solver for manycore

Turbostream: A CFD solver for manycore Turbostream: A CFD solver for manycore processors Tobias Brandvik Whittle Laboratory University of Cambridge Aim To produce an order of magnitude reduction in the run-time of CFD solvers for the same hardware

More information

Revisiting Parallelism

Revisiting Parallelism Revisiting Parallelism Sudhakar Yalamanchili, Georgia Institute of Technology Where Are We Headed? MIPS 1000000 Multi-Threaded, Multi-Core 100000 Multi Threaded 10000 Era of Speculative, OOO 1000 Thread

More information

Computer Engineering Mekelweg 4, 2628 CD Delft The Netherlands MSc THESIS

Computer Engineering Mekelweg 4, 2628 CD Delft The Netherlands  MSc THESIS Computer Engineering Mekelweg 4, 2628 CD Delft The Netherlands http://ce.et.tudelft.nl/ 2010 MSc THESIS Implementation of Nexus: Dynamic Hardware Management Support for Multicore Platforms Efrén Fernández

More information

WHY PARALLEL PROCESSING? (CE-401)

WHY PARALLEL PROCESSING? (CE-401) PARALLEL PROCESSING (CE-401) COURSE INFORMATION 2 + 1 credits (60 marks theory, 40 marks lab) Labs introduced for second time in PP history of SSUET Theory marks breakup: Midterm Exam: 15 marks Assignment:

More information

PC DESY Peter Wegner. PC Cluster Definition 1

PC DESY Peter Wegner. PC Cluster Definition 1 PC Cluster @ DESY Peter Wegner 1. Motivation, History 2. Myrinet-Communication 4. Cluster Hardware 5. Cluster Software 6. Future PC Cluster Definition 1 Idee: Herbert Cornelius (Intel München) 1 PC Cluster

More information

Chap. 2 part 1. CIS*3090 Fall Fall 2016 CIS*3090 Parallel Programming 1

Chap. 2 part 1. CIS*3090 Fall Fall 2016 CIS*3090 Parallel Programming 1 Chap. 2 part 1 CIS*3090 Fall 2016 Fall 2016 CIS*3090 Parallel Programming 1 Provocative question (p30) How much do we need to know about the HW to write good par. prog.? Chap. gives HW background knowledge

More information

SMD149 - Operating Systems - Multiprocessing

SMD149 - Operating Systems - Multiprocessing SMD149 - Operating Systems - Multiprocessing Roland Parviainen December 1, 2005 1 / 55 Overview Introduction Multiprocessor systems Multiprocessor, operating system and memory organizations 2 / 55 Introduction

More information

High Performance Computing - Parallel Computers and Networks. Prof Matt Probert

High Performance Computing - Parallel Computers and Networks. Prof Matt Probert High Performance Computing - Parallel Computers and Networks Prof Matt Probert http://www-users.york.ac.uk/~mijp1 Overview Parallel on a chip? Shared vs. distributed memory Latency & bandwidth Topology

More information

Overview. SMD149 - Operating Systems - Multiprocessing. Multiprocessing architecture. Introduction SISD. Flynn s taxonomy

Overview. SMD149 - Operating Systems - Multiprocessing. Multiprocessing architecture. Introduction SISD. Flynn s taxonomy Overview SMD149 - Operating Systems - Multiprocessing Roland Parviainen Multiprocessor systems Multiprocessor, operating system and memory organizations December 1, 2005 1/55 2/55 Multiprocessor system

More information