Supercomputing: scientific instruments and precursors for new technologies what does this mean for Switzerland? Thomas C.

Size: px
Start display at page:

Download "Supercomputing: scientific instruments and precursors for new technologies what does this mean for Switzerland? Thomas C."

Transcription

1 Supercomputing: scientific instruments and precursors for new technologies what does this mean for Switzerland? Thomas C. Schulthess

2 Today s state of the art climate simulation (resolution T85 ~ 148 km)

3 Experimental climate running at higher resolution (resolution T341 ~ 37 km)

4 Why resolution is such an issue for Switzerland 70 km 35 km 1X 8.8 km 100X 2.2 km 10,000X 0.55 km 1,000,000X Source: Oliver Fuhrer, MeteoSwiss

5 Premise: 3 pillars of 21. century scientific method Theory (since antiquity) combined with experiment (since Galilei & Newton) and simulation (since Metropolis, Teller, von Neumann, Fermi, s) Excellence in Science requires excellence in all three areas: theory, experiment, and simulations

6 Computer performance and application performance increase ~10 3 every decade ~100 Kilowatts ~5 Megawatts MW ~1 Exaflop/s 1.35 Petaflop/s Cray XT processors 100 million or billion processing cores (!) 1.02 Teraflop/s Cray T3E processors 1 Gigaflop/s Cray YMP 8 processors First sustained GFlop/s Gordon Bell Prize 1988 First sustained TFlop/s Gordon Bell Prize 1998 First sustained PFlop/s Gordon Bell Prize 2008 Another 1,000x increase in sustained performance

7 Moore s Law is still alive and well illustration: A. Tovey, source: D. Patterson, UC Berkeley

8 Limits of CMOS scaling Oxide layer thickness ~1nm Source: Ronald Luijten, IBM-ZRL t ox /α Voltage, V/α GATE n+ n+ source drain L/α p substrate, doping WIRING W/α SCALING Voltage: Oxide: Wire width: Gate Width: Diffusion: Substrate: V/α t ox /α W/α L/α x d /α α N A CONSEQUENCE: Higher density: α 2 x d /α α Higher speed: α N A Power/ckt: 1/α 2 Power density: The power challenge today is a precursor of more physical limitations in scaling atomic limit! constant

9 1000 fold increase in performance in 10 years: > previously: double transistor density every 18 months = 100X in 10 years frequency increased > now: only 1.75X transistor density every 2 years = 16X in 10 years frequency almost the same Need to make up a factor 60 somewhere else Source: Rajeeb Hazra s (HPC@Intel) talk at SOS14, March 2010 SARA 26th Annual Superdag

10 Source: Rajeeb Hazra s (HPC@Intel) talk at SOS14, March 2010 SARA 26th Annual Superdag

11 Petaflop/s = bit floating point operations / sec. which takes more energy? 64-bit floating-point fused multiply add or moving three 64-bit operands 20 mm across the die 934, x = 49,370, = 49,370, mm this takes over 3x the energy! loading the data from off chip takes > 10x more yet source: Steve Scott, Cray Inc. moving data is expensive exploiting data locality is critical to energy efficiency If we care about energy consumption, we have to worry about these and other physical considerations of the computation but where is the separation of concerns?

12 Von Neumann Architecture: Memory Memory CPU Control Unit Arithmetic Logic Unit accumulator I/O unit(s) Input Output stored-program concept = general purpose computing machine

13 Memory hierarchy to work around latency and bandwidth problems Functional units CPU Expensive, fast, small Registers Internal cash ~100 GB/s ~ 6-10 ns External cash ~50 GB/s Cheap, slow, large Main memory (RAM) ~10 GB/s ~ 75 ns

14 Distributed vs. shared memory architecture Distributed memory Interconnect CPU Memory Shared memory

15 Interconnect types on massively parallel processing (MPP) systems distributed memory Switch(es) / router(s) RAM RAM RAM RAM CPU CPU CPU... CPU... NIC & Router NIC & Router NIC & Router... NIC & Router NIC NIC NIC NIC & Router NIC & Router NIC & Router... NIC & Router CPU CPU... CPU CPU CPU CPU... CPU RAM RAM RAM RAM RAM RAM RAM

16 Larger parallel computers only solve part of the problem 2x 2x Run on 4x the number of processors Sequential >2x Calculations have to be more efficient: better implementation, better algorithms, more suitable systems Time

17 Applications running at scale on ORNL Fall 2009 Domain area Code name Institution # of cores Performance Notes Materials DCA++ ORNL 213, PF Materials WL-LSMS ORNL/ETH 223, PF Chemistry NWChem PNNL/ORNL 224, PF 2008 Gordon Bell Prize Winner 2009 Gordon Bell Prize Winner 2008 Gordon Bell Prize Finalist Materials OMEN Duke 222, TF Chemistry MADNESS UT/ORNL 140, TF Materials LS3DF LBL 147, TF Seismology SPECFEM3D USA (multiple) 149, TF 2008 Gordon Bell Prize Winner 2008 Gordon Bell Prize Finalist Combustion S3D SNL 147, TF Weather WRF USA (multiple) 150, TF

18 Algorithmic motifs and their arithmetic intensity Arithmetic intensity: number of operations per word of memory transferred Finite difference / stencil in S3D and WRF Rank-1 update in HF-QMC Sparse linear algebra Matrix-Vector Vector-Vector BLAS1&2 Fast Fourier Transforms FFTW Rank-N update in DCA++ QMR in WL-LSMS Linpack (Top500) Dense Matrix-Matrix BLAS3 O(1) O(log N) O(N) Supercomputers are designed for certain algorithmic motifs which ones?

19 Leaving the comfort zone of separated concerns Decompose application into algorithmic motifs Understand the hierarchy of motifs the dwarfs are not all dwarfs Design systems or components therefore against these dwarfs Proper (theoretical) description of heterogenous systems... Algorithmic motifs and their arithmetic intensity Arithmetic intensity: number of operations per word of memory transferred Rank-1 update in HF-QMC Finite difference / stencil Sparse linear algebra BLAS1 BLAS2 O(1) O(log N) O(N) Eckert and Mauchly s invention is named after von Neumann! FFT Rank-N update in DCA++ QMR in WL-LSMS Linpack Dense matrix-matrix BLAS3

20 Relationship between simulations and supercomputer system Science? Simulations Model & method of solution Port codes developed on workstations > vectorize codes > parallelize codes > petascaling and soon exascaling Basic numerical libraries Programming environment Supercomputer Runtime system Operating systems Computer Hardware

21 Relationship between simulations and supercomputer system Simulations + Theory + Experiment Science Model & method of solution Mapping problem to supercomputer system > Algorithm re-engineering > Software refactoring > Domain specific libraries/languages, etc. > Focus on scientific / engineering problem > Requires interdisciplinary effort / team Basic numerical libraries Programming environment Runtime system Supercomputer Operating systems Co-Design Computer Hardware

22 Swiss Platform for High-Performance and High- Productivity Computing (, see Scientific problem Simulations + Theory + Experiment Swiss Universities / Federal Institutes of Technology (presently 11 domain science projects in HP2C Platform) Interdisciplinary teams consisting of: > model & method development > application software design / engineering > system software (everything between apps & hardware) > numerical libraries / programming environments > mapping methods onto computer hardware/ systems > hardware design / engineering Swiss National Supercomputing Center (CSCS) & U. of Lugano (USI) (collaboration with industry: Cray, IBM, Mellanox, SCS) Supercomputer IT manufacturers system integrators

23 Projects of the platform (see Gyrokinetic Simulations of Turbulence in Fusion Plasmas (ORB5) Laurent Villard, EPF Lausanne Ab initio Molecular Dynamics (CP2K) Jürg Hutter, Univ. of Zurich Computational Cosmology on the Petascale Geoge Lake, Univ. of Zurich Selectome, looking for Darwinian evolution in the tree of life Marc Robinson-Rechavi, Univ. of Lausanne Cardiovascular Systems Simulations (LifeV) Alfio Quarteroni, EPF Lausanne Modern Algorithms for Quantum Interacting Systems (MAQUIS) Thierry Giamarchi, Univ. of Geneva Large-Scale Parallel Nonlinear Optimization for High Resolution 3D- Seismic Imaging (Petaquacke) Olaf Schenk, Univ. of Basel 3D Models of Stellar Explosions Matthias Liebendörfer, Univ. of Basel Large Scale Electronic Structure Calculations (BigDFT) Stefan Gödecker, Univ. of Basel Regional Climate & Weather Model (COSMO) Isabelle Bey, ETH Zurich/C2SM Lattice-Boltzmann Modeling of the Ear Bastien Chopard, U. of Geneva

24 New building under construction in Lugano Computer room area (1500 m 2 ) Power & cooling ~ 15 MW (upgradable) (PUE ~ 1.2) Proximity to academic institution (USI) Extensible Facilitate seamless computer hardware upgrades/changes Current CSCS building in Manno: PUE ~1.7 i.e. 1 MW delivered to computer requires 1.7 MW electrical power

25 Supercomputing Ecosystem Resource allocation based on recommendation from a panel: PRACE Tier 0 Leadership > scientific review (external peers, SNF, ERC,...) > technical review (external Leadership peers) > readiness review (CSCS internal) Tier 1 Regional / National Resource usage Regional fully under / National the control of its owner (institution or individual project) Tier 2 Leadership Robust produciton systems Advanced development Regional / National systems Institutional production systems Computational Science and Engineering Prototypes Local/institutional supercomputer Local/institutional supercomputer Local/institutional supercomputer Time (a few years)

26 High-risk & high-impact projects of the ( New procurement Cray XT processors Upgrade Cray XT proc. Dual core upgrade Cray XT cores 2008 Upgrade Cray XT cores 2009 Hex-core upgrade cores Final upgrade Cray XT Procurement next generation supercomputer HPCN initiative Begin construction of new building New building complete

27 Roles we could play in Europe Why is Switzerland not a hosting partner in PRACE? Contribute to problem driven co-design most scientific problems are universal an not limited to Switzerland! HP2C can be extended to a European platform For a start: ETH/CSCS is leading WP8 in PRACE 2IP Our intention: give access to national supercomputing resources open to international audience starting 2012 when peta-scale systems are installed Access based only on scientific excellence, technical soundness and readiness Consistent with Swiss tradition in science: passport or country of origin doesn t matter No preset quotas funding agency may start asking questions if foreign usage goes well over 1/3 Allocation decisions are made locally (i.e. in Switzerland) and based on review process that meets Swiss standards for scientific user facilities

28 Summary and conclusions Excellence in science requires excellence in all three areas: theory, experiment, and simulations Moore s Law will not carry the day opportunities for innovations! Take into account physical considerations of the computation Build the right system for the problem at hand Top500.org is suboptimal for many problems! Rewrite application codes even if they are large Domain problems and supercomputing technology (center and industry) need to be integrated into interdisciplinary efforts e.g. HP2C.ch Highly energy efficient new CSCS building in Lugano energy cost savings alone will pay for new construction Keep up with rapid developments by focusing on innovation and full ecosystem rather than building just the fastest machine Starting in 2012: access to national system will be open to all, irrespective on nationality and based on scientific/technical quality & readiness only

29 QUESTIONS / COMMENTS?

High-Performance Computing & Simulations in Quantum Many-Body Systems PART I. Thomas Schulthess

High-Performance Computing & Simulations in Quantum Many-Body Systems PART I. Thomas Schulthess High-Performance Computing & Simulations in Quantum Many-Body Systems PART I Thomas Schulthess schulthess@phys.ethz.ch What exactly is high-performance computing? 1E10 1E9 1E8 1E7 relative performance

More information

GPU Consideration for Next Generation Weather (and Climate) Simulations

GPU Consideration for Next Generation Weather (and Climate) Simulations GPU Consideration for Next Generation Weather (and Climate) Simulations Oliver Fuhrer 1, Tobias Gisy 2, Xavier Lapillonne 3, Will Sawyer 4, Ugo Varetto 4, Mauro Bianco 4, David Müller 2, and Thomas C.

More information

Piz Daint: Application driven co-design of a supercomputer based on Cray s adaptive system design

Piz Daint: Application driven co-design of a supercomputer based on Cray s adaptive system design Piz Daint: Application driven co-design of a supercomputer based on Cray s adaptive system design Sadaf Alam & Thomas Schulthess CSCS & ETHzürich CUG 2014 * Timelines & releases are not precise Top 500

More information

PLAN-E Workshop Switzerland. Welcome! September 8, 2016

PLAN-E Workshop Switzerland. Welcome! September 8, 2016 PLAN-E Workshop Switzerland Welcome! September 8, 2016 The Swiss National Supercomputing Centre Driving innovation in computational research in Switzerland Michele De Lorenzi (CSCS) PLAN-E September 8,

More information

HPC Technology Trends

HPC Technology Trends HPC Technology Trends High Performance Embedded Computing Conference September 18, 2007 David S Scott, Ph.D. Petascale Product Line Architect Digital Enterprise Group Risk Factors Today s s presentations

More information

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA STATE OF THE ART 2012 18,688 Tesla K20X GPUs 27 PetaFLOPS FLAGSHIP SCIENTIFIC APPLICATIONS

More information

Steve Scott, Tesla CTO SC 11 November 15, 2011

Steve Scott, Tesla CTO SC 11 November 15, 2011 Steve Scott, Tesla CTO SC 11 November 15, 2011 What goal do these products have in common? Performance / W Exaflop Expectations First Exaflop Computer K Computer ~10 MW CM5 ~200 KW Not constant size, cost

More information

The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy.! Thomas C.

The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy.! Thomas C. The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy! Thomas C. Schulthess ENES HPC Workshop, Hamburg, March 17, 2014 T. Schulthess!1

More information

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Aim High Intel Technical Update Teratec 07 Symposium June 20, 2007 Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Risk Factors Today s s presentations contain forward-looking statements.

More information

High-Performance Scientific Computing

High-Performance Scientific Computing High-Performance Scientific Computing Instructor: Randy LeVeque TA: Grady Lemoine Applied Mathematics 483/583, Spring 2011 http://www.amath.washington.edu/~rjl/am583 World s fastest computers http://top500.org

More information

Timothy Lanfear, NVIDIA HPC

Timothy Lanfear, NVIDIA HPC GPU COMPUTING AND THE Timothy Lanfear, NVIDIA FUTURE OF HPC Exascale Computing will Enable Transformational Science Results First-principles simulation of combustion for new high-efficiency, lowemision

More information

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms Complexity and Advanced Algorithms Introduction to Parallel Algorithms Why Parallel Computing? Save time, resources, memory,... Who is using it? Academia Industry Government Individuals? Two practical

More information

Titan - Early Experience with the Titan System at Oak Ridge National Laboratory

Titan - Early Experience with the Titan System at Oak Ridge National Laboratory Office of Science Titan - Early Experience with the Titan System at Oak Ridge National Laboratory Buddy Bland Project Director Oak Ridge Leadership Computing Facility November 13, 2012 ORNL s Titan Hybrid

More information

Green Supercomputing

Green Supercomputing Green Supercomputing On the Energy Consumption of Modern E-Science Prof. Dr. Thomas Ludwig German Climate Computing Centre Hamburg, Germany ludwig@dkrz.de Outline DKRZ 2013 and Climate Science The Exascale

More information

Workshop: Innovation Procurement in Horizon 2020 PCP Contractors wanted

Workshop: Innovation Procurement in Horizon 2020 PCP Contractors wanted Workshop: Innovation Procurement in Horizon 2020 PCP Contractors wanted Supercomputing Centre Institute for Advanced Simulation / FZJ 1 www.prace-ri.eu Challenges: Aging Society Energy Food How we can

More information

Introduction to FREE National Resources for Scientific Computing. Dana Brunson. Jeff Pummill

Introduction to FREE National Resources for Scientific Computing. Dana Brunson. Jeff Pummill Introduction to FREE National Resources for Scientific Computing Dana Brunson Oklahoma State University High Performance Computing Center Jeff Pummill University of Arkansas High Peformance Computing Center

More information

Petascale Computing Research Challenges

Petascale Computing Research Challenges Petascale Computing Research Challenges - A Manycore Perspective Stephen Pawlowski Intel Senior Fellow GM, Architecture & Planning CTO, Digital Enterprise Group Yesterday, Today and Tomorrow in HPC ENIAC

More information

CRAY XK6 REDEFINING SUPERCOMPUTING. - Sanjana Rakhecha - Nishad Nerurkar

CRAY XK6 REDEFINING SUPERCOMPUTING. - Sanjana Rakhecha - Nishad Nerurkar CRAY XK6 REDEFINING SUPERCOMPUTING - Sanjana Rakhecha - Nishad Nerurkar CONTENTS Introduction History Specifications Cray XK6 Architecture Performance Industry acceptance and applications Summary INTRODUCTION

More information

Preparing GPU-Accelerated Applications for the Summit Supercomputer

Preparing GPU-Accelerated Applications for the Summit Supercomputer Preparing GPU-Accelerated Applications for the Summit Supercomputer Fernanda Foertter HPC User Assistance Group Training Lead foertterfs@ornl.gov This research used resources of the Oak Ridge Leadership

More information

PART I - Fundamentals of Parallel Computing

PART I - Fundamentals of Parallel Computing PART I - Fundamentals of Parallel Computing Objectives What is scientific computing? The need for more computing power The need for parallel computing and parallel programs 1 What is scientific computing?

More information

Parallel Computer Architecture II

Parallel Computer Architecture II Parallel Computer Architecture II Stefan Lang Interdisciplinary Center for Scientific Computing (IWR) University of Heidelberg INF 368, Room 532 D-692 Heidelberg phone: 622/54-8264 email: Stefan.Lang@iwr.uni-heidelberg.de

More information

HECToR. UK National Supercomputing Service. Andy Turner & Chris Johnson

HECToR. UK National Supercomputing Service. Andy Turner & Chris Johnson HECToR UK National Supercomputing Service Andy Turner & Chris Johnson Outline EPCC HECToR Introduction HECToR Phase 3 Introduction to AMD Bulldozer Architecture Performance Application placement the hardware

More information

Accelerating High Performance Computing.

Accelerating High Performance Computing. Accelerating High Performance Computing http://www.nvidia.com/tesla Computing The 3 rd Pillar of Science Drug Design Molecular Dynamics Seismic Imaging Reverse Time Migration Automotive Design Computational

More information

Introduction to the K computer

Introduction to the K computer Introduction to the K computer Fumiyoshi Shoji Deputy Director Operations and Computer Technologies Div. Advanced Institute for Computational Science RIKEN Outline ü Overview of the K

More information

Exascale: challenges and opportunities in a power constrained world

Exascale: challenges and opportunities in a power constrained world Exascale: challenges and opportunities in a power constrained world Carlo Cavazzoni c.cavazzoni@cineca.it SuperComputing Applications and Innovation Department CINECA CINECA non profit Consortium, made

More information

Porting COSMO to Hybrid Architectures

Porting COSMO to Hybrid Architectures Porting COSMO to Hybrid Architectures T. Gysi 1, O. Fuhrer 2, C. Osuna 3, X. Lapillonne 3, T. Diamanti 3, B. Cumming 4, T. Schroeder 5, P. Messmer 5, T. Schulthess 4,6,7 [1] Supercomputing Systems AG,

More information

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends EE4 - Spring 008 Advanced Digital Integrated Circuits Lecture : Scaling Trends Announcements No office hour next Monday Extra office hours Tuesday and Thursday -3pm CMOS Scaling Rules Voltage, V / α tox/α

More information

HPC Algorithms and Applications

HPC Algorithms and Applications HPC Algorithms and Applications Intro Michael Bader Winter 2015/2016 Intro, Winter 2015/2016 1 Part I Scientific Computing and Numerical Simulation Intro, Winter 2015/2016 2 The Simulation Pipeline phenomenon,

More information

CHAPTER 1 Introduction

CHAPTER 1 Introduction CHAPTER 1 Introduction 1.1 Overview 1 1.2 The Main Components of a Computer 3 1.3 An Example System: Wading through the Jargon 4 1.4 Standards Organizations 15 1.5 Historical Development 16 1.5.1 Generation

More information

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29 Introduction CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction Spring 2018 1 / 29 Outline 1 Preface Course Details Course Requirements 2 Background Definitions

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #19 Distributed Computing UC Berkeley Sr Lecturer SOE Dan By the end of the decade, we re going to see computers that can compute one exaflop (recall kilo, mega,

More information

Computers: Inside and Out

Computers: Inside and Out Computers: Inside and Out Computer Components To store binary information the most basic components of a computer must exist in two states State # 1 = 1 State # 2 = 0 1 Transistors Computers use transistors

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

Fabio AFFINITO.

Fabio AFFINITO. Introduction to High Performance Computing Fabio AFFINITO What is the meaning of High Performance Computing? What does HIGH PERFORMANCE mean??? 1976... Cray-1 supercomputer First commercial successful

More information

The Blue Water s File/Archive System. Data Management Challenges Michelle Butler

The Blue Water s File/Archive System. Data Management Challenges Michelle Butler The Blue Water s File/Archive System Data Management Challenges Michelle Butler (mbutler@ncsa.illinois.edu) NCSA is a World leader in deploying supercomputers and providing scientists with the software

More information

Parallel Computing: From Inexpensive Servers to Supercomputers

Parallel Computing: From Inexpensive Servers to Supercomputers Parallel Computing: From Inexpensive Servers to Supercomputers Lyle N. Long The Pennsylvania State University & The California Institute of Technology Seminar to the Koch Lab http://www.personal.psu.edu/lnl

More information

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center The Stampede is Coming Welcome to Stampede Introductory Training Dan Stanzione Texas Advanced Computing Center dan@tacc.utexas.edu Thanks for Coming! Stampede is an exciting new system of incredible power.

More information

HPCS HPCchallenge Benchmark Suite

HPCS HPCchallenge Benchmark Suite HPCS HPCchallenge Benchmark Suite David Koester, Ph.D. () Jack Dongarra (UTK) Piotr Luszczek () 28 September 2004 Slide-1 Outline Brief DARPA HPCS Overview Architecture/Application Characterization Preliminary

More information

Hybrid Architectures Why Should I Bother?

Hybrid Architectures Why Should I Bother? Hybrid Architectures Why Should I Bother? CSCS-FoMICS-USI Summer School on Computer Simulations in Science and Engineering Michael Bader July 8 19, 2013 Computer Simulations in Science and Engineering,

More information

NVIDIA Update and Directions on GPU Acceleration for Earth System Models

NVIDIA Update and Directions on GPU Acceleration for Earth System Models NVIDIA Update and Directions on GPU Acceleration for Earth System Models Stan Posey, HPC Program Manager, ESM and CFD, NVIDIA, Santa Clara, CA, USA Carl Ponder, PhD, Applications Software Engineer, NVIDIA,

More information

CHAPTER 1 Introduction

CHAPTER 1 Introduction CHAPTER 1 Introduction 1.1 Overview 1 1.2 The Main Components of a Computer 3 1.3 An Example System: Wading through the Jargon 4 1.4 Standards Organizations 13 1.5 Historical Development 14 1.5.1 Generation

More information

Update on Cray Activities in the Earth Sciences

Update on Cray Activities in the Earth Sciences Update on Cray Activities in the Earth Sciences Presented to the 13 th ECMWF Workshop on the Use of HPC in Meteorology 3-7 November 2008 Per Nyberg nyberg@cray.com Director, Marketing and Business Development

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #18 Distributed Computing UC Berkeley Sr Lecturer SOE Dan By the end of the decade, we re going to see computers that can compute one exaflop (recall kilo, mega,

More information

High-Performance Computing Europe s place in a Global Race

High-Performance Computing Europe s place in a Global Race High-Performance Computing Europe s place in a Global Race RI NCP Meeting Brussels, 5 July 2011 Bernhard Fabianek European Commission - DG INFSO GEANT & e-infrastructures 1 The views expressed in this

More information

Overview. CS 472 Concurrent & Parallel Programming University of Evansville

Overview. CS 472 Concurrent & Parallel Programming University of Evansville Overview CS 472 Concurrent & Parallel Programming University of Evansville Selection of slides from CIS 410/510 Introduction to Parallel Computing Department of Computer and Information Science, University

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

High Performance Computing from an EU perspective

High Performance Computing from an EU perspective High Performance Computing from an EU perspective DEISA PRACE Symposium 2010 Barcelona, 10 May 2010 Kostas Glinos European Commission - DG INFSO Head of Unit GÉANT & e-infrastructures 1 "The views expressed

More information

GPU COMPUTING AND THE FUTURE OF HPC. Timothy Lanfear, NVIDIA

GPU COMPUTING AND THE FUTURE OF HPC. Timothy Lanfear, NVIDIA GPU COMPUTING AND THE FUTURE OF HPC Timothy Lanfear, NVIDIA ~1 W ~3 W ~100 W ~30 W 1 kw 100 kw 20 MW Power-constrained Computers 2 EXASCALE COMPUTING WILL ENABLE TRANSFORMATIONAL SCIENCE RESULTS First-principles

More information

HPC projects. Grischa Bolls

HPC projects. Grischa Bolls HPC projects Grischa Bolls Outline Why projects? 7th Framework Programme Infrastructure stack IDataCool, CoolMuc Mont-Blanc Poject Deep Project Exa2Green Project 2 Why projects? Pave the way for exascale

More information

NAMD Serial and Parallel Performance

NAMD Serial and Parallel Performance NAMD Serial and Parallel Performance Jim Phillips Theoretical Biophysics Group Serial performance basics Main factors affecting serial performance: Molecular system size and composition. Cutoff distance

More information

HIGH-PERFORMANCE COMPUTING

HIGH-PERFORMANCE COMPUTING HIGH-PERFORMANCE COMPUTING WITH NVIDIA TESLA GPUS Timothy Lanfear, NVIDIA WHY GPU COMPUTING? Science is Desperate for Throughput Gigaflops 1,000,000,000 1 Exaflop 1,000,000 1 Petaflop Bacteria 100s of

More information

Brand-New Vector Supercomputer

Brand-New Vector Supercomputer Brand-New Vector Supercomputer NEC Corporation IT Platform Division Shintaro MOMOSE SC13 1 New Product NEC Released A Brand-New Vector Supercomputer, SX-ACE Just Now. Vector Supercomputer for Memory Bandwidth

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 2 Computer Evolution and Performance

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 2 Computer Evolution and Performance William Stallings Computer Organization and Architecture 8 th Edition Chapter 2 Computer Evolution and Performance Analytical Engine ENIAC - background Electronic Numerical Integrator And Computer Eckert

More information

HPC Resources & Training

HPC Resources & Training www.bsc.es HPC Resources & Training in the BSC, the RES and PRACE Montse González Ferreiro RES technical and training coordinator + Facilities + Capacity How fit together the BSC, the RES and PRACE? TIER

More information

Chapter 1: Introduction to Parallel Computing

Chapter 1: Introduction to Parallel Computing Parallel and Distributed Computing Chapter 1: Introduction to Parallel Computing Jun Zhang Laboratory for High Performance Computing & Computer Simulation Department of Computer Science University of Kentucky

More information

Tianhe-2, the world s fastest supercomputer. Shaohua Wu Senior HPC application development engineer

Tianhe-2, the world s fastest supercomputer. Shaohua Wu Senior HPC application development engineer Tianhe-2, the world s fastest supercomputer Shaohua Wu Senior HPC application development engineer Inspur Inspur revenue 5.8 2010-2013 6.4 2011 2012 Unit: billion$ 8.8 2013 21% Staff: 14, 000+ 12% 10%

More information

ENIAC - background. ENIAC - details. Structure of von Nuemann machine. von Neumann/Turing Computer Architecture

ENIAC - background. ENIAC - details. Structure of von Nuemann machine. von Neumann/Turing Computer Architecture 168 420 Computer Architecture Chapter 2 Computer Evolution and Performance ENIAC - background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania Trajectory tables

More information

Mathematical computations with GPUs

Mathematical computations with GPUs Master Educational Program Information technology in applications Mathematical computations with GPUs Introduction Alexey A. Romanenko arom@ccfit.nsu.ru Novosibirsk State University How to.. Process terabytes

More information

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber NERSC Site Update National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory Richard Gerber NERSC Senior Science Advisor High Performance Computing Department Head Cori

More information

The Stampede is Coming: A New Petascale Resource for the Open Science Community

The Stampede is Coming: A New Petascale Resource for the Open Science Community The Stampede is Coming: A New Petascale Resource for the Open Science Community Jay Boisseau Texas Advanced Computing Center boisseau@tacc.utexas.edu Stampede: Solicitation US National Science Foundation

More information

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R. Alam, Thomas C. Schulthess, Torsten Hoefler Swiss National Supercomputing

More information

Author: Dr. Atul M. Gonsai Bhargavi Goswami, Kar Uditnarayan

Author: Dr. Atul M. Gonsai Bhargavi Goswami, Kar Uditnarayan SUPERCOMPUTER TECHNOLOGIES IN MATHEMATICAL MODELLING (SCTEMM-2013) Yakutsk, Russia July 8-11, 2013 Author: Dr. Atul M. Gonsai Bhargavi Goswami, Kar Uditnarayan Dept. of Computer Science, Saurashtra University,

More information

Real Parallel Computers

Real Parallel Computers Real Parallel Computers Modular data centers Overview Short history of parallel machines Cluster computing Blue Gene supercomputer Performance development, top-500 DAS: Distributed supercomputing Short

More information

HPC Issues for DFT Calculations. Adrian Jackson EPCC

HPC Issues for DFT Calculations. Adrian Jackson EPCC HC Issues for DFT Calculations Adrian Jackson ECC Scientific Simulation Simulation fast becoming 4 th pillar of science Observation, Theory, Experimentation, Simulation Explore universe through simulation

More information

IS-ENES2 Kick-off meeting Sergi Girona, Chair of the Board of Directors

IS-ENES2 Kick-off meeting Sergi Girona, Chair of the Board of Directors IS-ENES2 Kick-off meeting Sergi Girona, Chair of the Board of Directors CNRS, Meudon Bellevue, Paris, 28-May-2013 The HPC European e-infrastructure (ESFRI) 25 members, AISBL since 2010 530 M! for 2010-2015

More information

Present and Future Leadership Computers at OLCF

Present and Future Leadership Computers at OLCF Present and Future Leadership Computers at OLCF Al Geist ORNL Corporate Fellow DOE Data/Viz PI Meeting January 13-15, 2015 Walnut Creek, CA ORNL is managed by UT-Battelle for the US Department of Energy

More information

Algorithms and Architecture. William D. Gropp Mathematics and Computer Science

Algorithms and Architecture. William D. Gropp Mathematics and Computer Science Algorithms and Architecture William D. Gropp Mathematics and Computer Science www.mcs.anl.gov/~gropp Algorithms What is an algorithm? A set of instructions to perform a task How do we evaluate an algorithm?

More information

Shifter: Fast and consistent HPC workflows using containers

Shifter: Fast and consistent HPC workflows using containers Shifter: Fast and consistent HPC workflows using containers CUG 2017, Redmond, Washington Lucas Benedicic, Felipe A. Cruz, Thomas C. Schulthess - CSCS May 11, 2017 Outline 1. Overview 2. Docker 3. Shifter

More information

NVIDIA GPUs in Earth System Modelling Thomas Bradley

NVIDIA GPUs in Earth System Modelling Thomas Bradley NVIDIA GPUs in Earth System Modelling Thomas Bradley Agenda: GPU Developments for CWO Motivation for GPUs in CWO Parallelisation Considerations GPU Technology Roadmap MOTIVATION FOR GPUS IN CWO NVIDIA

More information

Moore s Law. Computer architect goal Software developer assumption

Moore s Law. Computer architect goal Software developer assumption Moore s Law The number of transistors that can be placed inexpensively on an integrated circuit will double approximately every 18 months. Self-fulfilling prophecy Computer architect goal Software developer

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Mark Harris, NVIDIA Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory

More information

Introduction to High-Performance Computing

Introduction to High-Performance Computing Introduction to High-Performance Computing Dr. Axel Kohlmeyer Associate Dean for Scientific Computing, CST Associate Director, Institute for Computational Science Assistant Vice President for High-Performance

More information

Computer & Microprocessor Architecture HCA103

Computer & Microprocessor Architecture HCA103 Computer & Microprocessor Architecture HCA103 Computer Evolution and Performance UTM-RHH Slide Set 2 1 ENIAC - Background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania

More information

Motivation Goal Idea Proposition for users Study

Motivation Goal Idea Proposition for users Study Exploring Tradeoffs Between Power and Performance for a Scientific Visualization Algorithm Stephanie Labasan Computer and Information Science University of Oregon 23 November 2015 Overview Motivation:

More information

Atos announces the Bull sequana X1000 the first exascale-class supercomputer. Jakub Venc

Atos announces the Bull sequana X1000 the first exascale-class supercomputer. Jakub Venc Atos announces the Bull sequana X1000 the first exascale-class supercomputer Jakub Venc The world is changing The world is changing Digital simulation will be the key contributor to overcome 21 st century

More information

CALMIP : HIGH PERFORMANCE COMPUTING

CALMIP : HIGH PERFORMANCE COMPUTING CALMIP : HIGH PERFORMANCE COMPUTING Nicolas.renon@univ-tlse3.fr Emmanuel.courcelle@inp-toulouse.fr CALMIP (UMS 3667) Espace Clément Ader www.calmip.univ-toulouse.fr CALMIP :Toulouse University Computing

More information

Multi-core Programming - Introduction

Multi-core Programming - Introduction Multi-core Programming - Introduction Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,

More information

Breakthrough Science via Extreme Scalability. Greg Clifford Segment Manager, Cray Inc.

Breakthrough Science via Extreme Scalability. Greg Clifford Segment Manager, Cray Inc. Breakthrough Science via Extreme Scalability Greg Clifford Segment Manager, Cray Inc. clifford@cray.com Cray s focus The requirement for highly scalable systems Cray XE6 technology The path to Exascale

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

Computer Architecture Review. ICS332 - Spring 2016 Operating Systems

Computer Architecture Review. ICS332 - Spring 2016 Operating Systems Computer Architecture Review ICS332 - Spring 2016 Operating Systems ENIAC (1946) Electronic Numerical Integrator and Calculator Stored-Program Computer (instead of Fixed-Program) Vacuum tubes, punch cards

More information

Intel Many Integrated Core (MIC) Architecture

Intel Many Integrated Core (MIC) Architecture Intel Many Integrated Core (MIC) Architecture Karl Solchenbach Director European Exascale Labs BMW2011, November 3, 2011 1 Notice and Disclaimers Notice: This document contains information on products

More information

Cray XT3 for Science

Cray XT3 for Science HPCx Annual Seminar 2006 Cray XT3 for Science David Tanqueray Cray UK Limited dt@cray.com Topics Cray Introduction The Cray XT3 Cray Roadmap Some XT3 Applications Page 2 Supercomputing is all we do Sustained

More information

CPS 303 High Performance Computing. Wensheng Shen Department of Computational Science SUNY Brockport

CPS 303 High Performance Computing. Wensheng Shen Department of Computational Science SUNY Brockport CPS 303 High Performance Computing Wensheng Shen Department of Computational Science SUNY Brockport Chapter 1: Introduction to High Performance Computing van Neumann Architecture CPU and Memory Speed Motivation

More information

The EuroHPC strategic initiative

The EuroHPC strategic initiative Amsterdam, 12 December 2017 The EuroHPC strategic initiative Thomas Skordas Director, DG CONNECT-C, European Commission The European HPC strategy in Horizon 2020 Infrastructure Capacity of acquiring leadership-class

More information

MODESTO: Data-centric Analytic Optimization of Complex Stencil Programs on Heterogeneous Architectures

MODESTO: Data-centric Analytic Optimization of Complex Stencil Programs on Heterogeneous Architectures TORSTEN HOEFLER MODESTO: Data-centric Analytic Optimization of Complex Stencil Programs on Heterogeneous Architectures with support of Tobias Gysi, Tobias Grosser @ SPCL presented at Guangzhou, China,

More information

Introduction to National Supercomputing Centre in Guangzhou and Opportunities for International Collaboration

Introduction to National Supercomputing Centre in Guangzhou and Opportunities for International Collaboration Exascale Applications and Software Conference 21st 23rd April 2015, Edinburgh, UK Introduction to National Supercomputing Centre in Guangzhou and Opportunities for International Collaboration Xue-Feng

More information

Intel High-Performance Computing. Technologies for Engineering

Intel High-Performance Computing. Technologies for Engineering 6. LS-DYNA Anwenderforum, Frankenthal 2007 Keynote-Vorträge II Intel High-Performance Computing Technologies for Engineering H. Cornelius Intel GmbH A - II - 29 Keynote-Vorträge II 6. LS-DYNA Anwenderforum,

More information

Parallel computer architecture classification

Parallel computer architecture classification Parallel computer architecture classification Hardware Parallelism Computing: execute instructions that operate on data. Computer Instructions Data Flynn s taxonomy (Michael Flynn, 1967) classifies computer

More information

IBM HPC Technology & Strategy

IBM HPC Technology & Strategy IBM HPC Technology & Strategy Hyperion HPC User Forum Stuttgart, October 1st, 2018 The World s Smartest Supercomputers Klaus Gottschalk gottschalk@de.ibm.com HPC Strategy Deliver End to End Solutions for

More information

High Performance Computing : Code_Saturne in the PRACE project

High Performance Computing : Code_Saturne in the PRACE project High Performance Computing : Code_Saturne in the PRACE project Andy SUNDERLAND Charles MOULINEC STFC Daresbury Laboratory, UK Code_Saturne User Meeting Chatou 1st-2nd Dec 28 STFC Daresbury Laboratory HPC

More information

Early Operational Experience with the Cray X1 at the Oak Ridge National Laboratory Center for Computational Sciences

Early Operational Experience with the Cray X1 at the Oak Ridge National Laboratory Center for Computational Sciences Early Operational Experience with the Cray X1 at the Oak Ridge National Laboratory Center for Computational Sciences Buddy Bland, Richard Alexander Steven Carter, Kenneth Matney, Sr. Cray User s Group

More information

An Overview of High Performance Computing and Challenges for the Future

An Overview of High Performance Computing and Challenges for the Future An Overview of High Performance Computing and Challenges for the Future Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester 6/15/2009 1 H. Meuer, H. Simon, E. Strohmaier,

More information

HPC IN EUROPE. Organisation of public HPC resources

HPC IN EUROPE. Organisation of public HPC resources HPC IN EUROPE Organisation of public HPC resources Context Focus on publicly-funded HPC resources provided primarily to enable scientific research and development at European universities and other publicly-funded

More information

Current Status of the Next- Generation Supercomputer in Japan. YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN

Current Status of the Next- Generation Supercomputer in Japan. YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN Current Status of the Next- Generation Supercomputer in Japan YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN International Workshop on Peta-Scale Computing Programming Environment, Languages

More information

The Cray Rainier System: Integrated Scalar/Vector Computing

The Cray Rainier System: Integrated Scalar/Vector Computing THE SUPERCOMPUTER COMPANY The Cray Rainier System: Integrated Scalar/Vector Computing Per Nyberg 11 th ECMWF Workshop on HPC in Meteorology Topics Current Product Overview Cray Technology Strengths Rainier

More information

The Mont-Blanc approach towards Exascale

The Mont-Blanc approach towards Exascale http://www.montblanc-project.eu The Mont-Blanc approach towards Exascale Alex Ramirez Barcelona Supercomputing Center Disclaimer: Not only I speak for myself... All references to unavailable products are

More information

Accelerating Insights In the Technical Computing Transformation

Accelerating Insights In the Technical Computing Transformation Accelerating Insights In the Technical Computing Transformation Dr. Rajeeb Hazra Vice President, Data Center Group General Manager, Technical Computing Group June 2014 TOP500 Highlights Intel Xeon Phi

More information

Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester

Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester 12/3/09 1 ! Take a look at high performance computing! What s driving HPC! Issues with power consumption! Future

More information