CS 152 Computer Architecture and Engineering. Lecture 6 - Memory

Size: px
Start display at page:

Download "CS 152 Computer Architecture and Engineering. Lecture 6 - Memory"

Transcription

1 CS 152 Compuer Archiecure and Engineering Lecure 6 - Memory Krse Asanovic Elecrical Engineering and Compuer Sciences Universiy of California a Berkeley hp:// hp://ins.eecs.berkeley.edu/~cs152 Las ime in Lecure 5 Conrol hazards (branches, inerrups) are mos difficul o handle as hey change which insrucion should be execued nex Speculaion commonly used o reduce effec of conrol hazards (predic sequenial fech, predic no excepions) Branch delay slos make conrol hazard visible o sofware Precise excepions: sop cleanly on one insrucion, all previous insrucions compleed, no following insrucions have changed archiecural sae To implemen precise excepions in pipeline, shif fauling insrucions down pipeline o commi poin, where excepions are handled in program order 2

2 CPU-Memory Boleneck CPU Memory Performance of high-speed compuers is usually limied by memory bandwidh & laency Laency (ime for a single access) Memory access ime >> Processor cycle ime Bandwidh (number of accesses per uni ime) if fracion m of insrucions access memory,!1+m memory references / insrucion!cpi = 1 requires 1+m memory refs / cycle (assuming MIPS RISC ISA) 3 Core Memory Core memory was firs large scale reliable main memory invened by Forreser in lae 40s/early 50s a MIT for Whirlwind projec Bis sored as magneizaion polariy on small ferrie cores hreaded ono 2 dimensional grid of wires Coinciden curren pulses on X and Y wires would wrie cell and also sense original sae (desrucive reads) Robus, non-volaile sorage Used on space shule compuers unil recenly Cores hreaded ono wires by hand (25 billion a year a peak producion) Core access ime ~ 1µs DEC PDP-8/E Board, 4K words x 12 bis, (1968) 4

3 Semiconducor Memory, DRAM Semiconducor memory began o be compeiive in early 1970s Inel formed o exploi marke for semiconducor memory Firs commercial DRAM was Inel Kbi of sorage on single chip charge on a capacior used o hold value Semiconducor memory quickly replaced core in 70s 5 One Transisor Dynamic RAM 1-T DRAM Cell word access ransisor V REF TiN op elecrode (V REF ) Ta 2 O 5 dielecric bi Sorage capacior (FET gae, rench, sack) poly word line W boom elecrode access ransisor 6

4 DRAM Archiecure Col. 1 bi lines Col. N+M N M Row Address Decoder Column Decoder & Sense Amplifiers 2 M Row 1 word lines Row 2 N Memory cell (one bi) D Bis sored in 2-dimensional arrays on chip Modern chips have around 4 logical banks on each chip each logical bank physically implemened as many smaller arrays 7 DRAM Packaging ~7 Clock and conrol signals Address lines muliplexed row/column address ~12 bus (4b,8b,16b,32b) DRAM chip DIMM (Dual Inline Memory Module) conains muliple chips wih clock/conrol/address signals conneced in parallel (someimes need buffers o drive signals o all chips) pins work ogeher o reurn wide word (e.g., 64-bi daa bus using 16x4-bi pars) 8

5 DRAM Operaion Three seps in read/wrie access o a given bank Row access (RAS) decode row address, enable addressed row (ofen muliple Kb in row) bilines share charge wih sorage cell small change in volage deeced by sense amplifiers which lach whole row of bis sense amplifiers drive bilines full rail o recharge sorage cells Column access (CAS) decode column address o selec small number of sense amplifier laches (4, 8, 16, or 32 bis depending on DRAM package) on read, send lached bis ou o chip pins on wrie, change sense amplifier laches which hen charge sorage cells o required value can perform muliple column accesses on same row wihou anoher row access (burs mode) Precharge charges bi lines o known value, required before nex row access Each sep has a laency of around 15-20ns in modern DRAMs Various DRAM sandards (DDR, RDRAM) have differen ways of encoding he signals for ransmission o he DRAM, bu all share same core archiecure 9 200MHz Clock Double- Rae (DDR2) DRAM Row Column Precharge Row [ Micron, 256Mb DDR2 SDRAM daashee ] 400Mb/s Rae 10

6 Performance Processor-DRAM Gap (laency) !Proc 60%/year Moore s Law Time DRAM CPU Processor-Memory Performance Gap: (grows 50% / year) Four-issue 2GHz superscalar accessing 100ns DRAM could execue 800 insrucions during ime for one memory access! DRAM 7%/year 11 Typical Memory Reference Paerns Insrucion feches Address Sack accesses accesses Time

7 Common Predicable Paerns Two predicable properies of memory references: Temporal Localiy: If a locaion is referenced i is likely o be referenced again in he near fuure. Spaial Localiy: If a locaion is referenced i is likely ha locaions near i will be referenced in he near fuure. Memory Reference Paerns Memory Address (one do per access) Spaial Localiy Temporal Localiy Time Donald J. Hafield, Jeanee Gerald: Program Resrucuring for Virual Memory. IBM Sysems Journal 10(3): (1971)

8 Mulilevel Memory Sraegy: Reduce average laency using small, fas memories called caches. Caches are a mechanism o reduce memory laency based on he empirical observaion ha he paerns of memory references made by a processor are ofen highly predicable: PC 96 loop: ADD r2, r1, r1 100 SUBI r3, r3, #1 104 BNEZ r3, loop Memory Hierarchy CPU A Small, Fas Memory (RF, SRAM) B holds frequenly used daa Big, Slow Memory (DRAM) capaciy: Regiser << SRAM << DRAM why? laency: Regiser << SRAM << DRAM why? bandwidh: on-chip >> off-chip why? On a daa access: hi (daa " fas memory)! low laency access miss (daa # fas memory)! long laency access (DRAM) 16

9 Relaive Memory Cell Sizes On-Chip SRAM in logic chip DRAM on memory chip [ Foss, Implemening Applicaion-Specific Memory, ISSCC 1996 ] 17 Managemen of Memory Hierarchy Small/fas sorage, e.g., regisers Address usually specified in insrucion Generally implemened direcly as a regiser file» bu hardware migh do hings behind sofware s back, e.g., sack managemen, regiser renaming Large/slower sorage, e.g., memory Address usually compued from values in regiser Generally implemened as a cache hierarchy» hardware decides wha is kep in fas memory» bu sofware may provide hins, e.g., don cache or prefech 18

10 CS152 Adminisrivia Quiz 1 Thursday in class (306 Soda) Lecures 1-5, closed book, no calculaors or compuers Krse, special office hours, Wednesday 2/11, 2-3pm, 579 Soda Hall (Par Lab) Sco special office hours, Wednesday 2/11, 4-5pm, 711 Soda Hall Nex week lecure 2/17 back in 320 Soda 19 Caches Caches exploi boh ypes of predicabiliy: Exploi emporal localiy by remembering he conens of recenly accessed locaions. Exploi spaial localiy by feching blocks of daa around recenly accessed locaions.

11 Inside a Cache Address Address Processor CACHE Main Memory copy of main memory locaion 100 copy of main memory locaion Bye Bye Bye Line Address Block Cache Algorihm (Read) Look a Processor Address, search cache ags o find mach. Then eiher Found in cache a.k.a. HIT No in cache a.k.a. MISS Reurn copy of daa from cache Read block of daa from Main Memory Wai Reurn daa o processor and updae cache Q: Which line do we replace?

12 Placemen Policy Block Number Memory Se Number Cache block 12 can be placed Fully (2-way) Se Direc Associaive Associaive Mapped anywhere anywhere in only ino se 0 block 4 (12 mod 4) (12 mod 8) 23 Direc-Mapped Cache Index Block Offse V k b Block 2 k lines = HIT Word or Bye

13 Direc Map Address Selecion higher-order vs. lower-order address bis Index Block Offse k V Block b 2 k lines = HIT Word or Bye 2-Way Se-Associaive Cache Index Block Offse b V k Block V Block = = Word or Bye HIT

14 Fully Associaive Cache V Block = Block Offse b = = Word or Bye HIT Replacemen Policy In an associaive cache, which block from a se should be eviced when he se becomes full? Random Leas Recenly Used (LRU) LRU cache sae mus be updaed on every access rue implemenaion only feasible for small ses (2-way) pseudo-lru binary ree ofen used for 4-8 way Firs In, Firs Ou (FIFO) a.k.a. Round-Robin used in highly associaive caches No Leas Recenly Used (NLRU) FIFO wih excepion for mos recenly used block or blocks This is a second-order effec. Why? 28

15 Acknowledgemens These slides conain maerial developed and copyrigh by: Arvind (MIT) Krse Asanovic (MIT/UCB) Joel Emer (Inel/MIT) James Hoe (CMU) John Kubiaowicz (UCB) David Paerson (UCB) MIT maerial derived from course UCB maerial derived from course CS252 29

CS 152 Computer Architecture and Engineering. Lecture 6 - Memory

CS 152 Computer Architecture and Engineering. Lecture 6 - Memory CS 152 Compuer Archiecure and Engineering Lecure 6 - Memory Krse Asanovic Elecrical Engineering and Compuer Sciences Universiy of California a Berkeley hp://www.eecs.berkeley.edu/~krse hp://ins.eecs.berkeley.edu/~cs152

More information

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II CS 152 Compuer Archiecure and Engineering Lecure 7 - Memory Hierarchy-II Krse Asanovic Elecrical Engineering and Compuer Sciences Universiy of California a Berkeley hp://www.eecs.berkeley.edu/~krse hp://ins.eecs.berkeley.edu/~cs152

More information

C 1. Last Time. CSE 490/590 Computer Architecture. Cache I. Branch Delay Slots (expose control hazard to software)

C 1. Last Time. CSE 490/590 Computer Architecture. Cache I. Branch Delay Slots (expose control hazard to software) CSE 490/590 Compuer Archiecure Cache I Seve Ko Compuer Sciences and Engineering Universiy a Buffalo Las Time Pipelining hazards Srucural hazards hazards Conrol hazards hazards Sall Bypass Conrol hazards

More information

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 1 Multilevel Memories Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Based on the material prepared by Krste Asanovic and Arvind CPU-Memory Bottleneck 6.823

More information

CS 152 Computer Architecture and Engineering. Lecture 6 - Memory

CS 152 Computer Architecture and Engineering. Lecture 6 - Memory CS 152 Computer Architecture and Engineering Lecture 6 - Memory Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste! http://inst.eecs.berkeley.edu/~cs152!

More information

Lecture 6 - Memory. Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory

Lecture 6 - Memory. Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory CS 152 Computer Architecture and Engineering Lecture 6 - Memory Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory http://inst.eecs.berkeley.edu/~cs152

More information

CS 152 Computer Architecture and Engineering. Lecture 6 - Memory. Last =me in Lecture 5

CS 152 Computer Architecture and Engineering. Lecture 6 - Memory. Last =me in Lecture 5 CS 152 Computer Architecture and Engineering Lecture 6 - Memory Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste! http://inst.eecs.berkeley.edu/~cs152!

More information

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II CS 152 Computer Architecture and Engineering Lecture 7 - Memory Hierarchy-II Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

Page 1. Multilevel Memories (Improving performance using a little cash )

Page 1. Multilevel Memories (Improving performance using a little cash ) Page 1 Multilevel Memories (Improving performance using a little cash ) 1 Page 2 CPU-Memory Bottleneck CPU Memory Performance of high-speed computers is usually limited by memory bandwidth & latency Latency

More information

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy Chapter 5B Large and Fast: Exploiting Memory Hierarchy One Transistor Dynamic RAM 1-T DRAM Cell word access transistor V REF TiN top electrode (V REF ) Ta 2 O 5 dielectric bit Storage capacitor (FET gate,

More information

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II CS 152 Computer Architecture and Engineering Lecture 7 - Memory Hierarchy-II Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

Lecture-14 (Memory Hierarchy) CS422-Spring

Lecture-14 (Memory Hierarchy) CS422-Spring Lecture-14 (Memory Hierarchy) CS422-Spring 2018 Biswa@CSE-IITK The Ideal World Instruction Supply Pipeline (Instruction execution) Data Supply - Zero-cycle latency - Infinite capacity - Zero cost - Perfect

More information

CS252 Spring 2017 Graduate Computer Architecture. Lecture 11: Memory

CS252 Spring 2017 Graduate Computer Architecture. Lecture 11: Memory CS252 Spring 2017 Graduate Computer Architecture Lecture 11: Memory Lisa Wu, Krste Asanovic http://inst.eecs.berkeley.edu/~cs252/sp17 WU UCB CS252 SP17 Logistics for the 15-min meeting next Tuesday Email

More information

Outline. EECS Components and Design Techniques for Digital Systems. Lec 06 Using FSMs Review: Typical Controller: state

Outline. EECS Components and Design Techniques for Digital Systems. Lec 06 Using FSMs Review: Typical Controller: state Ouline EECS 5 - Componens and Design Techniques for Digial Sysems Lec 6 Using FSMs 9-3-7 Review FSMs Mapping o FPGAs Typical uses of FSMs Synchronous Seq. Circuis safe composiion Timing FSMs in verilog

More information

PART 1 REFERENCE INFORMATION CONTROL DATA 6400 SYSTEMS CENTRAL PROCESSOR MONITOR

PART 1 REFERENCE INFORMATION CONTROL DATA 6400 SYSTEMS CENTRAL PROCESSOR MONITOR . ~ PART 1 c 0 \,).,,.,, REFERENCE NFORMATON CONTROL DATA 6400 SYSTEMS CENTRAL PROCESSOR MONTOR n CONTROL DATA 6400 Compuer Sysems, sysem funcions are normally handled by he Monior locaed in a Peripheral

More information

Agenda. EE 260: Introduction to Digital Design Memory. Naive Register File. Agenda. Memory Arrays: SRAM. Memory Arrays: Register File

Agenda. EE 260: Introduction to Digital Design Memory. Naive Register File. Agenda. Memory Arrays: SRAM. Memory Arrays: Register File EE 260: Introduction to Digital Design Technology Yao Zheng Department of Electrical Engineering University of Hawaiʻi at Mānoa 2 Technology Naive Register File Write Read clk Decoder Read Write 3 4 Arrays:

More information

Lecture 7 - Memory Hierarchy-II

Lecture 7 - Memory Hierarchy-II CS 152 Computer Architecture and Engineering Lecture 7 - Memory Hierarchy-II John Wawrzynek Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~johnw

More information

Memory Hierarchy. Slides contents from:

Memory Hierarchy. Slides contents from: Memory Hierarchy Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing, NPTEL Memory Performance Gap Memory

More information

COMP26120: Algorithms and Imperative Programming

COMP26120: Algorithms and Imperative Programming COMP26120 ecure C3 1/48 COMP26120: Algorihms and Imperaive Programming ecure C3: C - Recursive Daa Srucures Pee Jinks School of Compuer Science, Universiy of Mancheser Auumn 2011 COMP26120 ecure C3 2/48

More information

CS 152 Computer Architecture and Engineering. Lecture 11 - Virtual Memory and Caches

CS 152 Computer Architecture and Engineering. Lecture 11 - Virtual Memory and Caches CS 152 Computer Architecture and Engineering Lecture 11 - Virtual Memory and Caches Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

CS252 Graduate Computer Architecture Spring 2014 Lecture 10: Memory

CS252 Graduate Computer Architecture Spring 2014 Lecture 10: Memory CS252 Graduate Computer Architecture Spring 2014 Lecture 10: Memory Krste Asanovic krste@eecs.berkeley.edu http://inst.eecs.berkeley.edu/~cs252/sp14 Last Time in Lecture 9 VLIW Machines Compiler- controlled

More information

Computer Architecture ELEC3441

Computer Architecture ELEC3441 CPU-Memory Bottleneck Computer Architecture ELEC44 CPU Memory Lecture 9 Cache Dr. Hayden Kwok-Hay So Department of Electrical and Electronic Engineering Performance of high-speed computers is usually limited

More information

4. Minimax and planning problems

4. Minimax and planning problems CS/ECE/ISyE 524 Inroducion o Opimizaion Spring 2017 18 4. Minima and planning problems ˆ Opimizing piecewise linear funcions ˆ Minima problems ˆ Eample: Chebyshev cener ˆ Muli-period planning problems

More information

CS650 Computer Architecture. Lecture 9 Memory Hierarchy - Main Memory

CS650 Computer Architecture. Lecture 9 Memory Hierarchy - Main Memory CS65 Computer Architecture Lecture 9 Memory Hierarchy - Main Memory Andrew Sohn Computer Science Department New Jersey Institute of Technology Lecture 9: Main Memory 9-/ /6/ A. Sohn Memory Cycle Time 5

More information

! errors caused by signal attenuation, noise.!! receiver detects presence of errors:!

! errors caused by signal attenuation, noise.!! receiver detects presence of errors:! Daa Link Layer! The Daa Link layer can be furher subdivided ino:!.! Logical Link Conrol (LLC): error and flow conrol!.! Media Access Conrol (MAC): framing and media access! differen link proocols may provide

More information

MOBILE COMPUTING. Wi-Fi 9/20/15. CSE 40814/60814 Fall Wi-Fi:

MOBILE COMPUTING. Wi-Fi 9/20/15. CSE 40814/60814 Fall Wi-Fi: MOBILE COMPUTING CSE 40814/60814 Fall 2015 Wi-Fi Wi-Fi: name is NOT an abbreviaion play on Hi-Fi (high fideliy) Wireless Local Area Nework (WLAN) echnology WLAN and Wi-Fi ofen used synonymous Typically

More information

MOBILE COMPUTING 3/18/18. Wi-Fi IEEE. CSE 40814/60814 Spring 2018

MOBILE COMPUTING 3/18/18. Wi-Fi IEEE. CSE 40814/60814 Spring 2018 MOBILE COMPUTING CSE 40814/60814 Spring 2018 Wi-Fi Wi-Fi: name is NOT an abbreviaion play on Hi-Fi (high fideliy) Wireless Local Area Nework (WLAN) echnology WLAN and Wi-Fi ofen used synonymous Typically

More information

Scheduling. Scheduling. EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4 Updated March 16, 2012

Scheduling. Scheduling. EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4 Updated March 16, 2012 EDA421/DIT171 - Parallel and Disribued Real-Time Sysems, Chalmers/GU, 2011/2012 Lecure #4 Updaed March 16, 2012 Aemps o mee applicaion consrains should be done in a proacive way hrough scheduling. Schedule

More information

FIELD PROGRAMMABLE GATE ARRAY (FPGA) AS A NEW APPROACH TO IMPLEMENT THE CHAOTIC GENERATORS

FIELD PROGRAMMABLE GATE ARRAY (FPGA) AS A NEW APPROACH TO IMPLEMENT THE CHAOTIC GENERATORS FIELD PROGRAMMABLE GATE ARRAY (FPGA) AS A NEW APPROACH TO IMPLEMENT THE CHAOTIC GENERATORS Mohammed A. Aseeri and M. I. Sobhy Deparmen of Elecronics, The Universiy of Ken a Canerbury Canerbury, Ken, CT2

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture Cache Organization Prof. Michel A. Kinsy The course has 4 modules Module 1 Instruction Set Architecture (ISA) Simple Pipelining and Hazards Module 2 Superscalar Architectures

More information

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III CS 152 Computer Architecture and Engineering Lecture 8 - Memory Hierarchy-III Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

Dimmer time switch AlphaLux³ D / 27

Dimmer time switch AlphaLux³ D / 27 Dimmer ime swich AlphaLux³ D2 426 26 / 27! Safey noes This produc should be insalled in line wih insallaion rules, preferably by a qualified elecrician. Incorrec insallaion and use can lead o risk of elecric

More information

EEM 486: Computer Architecture. Lecture 9. Memory

EEM 486: Computer Architecture. Lecture 9. Memory EEM 486: Computer Architecture Lecture 9 Memory The Big Picture Designing a Multiple Clock Cycle Datapath Processor Control Memory Input Datapath Output The following slides belong to Prof. Onur Mutlu

More information

Using CANopen Slave Driver

Using CANopen Slave Driver CAN Bus User Manual Using CANopen Slave Driver V1. Table of Conens 1. SDO Communicaion... 1 2. PDO Communicaion... 1 3. TPDO Reading and RPDO Wriing... 2 4. RPDO Reading... 3 5. CANopen Communicaion Parameer

More information

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III CS 152 Computer Architecture and Engineering Lecture 8 - Memory Hierarchy-III Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II CS 152 Computer Architecture and Engineering Lecture 7 - Memory Hierarchy-II Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

Topic 21: Memory Technology

Topic 21: Memory Technology Topic 21: Memory Technology COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Old Stuff Revisited Mercury Delay Line Memory Maurice Wilkes, in 1947,

More information

Topic 21: Memory Technology

Topic 21: Memory Technology Topic 21: Memory Technology COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Old Stuff Revisited Mercury Delay Line Memory Maurice Wilkes, in 1947,

More information

CS 152, Spring 2011 Section 8

CS 152, Spring 2011 Section 8 CS 152, Spring 2011 Section 8 Christopher Celio University of California, Berkeley Agenda Grades Upcoming Quiz 3 What it covers OOO processors VLIW Branch Prediction Intel Core 2 Duo (Penryn) Vs. NVidia

More information

Memory Hierarchy. Slides contents from:

Memory Hierarchy. Slides contents from: Memory Hierarchy Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing, NPTEL Memory Performance Gap Memory

More information

Network management and QoS provisioning - QoS in Frame Relay. . packet switching with virtual circuit service (virtual circuits are bidirectional);

Network management and QoS provisioning - QoS in Frame Relay. . packet switching with virtual circuit service (virtual circuits are bidirectional); QoS in Frame Relay Frame relay characerisics are:. packe swiching wih virual circui service (virual circuis are bidirecional);. labels are called DLCI (Daa Link Connecion Idenifier);. for connecion is

More information

Low-Cost WLAN based. Dr. Christian Hoene. Computer Science Department, University of Tübingen, Germany

Low-Cost WLAN based. Dr. Christian Hoene. Computer Science Department, University of Tübingen, Germany Low-Cos WLAN based Time-of-fligh fligh Trilaeraion Precision Indoor Personnel Locaion and Tracking for Emergency Responders Third Annual Technology Workshop, Augus 5, 2008 Worceser Polyechnic Insiue, Worceser,

More information

MIC2569. Features. General Description. Applications. Typical Application. CableCARD Power Switch

MIC2569. Features. General Description. Applications. Typical Application. CableCARD Power Switch CableCARD Power Swich General Descripion is designed o supply power o OpenCable sysems and CableCARD hoss. These CableCARDs are also known as Poin of Disribuion (POD) cards. suppors boh Single and Muliple

More information

Lecture 9 - Virtual Memory

Lecture 9 - Virtual Memory CS 152 Computer Architecture and Engineering Lecture 9 - Virtual Memory Dr. George Michelogiannakis EECS, University of California at Berkeley CRD, Lawrence Berkeley National Laboratory http://inst.eecs.berkeley.edu/~cs152

More information

Lecture 13 - VLIW Machines and Statically Scheduled ILP

Lecture 13 - VLIW Machines and Statically Scheduled ILP CS 152 Computer Architecture and Engineering Lecture 13 - VLIW Machines and Statically Scheduled ILP John Wawrzynek Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~johnw

More information

Advanced Computer Architecture

Advanced Computer Architecture ECE 563 Advanced Computer Architecture Fall 2009 Lecture 3: Memory Hierarchy Review: Caches 563 L03.1 Fall 2010 Since 1980, CPU has outpaced DRAM... Four-issue 2GHz superscalar accessing 100ns DRAM could

More information

Parallel Multigrid Preconditioning on Graphics Processing Units (GPUs) for Robust Power Grid Analysis

Parallel Multigrid Preconditioning on Graphics Processing Units (GPUs) for Robust Power Grid Analysis Design Auomaion Group Parallel Muligrid Precondiioning on Graphics Processing Unis (GPUs) for Robus Power Grid Analysis Zhuo Feng Michigan Technological Universiy Zhiyu Zeng Texas A&M Universiy 200 ACM/EDAC/IEEE

More information

Implementing Ray Casting in Tetrahedral Meshes with Programmable Graphics Hardware (Technical Report)

Implementing Ray Casting in Tetrahedral Meshes with Programmable Graphics Hardware (Technical Report) Implemening Ray Casing in Terahedral Meshes wih Programmable Graphics Hardware (Technical Repor) Marin Kraus, Thomas Erl March 28, 2002 1 Inroducion Alhough cell-projecion, e.g., [3, 2], and resampling,

More information

PCMCIA / JEIDA SRAM Card

PCMCIA / JEIDA SRAM Card Daashee PCMCIA / JEIDA SRAM Card Version 12 Preliminary Version 12 Page1 Documen Version Version Descripion Dae Edior Approved by 8 Updae 2,Apr. 2002 Greg Lin Greg Lin 9 Updae 10,Aug. 2010 Amos Chung Ken

More information

Video streaming over Vajda Tamás

Video streaming over Vajda Tamás Video sreaming over 802.11 Vajda Tamás Video No all bis are creaed equal Group of Picures (GoP) Video Sequence Slice Macroblock Picure (Frame) Inra (I) frames, Prediced (P) Frames or Bidirecional (B) Frames.

More information

Memory Hierarchy. 2/18/2016 CS 152 Sec6on 5 Colin Schmidt

Memory Hierarchy. 2/18/2016 CS 152 Sec6on 5 Colin Schmidt Memory Hierarchy 2/18/2016 CS 152 Sec6on 5 Colin Schmidt Agenda Review Memory Hierarchy Lab 2 Ques6ons Return Quiz 1 Latencies Comparison Numbers L1 Cache 0.5 ns L2 Cache 7 ns 14x L1 cache Main Memory

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

Location. Electrical. Loads. 2-wire mains-rated. 0.5 mm² to 1.5 mm² Max. length 300 m (with 1.5 mm² cable). Example: Belden 8471

Location. Electrical. Loads. 2-wire mains-rated. 0.5 mm² to 1.5 mm² Max. length 300 m (with 1.5 mm² cable). Example: Belden 8471 Produc Descripion Insallaion and User Guide Transiser Dimmer (454) The DIN rail mouned 454 is a 4channel ransisor dimmer. I can operae in one of wo modes; leading edge or railing edge. All 4 channels operae

More information

COSC 3213: Computer Networks I Chapter 6 Handout # 7

COSC 3213: Computer Networks I Chapter 6 Handout # 7 COSC 3213: Compuer Neworks I Chaper 6 Handou # 7 Insrucor: Dr. Marvin Mandelbaum Deparmen of Compuer Science York Universiy F05 Secion A Medium Access Conrol (MAC) Topics: 1. Muliple Access Communicaions:

More information

DRAM Main Memory. Dual Inline Memory Module (DIMM)

DRAM Main Memory. Dual Inline Memory Module (DIMM) DRAM Main Memory Dual Inline Memory Module (DIMM) Memory Technology Main memory serves as input and output to I/O interfaces and the processor. DRAMs for main memory, SRAM for caches Metrics: Latency,

More information

CS152 Computer Architecture and Engineering Lecture 16: Memory System

CS152 Computer Architecture and Engineering Lecture 16: Memory System CS152 Computer Architecture and Engineering Lecture 16: System March 15, 1995 Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com) Slides available on http://http.cs.berkeley.edu/~patterson

More information

EE414 Embedded Systems Ch 5. Memory Part 2/2

EE414 Embedded Systems Ch 5. Memory Part 2/2 EE414 Embedded Systems Ch 5. Memory Part 2/2 Byung Kook Kim School of Electrical Engineering Korea Advanced Institute of Science and Technology Overview 6.1 introduction 6.2 Memory Write Ability and Storage

More information

CS422 Computer Networks

CS422 Computer Networks CS422 Compuer Neworks Lecure 2 Physical Layer Dr. Xiaobo Zhou Deparmen of Compuer Science CS422 PhysicalLayer.1 Quesions of Ineress How long will i ake o ransmi a message? How many bis are in he message

More information

Overview of Board Revisions

Overview of Board Revisions s Sysem Overview MicroAuoBox Embedded PC MicroAuoBox II can be enhanced wih he MicroAuoBox Embedded PC. The MicroAuoBox EmbeddedPC is powered via he MicroAuoBox II power inpu connecor. Wih he common power

More information

Chapter 8 Memory Basics

Chapter 8 Memory Basics Logic and Computer Design Fundamentals Chapter 8 Memory Basics Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview Memory definitions Random Access

More information

Exercise 3: Bluetooth BR/EDR

Exercise 3: Bluetooth BR/EDR Wireless Communicaions, M. Rupf. Exercise 3: Blueooh BR/EDR Problem 1: Blueooh Daa Raes. Consider he ACL packe 3-DH5 wih a maximum user payload of 1021 byes. a) Deermine he maximum achievable daa rae in

More information

A Matching Algorithm for Content-Based Image Retrieval

A Matching Algorithm for Content-Based Image Retrieval A Maching Algorihm for Conen-Based Image Rerieval Sue J. Cho Deparmen of Compuer Science Seoul Naional Universiy Seoul, Korea Absrac Conen-based image rerieval sysem rerieves an image from a daabase using

More information

A time-space consistency solution for hardware-in-the-loop simulation system

A time-space consistency solution for hardware-in-the-loop simulation system Inernaional Conference on Advanced Elecronic Science and Technology (AEST 206) A ime-space consisency soluion for hardware-in-he-loop simulaion sysem Zexin Jiang a Elecric Power Research Insiue of Guangdong

More information

Assignment 2. Due Monday Feb. 12, 10:00pm.

Assignment 2. Due Monday Feb. 12, 10:00pm. Faculy of rs and Science Universiy of Torono CSC 358 - Inroducion o Compuer Neworks, Winer 218, LEC11 ssignmen 2 Due Monday Feb. 12, 1:pm. 1 Quesion 1 (2 Poins): Go-ack n RQ In his quesion, we review how

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 5: Zeshan Chishti DRAM Basics DRAM Evolution SDRAM-based Memory Systems Electrical and Computer Engineering Dept. Maseeh College of Engineering and Computer Science

More information

The Memory Hierarchy & Cache

The Memory Hierarchy & Cache Removing The Ideal Memory Assumption: The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs. SRAM The Motivation for The Memory

More information

CS 152 Computer Architecture and Engineering. Lecture 10 - Complex Pipelines, Out-of-Order Issue, Register Renaming

CS 152 Computer Architecture and Engineering. Lecture 10 - Complex Pipelines, Out-of-Order Issue, Register Renaming CS 152 Computer Architecture and Engineering Lecture 10 - Complex Pipelines, Out-of-Order Issue, Register Renaming John Wawrzynek Electrical Engineering and Computer Sciences University of California at

More information

Optimal Crane Scheduling

Optimal Crane Scheduling Opimal Crane Scheduling Samid Hoda, John Hooker Laife Genc Kaya, Ben Peerson Carnegie Mellon Universiy Iiro Harjunkoski ABB Corporae Research EWO - 13 November 2007 1/16 Problem Track-mouned cranes move

More information

Mobile Computing IEEE Standard 9/10/14. CSE 40814/60814 Fall 2014

Mobile Computing IEEE Standard 9/10/14. CSE 40814/60814 Fall 2014 Mobile Compuing CSE 40814/60814 Fall 2014 IEEE IEEE (Ins4ue of Elecrical and Elecronics Engineers) esablished he 802.11 Group in 1990. Specifica4ons for sandard ra4fied in 1997. Ini4al speeds were 1 and

More information

PCMCIA / JEIDA SRAM Card

PCMCIA / JEIDA SRAM Card Daashee PCMCIA / JEIDA SRAM Card Version 10 Preliminary Version 10 Page1 Documen Version Version Descripion Dae Edior Approved by 8 Updae 2, April, 2002 Greg Lin Greg Lin 9 Updae 10, Aug., 2010 Amos Chung

More information

CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory

CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory CS 152 Computer Architecture and Engineering Lecture 9 - Virtual Memory Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

CpE 442. Memory System

CpE 442. Memory System CpE 442 Memory System CPE 442 memory.1 Outline of Today s Lecture Recap and Introduction (5 minutes) Memory System: the BIG Picture? (15 minutes) Memory Technology: SRAM and Register File (25 minutes)

More information

Chapter 8 LOCATION SERVICES

Chapter 8 LOCATION SERVICES Disribued Compuing Group Chaper 8 LOCATION SERVICES Mobile Compuing Winer 2005 / 2006 Overview Mobile IP Moivaion Daa ransfer Encapsulaion Locaion Services & Rouing Classificaion of locaion services Home

More information

CSC 631: High-Performance Computer Architecture

CSC 631: High-Performance Computer Architecture CSC 631: High-Performance Computer Architecture Spring 2017 Lecture 9: Memory Part I CSC 631: High-Performance Computer Architecture 1 Introduction Programmers want unlimited amounts of memory with low

More information

Motor Control. 5. Control. Motor Control. Motor Control

Motor Control. 5. Control. Motor Control. Motor Control 5. Conrol In his chaper we will do: Feedback Conrol On/Off Conroller PID Conroller Moor Conrol Why use conrol a all? Correc or wrong? Supplying a cerain volage / pulsewidh will make he moor spin a a cerain

More information

Data Structures and Algorithms. The material for this lecture is drawn, in part, from The Practice of Programming (Kernighan & Pike) Chapter 2

Data Structures and Algorithms. The material for this lecture is drawn, in part, from The Practice of Programming (Kernighan & Pike) Chapter 2 Daa Srucures and Algorihms The maerial for his lecure is drawn, in par, from The Pracice of Programming (Kernighan & Pike) Chaper 2 1 Moivaing Quoaion Every program depends on algorihms and daa srucures,

More information

Utility-Based Hybrid Memory Management

Utility-Based Hybrid Memory Management Uiliy-Based Hybrid Memory Managemen Yang Li Saugaa Ghose Jongmoo Choi Jin Sun Hui Wang Onur Mulu Carnegie Mellon Universiy Dankook Universiy Beihang Universiy ETH Zürich While he memory fooprins of cloud

More information

Introduction to memory system :from device to system

Introduction to memory system :from device to system Introduction to memory system :from device to system Jianhui Yue Electrical and Computer Engineering University of Maine The Position of DRAM in the Computer 2 The Complexity of Memory 3 Question Assume

More information

MUX 1. GENERAL DESCRIPTION

MUX 1. GENERAL DESCRIPTION 256Mb Async./Burs/Sync./A/D MUX 1. GENERAL DESCRIPTION Winbond x16 ADMUX producs are high-speed, CMOS pseudo-saic random access memory developed for lowpower, porable applicaions. The device has a DRAM

More information

Mainstream Computer System Components CPU Core 2 GHz GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation

Mainstream Computer System Components CPU Core 2 GHz GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation Mainstream Computer System Components CPU Core 2 GHz - 3.0 GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation One core or multi-core (2-4) per chip Multiple FP, integer

More information

MOTION DETECTORS GRAPH MATCHING LAB PRE-LAB QUESTIONS

MOTION DETECTORS GRAPH MATCHING LAB PRE-LAB QUESTIONS NME: TE: LOK: MOTION ETETORS GRPH MTHING L PRE-L QUESTIONS 1. Read he insrucions, and answer he following quesions. Make sure you resae he quesion so I don hae o read he quesion o undersand he answer..

More information

C 1. Last time. CSE 490/590 Computer Architecture. Complex Pipelining I. Complex Pipelining: Motivation. Floating-Point Unit (FPU) Floating-Point ISA

C 1. Last time. CSE 490/590 Computer Architecture. Complex Pipelining I. Complex Pipelining: Motivation. Floating-Point Unit (FPU) Floating-Point ISA CSE 490/590 Computer Architecture Complex Pipelining I Steve Ko Computer Sciences and Engineering University at Buffalo Last time Virtual address caches Virtually-indexed, physically-tagged cache design

More information

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation CS 152 Computer Architecture and Engineering Lecture 8 - Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 7 Memory III

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 7 Memory III CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture Lecture 7 Memory III Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

Connections, displays and operating elements. 3 aux. 5 aux.

Connections, displays and operating elements. 3 aux. 5 aux. Taser PlusKapiel3:Taser3.1Taser Plus Meren2005V6280-561-0001/08 GB Connecions, displays and operaing elemens Taser Plus Arec/Anik/Trancen Operaing insrucions A 1 2 1 2 3 4 5 6 C B A B 3 aux. 7 8 9 aux.

More information

Page 1. Key Points from Last Lecture Frame format. EEC173B/ECS152C, Winter Wireless LANs

Page 1. Key Points from Last Lecture Frame format. EEC173B/ECS152C, Winter Wireless LANs EEC173/ECS152C, Winer 2006 Key Poins from Las Lecure Wireless LANs 802.11 Frame forma 802.11 MAC managemen Synchronizaion, Handoffs, Power MAC mehods: DCF & PCF CSMA/CA wih posiive ACK Exponenial backoff

More information

Gauss-Jordan Algorithm

Gauss-Jordan Algorithm Gauss-Jordan Algorihm The Gauss-Jordan algorihm is a sep by sep procedure for solving a sysem of linear equaions which may conain any number of variables and any number of equaions. The algorihm is carried

More information

Connections, displays and operating elements. Status LEDs (next to the keys)

Connections, displays and operating elements. Status LEDs (next to the keys) GB Connecions, displays and operaing elemens A Push-buon plus Sysem M Operaing insrucions 1 2 1 2 3 4 5 6 7 8 C B A 4 Inser he bus erminal ino he connecion of pushbuon A. 5 Inser he push-buon ino he frame.

More information

registers data 1 registers MEMORY ADDRESS on-chip cache off-chip cache main memory: real address space part of virtual addr. sp.

registers data 1 registers MEMORY ADDRESS on-chip cache off-chip cache main memory: real address space part of virtual addr. sp. 13 1 CMPE110 Computer Architecture, Winter 2009 Andrea Di Blas 110 Winter 2009 CMPE Cache Direct-mapped cache Reads and writes Cache associativity Cache and performance Textbook Edition: 7.1 to 7.3 Third

More information

Memory Hierarchy. Maurizio Palesi. Maurizio Palesi 1

Memory Hierarchy. Maurizio Palesi. Maurizio Palesi 1 Memory Hierarchy Maurizio Palesi Maurizio Palesi 1 References John L. Hennessy and David A. Patterson, Computer Architecture a Quantitative Approach, second edition, Morgan Kaufmann Chapter 5 Maurizio

More information

Memory Hierarchy and Caches

Memory Hierarchy and Caches Memory Hierarchy and Caches COE 301 / ICS 233 Computer Organization Dr. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline

More information

ECE 552 / CPS 550 Advanced Computer Architecture I. Lecture 13 Memory Part 2

ECE 552 / CPS 550 Advanced Computer Architecture I. Lecture 13 Memory Part 2 ECE 552 / CPS 550 Advanced Computer Architecture I Lecture 13 Memory Part 2 Benjamin Lee Electrical and Computer Engineering Duke University www.duke.edu/~bcl15 www.duke.edu/~bcl15/class/class_ece252fall12.html

More information

18-447: Computer Architecture Lecture 25: Main Memory. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 4/3/2013

18-447: Computer Architecture Lecture 25: Main Memory. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 4/3/2013 18-447: Computer Architecture Lecture 25: Main Memory Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 4/3/2013 Reminder: Homework 5 (Today) Due April 3 (Wednesday!) Topics: Vector processing,

More information

Memory systems. Memory technology. Memory technology Memory hierarchy Virtual memory

Memory systems. Memory technology. Memory technology Memory hierarchy Virtual memory Memory systems Memory technology Memory hierarchy Virtual memory Memory technology DRAM Dynamic Random Access Memory bits are represented by an electric charge in a small capacitor charge leaks away, need

More information

The DRAM Cell. EEC 581 Computer Architecture. Memory Hierarchy Design (III) 1T1C DRAM cell

The DRAM Cell. EEC 581 Computer Architecture. Memory Hierarchy Design (III) 1T1C DRAM cell EEC 581 Computer Architecture Memory Hierarchy Design (III) Department of Electrical Engineering and Computer Science Cleveland State University The DRAM Cell Word Line (Control) Bit Line (Information)

More information

Memories: Memory Technology

Memories: Memory Technology Memories: Memory Technology Z. Jerry Shi Assistant Professor of Computer Science and Engineering University of Connecticut * Slides adapted from Blumrich&Gschwind/ELE475 03, Peh/ELE475 * Memory Hierarchy

More information

ECE 252 / CPS 220 Advanced Computer Architecture I. Lecture 13 Memory Part 2

ECE 252 / CPS 220 Advanced Computer Architecture I. Lecture 13 Memory Part 2 ECE 252 / CPS 220 Advanced Computer Architecture I Lecture 13 Memory Part 2 Benjamin Lee Electrical and Computer Engineering Duke University www.duke.edu/~bcl15 www.duke.edu/~bcl15/class/class_ece252fall11.html

More information

The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs.

The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs. The Hierarchical Memory System The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs. SRAM The Motivation for The Memory Hierarchy:

More information

EECS151/251A Spring 2018 Digital Design and Integrated Circuits. Instructors: John Wawrzynek and Nick Weaver. Lecture 19: Caches EE141

EECS151/251A Spring 2018 Digital Design and Integrated Circuits. Instructors: John Wawrzynek and Nick Weaver. Lecture 19: Caches EE141 EECS151/251A Spring 2018 Digital Design and Integrated Circuits Instructors: John Wawrzynek and Nick Weaver Lecture 19: Caches Cache Introduction 40% of this ARM CPU is devoted to SRAM cache. But the role

More information

Mainstream Computer System Components

Mainstream Computer System Components Mainstream Computer System Components Double Date Rate (DDR) SDRAM One channel = 8 bytes = 64 bits wide Current DDR3 SDRAM Example: PC3-12800 (DDR3-1600) 200 MHz (internal base chip clock) 8-way interleaved

More information