System Software Stack for the Next Generation High-Performance Computers

Size: px
Start display at page:

Download "System Software Stack for the Next Generation High-Performance Computers"

Transcription

1 1,2 2 Gerofi Balazs PC CPU PC OS MPI I/O System Software Stack for the Next Generation High-Performance Computers Yutaka Ishikawa 1,2 Atsushi Hori 2 Gerofi Balazs 1 Masamichi Takagi 3 Akio Shimada 2 Masaaki Shimizu 4 Yuji Saeki 4 Tomoki Shirasawa 5 Gou Nakamura 6 Shinji Sumimoto 7 Tomohito Otawa 7 Abstract: A system software stack, consisting of OS kernel, a low-level communication library, an MPI library, and file I/O library with a hierarchical storage system, have been designed and implemented for two types of clusters, one is a PC cluster whose compute node consists of a PC server with manycore CPUs and another is a manycore-based cluster. In this paper, after a machine environment, being considered, and its challenges to provide a highly efficient and scalable system are described, the current research achievements are reported. 1. CPU Tilela TILE-Gx Intel Xeon Phi Coprocessor Xeon Phi Coprocessor 1 TFlops [1] O(2) m 2 30 MW PFlops Linux MPI c 2013 Information Processing Society of Japan 1

2 Table 1 1 Specifications of Assumed Hardware Environment and K Computer 3 5 TF 128 GF K K 4 10 PB 1.26 PB PFlops 10.62PF 10 20GB/sec 5GB/sec 6-D Mesh/Torus, 6-D Mesh/Torus or Dragonfly, or... File System 1EB 11PB (local) 30PB (global) 1: for (day = 1; day < 365*10; day++) { 2: 1 3: TB 10 4: } 1 Fig. 1 COCO File Access Pattern in COCO OS L1 L2 L3 OS GPU COCO[2] COCO 10 40,000 x 40,000 x 1, TB TB PB TLB way Intel Xeon Phi Knights Corner L1 L2 32KB, 512 KB Xeon E (Sandy-bridge) L1, L2, L3 256KB 2MB 20MB TLB TLB NUMA CPU OS c 2013 Information Processing Society of Japan 2

3 I/O Linux RCU SPMD (Single Program Multiple Data) OS I/O OS CPU OS OS OS SPMD OS OS [3] OS OS HPC MPI OpenMP MPI+OpenMP PGAS [4] PGAS PGAS PGAS Fig. 3 Fig. 2 3 System Software Stack Examples of Kernel Organizations Linux API Linux API Linux Linux Linux Linux Linux Linux c 2013 Information Processing Society of Japan 3

4 4 Xeon Phi (1) Fig. 4 Implementation on Xeon Phi (1) Linux 2 Linux Linux Linux OS Linux Linux 2 OS 3 Linux OS Linux API Linux Linux 3 Linux API Linux PC CPU Sandy-bridge Intel Xeon Phi coprocessor Infiniband OS 4 5 McKernel McKernel HIDOS [5] SHIMOS[6] MEE [7] 4 OS 4 Intel 5 Xeon Phi (2) Fig. 5 Implementation on Xeon Phi (2) 6 McKernel Fig. 6 McKernel Xeon Phi Linux PCI Express TCP/IP ssh Xeon Phi Xeon Phi NFS 5 OS McKernel 6 Attached McKernel Builtin McKernel Linux McKernel IHK (Interface for Heterogeneous Kernel) IHK-Linux driver Linux Xeon Phi DMA McKernel IHK-cokernel Xeon Phi Linux IHK-IKC c 2013 Information Processing Society of Japan 4

5 IKC (Inter Kernel Communication) Linux McKernel mcctrl Linux McKernel McKernel Linux Linux GNU libc OpenMP Intel McKernel McKernel Linux Linux API [8] Xeon Phi Attached McKernel Xeon Phi [9] OpenMP OS TLB [9] TLB PGAS AICS PGAS PVAS [10] PGAS TLB I/O OpenMP NUMA thread affinity thread affinity 01: for (i = 0; i < N; i++) 02: MPI_Recv_init(rbuf[i],..., &req[i]); 03: for (I = 0; i < N; i++) 04: MPI_Send_init(sbuf[i],..., &req[i+n]); 05: do { 06: /* Computation */ 07: MPI_Startall(N*2, req); 08: /* Computation */ 09: MPI_Waitall(N*2, req, stat); 10: / **** / 11: } while ( ); Fig. 7 7 An Example of Persistent Communication I/O I/O [11] affinity I/O MPI (Persistent Communication) MPI 3.0 Mellanox Connext-X HPC c 2013 Information Processing Society of Japan 5

6 4.1.3 MPI 7 (MPI Send init, MPI Recv init) MPI Request req MPI Startall MPI Waitall MPI Isend/MPI Irecv 2 i) ii) MPI Startall DMA 4 MPI Startall 4 DMA MPI MPI MPI MPI PAMI[12] Portals4[13] ARMCI[14] GASNet[15] MPI MPI I/O DCFA DCFA-MPI 3 Attached McKernel Infiniband DCFA [16] Xeon Phi PCI Infiniband Infiniband Xeon Phi Infiniband PCI Express Xeon Phi Infiniband Xeon Phi Infiniband Infiniband CPU Sandy-bridge Xeon Phi Xeon Phi Infiniband Xeon Phi CPU CPU Infiniband [17] [17] DCFA MPI YAMPII[18] Xeon Phi Persistent Remote DMA Communication MPI Persistent Remote DMA Communication (PRDMA) FX10 [19] Low Level Communication Library MPICHI Low Level Communication Library (LLC) API LLC RDMA one sided two sided LLC Persistent Remote DMA Communication API I/O COCO 365 PB 1TB/sec 4 10TB/sec PB 365 PB 5.2 c 2013 Information Processing Society of Japan 6

7 2 1 1/2 10PB 5PB COCO 50 5 PB TB/sec PB 139 GB/sec I/O COCO I/O 1 EB 6. PC CPU PC OS MPI McKernel OS Attached McKernel AICS SCALE SCALE Fortran OpenMP MPI 2012 SC OS I/O HPCI HPCI CREST [1] Moore, C.: DATA PROCESSING IN EXASCALE- CLASS COMPUTER SYSTEMS, The Salishan Conference on High Speed Computing (2011). [2] Hasumi, H.: Ocean Component Model (COCO) Version 2.1, Technical report, Division od Climate System Research, Atmosphere and Ocean Research Institute, the University of Tokyo (2000). [3] Petrini, F., Kerbyson, D. J. and Pakin, S.: The Case of the Missing Supercomputer Performance:Achieving Optimal Performance on the 8,192 Processors of ASCI Q, SC 03 Proceedings of the 2003 ACM/IEEE conference on Supercomputing (2003). [4] Carlson, W., Draper, J., Culler, D., Yelick, K., Brooks, E. and Warren, K.: Introduction to UPC and Language Specification, Technical Report CCS-TR , IDA Center for Computing Sciences (1999). [5] Shimosawa, T.: Operating System Organization for Manycore Systems, Technical report, A Doctor Thesis submitted to the Graduate School of the University of Tokyo (2012). [6] Shimosawa, T., Matsuba, H. and Ishikawa, Y.: Logical Partitioning without Architectural Supports, The 32nd IEEE International Computer Software and Applications Conference (COMPSAC 2008) (2008). [7] SWOPP (2011). [8] Gerofi, B. OS 124 c 2013 Information Processing Society of Japan 7

8 (2013). [9] Gerofi, B., Shimada, A., Hori, A. and Ishikawa, Y.: Operating System Assisted Hierarchical Memory Management for Heterogeneous Architectures: Preliminary Results on Stencil Computation, The 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2013) (2013 (To appear)). [10] Shimada, A., Gerofi, B., Hori, A. and Ishikawa, Y.: PGAS Intra-node Communication towards Many-Core Architecture, The 6th Conference on Partitioned Global Address Space Programming Models (2012). [11] NUMA I/O 124 (2013). [12] Kumar, S., Mamidala, A. R., Faraj, D., Smith, B. E., Blocksome, M., Cernohous, B., Miller, D., Parker, J., Ratterman, J., Heidelberger, P., Chen, D. and Steinmacher-Burrow, B. D.: PAMI: A Parallel Active Message Interface for the Blue Gene/Q Supercomputer, IEEE 26th International Parallel and Distributed ProcessinSymposium, pp (2012). [13] Barrett, B. W., Brightwell, R., Hemmert, K. S., Pedretti, K., Wheeler, K. and Underwood, K. D.: Implementing OpenSHMEM and its Implications for Portals 4, 19th Annual Symposium on High-Performance Interconnects (HotI) (2011). [14] Nieplocha, J., Tipparaju, V., Krishnan, M. and Panda, D.: High Performance Remote Memory Access Comunications: The ARMCI Approach, International Journal of High Performance Computing and Applications, No. 2, pp (2006). [15] Bonachea, D.: GASNet Specification, v1.8, Technical report, U.C. Berkeley Tech Report (UCB/CSD ) (2008). [16] Si, M. and Ishikawa, Y.: Design of Direct Communication Facility for Manycore-based Accelerators, CASS2012 in conjunction with IPDPS2012 (2012). [17] Si, M., Ishikawa, Y. and Takagi, M.: Direct MPI Library for Intel Xeon Phi co-processors, CASS2013 in conjunction with IPDPS2013 (2013). [18] YAMPII MPI pp (2004). [19] Ishikawa, Y., Nakajima, K. and Hori, A.: Revisiting Persistent Communication in MPI, EuroMPI 2012: Recent Advances in the Message Passing Interface, Springer Netherlands, pp (2012 (poster)). c 2013 Information Processing Society of Japan 8

Revisiting Virtual Memory for High Performance Computing on Manycore Architectures: A Hybrid Segmentation Kernel Approach

Revisiting Virtual Memory for High Performance Computing on Manycore Architectures: A Hybrid Segmentation Kernel Approach Revisiting Virtual Memory for High Performance Computing on Manycore Architectures: A Hybrid Segmentation Kernel Approach Yuki Soma, Balazs Gerofi, Yutaka Ishikawa 1 Agenda Background on virtual memory

More information

Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS

Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS HPC User Forum, 7 th September, 2016 Outline of Talk Introduction of FLAGSHIP2020 project An Overview of post K system Concluding Remarks

More information

IHK/McKernel: A Lightweight Multi-kernel Operating System for Extreme-Scale Supercomputing

IHK/McKernel: A Lightweight Multi-kernel Operating System for Extreme-Scale Supercomputing : A Lightweight Multi-kernel Operating System for Extreme-Scale Supercomputing Balazs Gerofi Exascale System Software Team, RIKEN Center for Computational Science 218/Nov/15 SC 18 Intel Extreme Computing

More information

The Design of Advanced Communication to Reduce Memory Usage for Exa-scale Systems

The Design of Advanced Communication to Reduce Memory Usage for Exa-scale Systems The Design of Advanced Communication to Reduce Memory Usage for Exa-scale Systems Shinji Sumimoto 1, Yuichiro Ajima 1, Kazushige Saga 1, Takafumi Nose 1, Naoyuki Shida 1 and Takeshi Nanri 2 1 Fujitsu Ltd.

More information

Update of Post-K Development Yutaka Ishikawa RIKEN AICS

Update of Post-K Development Yutaka Ishikawa RIKEN AICS Update of Post-K Development Yutaka Ishikawa RIKEN AICS 11:20AM 11:40AM, 2 nd of November, 2017 FLAGSHIP2020 Project Missions Building the Japanese national flagship supercomputer, post K, and Developing

More information

Toward Operating System Support for Scalable Multithreaded Message Passing

Toward Operating System Support for Scalable Multithreaded Message Passing Toward Operating System Support for Scalable Multithreaded Message Passing Balazs Gerofi RIKEN Advanced Institute for Computational Science bgerofi@riken.jp Masamichi Takagi RIKEN Advanced Institute for

More information

CMCP: A Novel Page Replacement Policy for System Level Hierarchical Memory Management on Many-cores

CMCP: A Novel Page Replacement Policy for System Level Hierarchical Memory Management on Many-cores CMCP: A Novel Page Replacement Policy for System Level Hierarchical Memory Management on Many-cores Balazs Gerofi, Akio Shimada, Atsushi Hori, Takagi Masamichi, Yutaka Ishikawa, Graduate School of Information

More information

Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters

Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

HPC. Accelerating. HPC Advisory Council Lugano, CH March 15 th, Herbert Cornelius Intel

HPC. Accelerating. HPC Advisory Council Lugano, CH March 15 th, Herbert Cornelius Intel 15.03.2012 1 Accelerating HPC HPC Advisory Council Lugano, CH March 15 th, 2012 Herbert Cornelius Intel Legal Disclaimer 15.03.2012 2 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS.

More information

Post-K Supercomputer Overview. Copyright 2016 FUJITSU LIMITED

Post-K Supercomputer Overview. Copyright 2016 FUJITSU LIMITED Post-K Supercomputer Overview 1 Post-K supercomputer overview Developing Post-K as the successor to the K computer with RIKEN Developing HPC-optimized high performance CPU and system software Selected

More information

Introduction of Oakforest-PACS

Introduction of Oakforest-PACS Introduction of Oakforest-PACS Hiroshi Nakamura Director of Information Technology Center The Univ. of Tokyo (Director of JCAHPC) Outline Supercomputer deployment plan in Japan What is JCAHPC? Oakforest-PACS

More information

Seminar HPC Trends Winter Term 2017/2018 New Operating System Concepts for High Performance Computing

Seminar HPC Trends Winter Term 2017/2018 New Operating System Concepts for High Performance Computing Seminar HPC Trends Winter Term 2017/2018 New Operating System Concepts for High Performance Computing Fabian Dreer Ludwig-Maximilians Universität München dreer@cip.ifi.lmu.de January 2018 Abstract 1 The

More information

CEA and RIKEN AICS Collaboration

CEA and RIKEN AICS Collaboration CEA and RIKEN AICS Collaboration Yutaka Ishikawa RIKEN AICS 16:25 16:55 First French Japanese German Workshop on Programming and Computing for Exascale and beyond, 5 th April 2017, Tokyo Outline of Talk

More information

Scaling with PGAS Languages

Scaling with PGAS Languages Scaling with PGAS Languages Panel Presentation at OFA Developers Workshop (2013) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

1/5/2012. Overview of Interconnects. Presentation Outline. Myrinet and Quadrics. Interconnects. Switch-Based Interconnects

1/5/2012. Overview of Interconnects. Presentation Outline. Myrinet and Quadrics. Interconnects. Switch-Based Interconnects Overview of Interconnects Myrinet and Quadrics Leading Modern Interconnects Presentation Outline General Concepts of Interconnects Myrinet Latest Products Quadrics Latest Release Our Research Interconnects

More information

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy and D. K. Panda Presented by Dr. Xiaoyi

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Smart Interconnect for Next Generation HPC Platforms Gilad Shainer, August 2016, 4th Annual MVAPICH User Group (MUG) Meeting Mellanox Connects the World s Fastest Supercomputer

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

Fujitsu s new supercomputer, delivering the next step in Exascale capability

Fujitsu s new supercomputer, delivering the next step in Exascale capability Fujitsu s new supercomputer, delivering the next step in Exascale capability Toshiyuki Shimizu November 19th, 2014 0 Past, PRIMEHPC FX100, and roadmap for Exascale 2011 2012 2013 2014 2015 2016 2017 2018

More information

Basic Specification of Oakforest-PACS

Basic Specification of Oakforest-PACS Basic Specification of Oakforest-PACS Joint Center for Advanced HPC (JCAHPC) by Information Technology Center, the University of Tokyo and Center for Computational Sciences, University of Tsukuba Oakforest-PACS

More information

C PGAS XcalableMP(XMP) Unified Parallel

C PGAS XcalableMP(XMP) Unified Parallel PGAS XcalableMP Unified Parallel C 1 2 1, 2 1, 2, 3 C PGAS XcalableMP(XMP) Unified Parallel C(UPC) XMP UPC XMP UPC 1 Berkeley UPC GASNet 1. MPI MPI 1 Center for Computational Sciences, University of Tsukuba

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information

A Design of Hybrid Operating System for a Parallel Computer with Multi-Core and Many-Core Processors

A Design of Hybrid Operating System for a Parallel Computer with Multi-Core and Many-Core Processors A Design of Hybrid Operating System for a Parallel Computer with Multi-Core and Many-Core Processors Mikiko Sato 1,5 Go Fukazawa 1 Kiyohiko Nagamine 1 Ryuichi Sakamoto 1 Mitaro Namiki 1,5 Kazumi Yoshinaga

More information

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Kandalla, Mark Arnold and Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

Mapping MPI+X Applications to Multi-GPU Architectures

Mapping MPI+X Applications to Multi-GPU Architectures Mapping MPI+X Applications to Multi-GPU Architectures A Performance-Portable Approach Edgar A. León Computer Scientist San Jose, CA March 28, 2018 GPU Technology Conference This work was performed under

More information

The Stampede is Coming: A New Petascale Resource for the Open Science Community

The Stampede is Coming: A New Petascale Resource for the Open Science Community The Stampede is Coming: A New Petascale Resource for the Open Science Community Jay Boisseau Texas Advanced Computing Center boisseau@tacc.utexas.edu Stampede: Solicitation US National Science Foundation

More information

Intel Many Integrated Core (MIC) Architecture

Intel Many Integrated Core (MIC) Architecture Intel Many Integrated Core (MIC) Architecture Karl Solchenbach Director European Exascale Labs BMW2011, November 3, 2011 1 Notice and Disclaimers Notice: This document contains information on products

More information

Tutorial. Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers

Tutorial. Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers Tutorial Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers Dan Stanzione, Lars Koesterke, Bill Barth, Kent Milfeld dan/lars/bbarth/milfeld@tacc.utexas.edu XSEDE 12 July 16, 2012

More information

Open Compute Stack (OpenCS) Overview. D.D. Nikolić Updated: 20 August 2018 DAE Tools Project,

Open Compute Stack (OpenCS) Overview. D.D. Nikolić Updated: 20 August 2018 DAE Tools Project, Open Compute Stack (OpenCS) Overview D.D. Nikolić Updated: 20 August 2018 DAE Tools Project, http://www.daetools.com/opencs What is OpenCS? A framework for: Platform-independent model specification 1.

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center The Stampede is Coming Welcome to Stampede Introductory Training Dan Stanzione Texas Advanced Computing Center dan@tacc.utexas.edu Thanks for Coming! Stampede is an exciting new system of incredible power.

More information

Job Startup at Exascale:

Job Startup at Exascale: Job Startup at Exascale: Challenges and Solutions Hari Subramoni The Ohio State University http://nowlab.cse.ohio-state.edu/ Current Trends in HPC Supercomputing systems scaling rapidly Multi-/Many-core

More information

UCX: An Open Source Framework for HPC Network APIs and Beyond

UCX: An Open Source Framework for HPC Network APIs and Beyond UCX: An Open Source Framework for HPC Network APIs and Beyond Presented by: Pavel Shamis / Pasha ORNL is managed by UT-Battelle for the US Department of Energy Co-Design Collaboration The Next Generation

More information

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014 InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment TOP500 Supercomputers, June 2014 TOP500 Performance Trends 38% CAGR 78% CAGR Explosive high-performance

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Gilad Shainer 2nd Annual MVAPICH User Group (MUG) Meeting, August 2014 Complete High-Performance Scalable Interconnect Infrastructure Comprehensive End-to-End Software Accelerators

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

Intel Knights Landing Hardware

Intel Knights Landing Hardware Intel Knights Landing Hardware TACC KNL Tutorial IXPUG Annual Meeting 2016 PRESENTED BY: John Cazes Lars Koesterke 1 Intel s Xeon Phi Architecture Leverages x86 architecture Simpler x86 cores, higher compute

More information

HOKUSAI System. Figure 0-1 System diagram

HOKUSAI System. Figure 0-1 System diagram HOKUSAI System October 11, 2017 Information Systems Division, RIKEN 1.1 System Overview The HOKUSAI system consists of the following key components: - Massively Parallel Computer(GWMPC,BWMPC) - Application

More information

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU Parallel Applications on Distributed Memory Systems Le Yan HPC User Services @ LSU Outline Distributed memory systems Message Passing Interface (MPI) Parallel applications 6/3/2015 LONI Parallel Programming

More information

Simulation using MIC co-processor on Helios

Simulation using MIC co-processor on Helios Simulation using MIC co-processor on Helios Serhiy Mochalskyy, Roman Hatzky PRACE PATC Course: Intel MIC Programming Workshop High Level Support Team Max-Planck-Institut für Plasmaphysik Boltzmannstr.

More information

Parallel Programming on Ranger and Stampede

Parallel Programming on Ranger and Stampede Parallel Programming on Ranger and Stampede Steve Lantz Senior Research Associate Cornell CAC Parallel Computing at TACC: Ranger to Stampede Transition December 11, 2012 What is Stampede? NSF-funded XSEDE

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

Building Multi-Petaflop Systems with MVAPICH2 and Global Arrays

Building Multi-Petaflop Systems with MVAPICH2 and Global Arrays Building Multi-Petaflop Systems with MVAPICH2 and Global Arrays ABHINAV VISHNU*, JEFFREY DAILY, BRUCE PALMER, HUBERTUS VAN DAM, KAROL KOWALSKI, DARREN KERBYSON, AND ADOLFY HOISIE PACIFIC NORTHWEST NATIONAL

More information

Computer Architecture and Structured Parallel Programming James Reinders, Intel

Computer Architecture and Structured Parallel Programming James Reinders, Intel Computer Architecture and Structured Parallel Programming James Reinders, Intel Parallel Computing CIS 410/510 Department of Computer and Information Science Lecture 17 Manycore Computing and GPUs Computer

More information

Characterizing and Improving Power and Performance in HPC Networks

Characterizing and Improving Power and Performance in HPC Networks Characterizing and Improving Power and Performance in HPC Networks Doctoral Showcase by Taylor Groves Advised by Dorian Arnold Department of Computer Science 1 Quick Bio B.S. C.S. 2009 Texas State University

More information

Solutions for Scalable HPC

Solutions for Scalable HPC Solutions for Scalable HPC Scot Schultz, Director HPC/Technical Computing HPC Advisory Council Stanford Conference Feb 2014 Leading Supplier of End-to-End Interconnect Solutions Comprehensive End-to-End

More information

Introduction to Xeon Phi. Bill Barth January 11, 2013

Introduction to Xeon Phi. Bill Barth January 11, 2013 Introduction to Xeon Phi Bill Barth January 11, 2013 What is it? Co-processor PCI Express card Stripped down Linux operating system Dense, simplified processor Many power-hungry operations removed Wider

More information

Fujitsu HPC Roadmap Beyond Petascale Computing. Toshiyuki Shimizu Fujitsu Limited

Fujitsu HPC Roadmap Beyond Petascale Computing. Toshiyuki Shimizu Fujitsu Limited Fujitsu HPC Roadmap Beyond Petascale Computing Toshiyuki Shimizu Fujitsu Limited Outline Mission and HPC product portfolio K computer*, Fujitsu PRIMEHPC, and the future K computer and PRIMEHPC FX10 Post-FX10,

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

The LiMIC Strikes Back. Hyun-Wook Jin System Software Laboratory Dept. of Computer Science and Engineering Konkuk University

The LiMIC Strikes Back. Hyun-Wook Jin System Software Laboratory Dept. of Computer Science and Engineering Konkuk University The LiMIC Strikes Back Hyun-Wook Jin System Software Laboratory Dept. of Computer Science and Engineering Konkuk University jinh@konkuk.ac.kr Contents MPI Intra-node Communication Introduction of LiMIC

More information

Supporting PGAS Models (UPC and OpenSHMEM) on MIC Clusters

Supporting PGAS Models (UPC and OpenSHMEM) on MIC Clusters Supporting PGAS Models (UPC and OpenSHMEM) on MIC Clusters Presentation at IXPUG Meeting, July 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi Coprocessor

Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi Coprocessor Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi Coprocessor Intel K. K. E-mail: hirokazu.kobayashi@intel.com Yoshifumi Nakamura RIKEN AICS E-mail: nakamura@riken.jp Shinji Takeda

More information

CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters

CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters Ching-Hsiang Chu, Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan and Dhabaleswar K. (DK) Panda Speaker: Sourav Chakraborty

More information

High Performance MPI-2 One-Sided Communication over InfiniBand

High Performance MPI-2 One-Sided Communication over InfiniBand High Performance MPI-2 One-Sided Communication over InfiniBand Weihang Jiang Jiuxing Liu Hyun-Wook Jin Dhabaleswar K. Panda William Gropp Rajeev Thakur Computer and Information Science The Ohio State University

More information

Path to Exascale Computing

Path to Exascale Computing Path to Exascale Computing Brad Benton IBM Linux Technology Center Date: April 15, 2010 Jul 2009 Legal Trademarks and disclaimers The following are trademarks of the International Business Machines Corporation

More information

Intra-MIC MPI Communication using MVAPICH2: Early Experience

Intra-MIC MPI Communication using MVAPICH2: Early Experience Intra-MIC MPI Communication using MVAPICH: Early Experience Sreeram Potluri, Karen Tomko, Devendar Bureddy, and Dhabaleswar K. Panda Department of Computer Science and Engineering Ohio State University

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

Debugging Intel Xeon Phi KNC Tutorial

Debugging Intel Xeon Phi KNC Tutorial Debugging Intel Xeon Phi KNC Tutorial Last revised on: 10/7/16 07:37 Overview: The Intel Xeon Phi Coprocessor 2 Debug Library Requirements 2 Debugging Host-Side Applications that Use the Intel Offload

More information

GPU. OpenMP. OMPCUDA OpenMP. forall. Omni CUDA 3) Global Memory OMPCUDA. GPU Thread. Block GPU Thread. Vol.2012-HPC-133 No.

GPU. OpenMP. OMPCUDA OpenMP. forall. Omni CUDA 3) Global Memory OMPCUDA. GPU Thread. Block GPU Thread. Vol.2012-HPC-133 No. GPU CUDA OpenMP 1 2 3 1 1 OpenMP CUDA OM- PCUDA OMPCUDA GPU CUDA CUDA 1. GPU GPGPU 1)2) GPGPU CUDA 3) CPU CUDA GPGPU CPU GPU OpenMP GPU CUDA OMPCUDA 4)5) OMPCUDA GPU OpenMP GPU CUDA OMPCUDA/MG 2 GPU OMPCUDA

More information

HIGH PERFORMANCE COMPUTING FROM SUN

HIGH PERFORMANCE COMPUTING FROM SUN HIGH PERFORMANCE COMPUTING FROM SUN Update for IDC HPC User Forum, Norfolk, VA April 2008 Bjorn Andersson Director, HPC and Integrated Systems Sun Microsystems Sun Constellation System Integrating the

More information

Operating System Design for Next Generation Many-core based Supercomputers

Operating System Design for Next Generation Many-core based Supercomputers Operating System Design for Next Generation Many-core based Supercomputers Masamichi Takagi 1,a) Balazs Gerofi 1,b) Norio Yamaguchi 1,c) Takahiro Ogura 1,d) Toyohisa Kameyama 1,e) Atsushi Hori 1,f) Yutaka

More information

Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani

Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani The Ohio State University E-mail: gugnani.2@osu.edu http://web.cse.ohio-state.edu/~gugnani/ Network Based Computing Laboratory SC 17 2 Neuroscience:

More information

Overview of Tianhe-2

Overview of Tianhe-2 Overview of Tianhe-2 (MilkyWay-2) Supercomputer Yutong Lu School of Computer Science, National University of Defense Technology; State Key Laboratory of High Performance Computing, China ytlu@nudt.edu.cn

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

FUJITSU HPC and the Development of the Post-K Supercomputer

FUJITSU HPC and the Development of the Post-K Supercomputer FUJITSU HPC and the Development of the Post-K Supercomputer Toshiyuki Shimizu Vice President, System Development Division, Next Generation Technical Computing Unit 0 November 16 th, 2016 Post-K is currently

More information

GPU-centric communication for improved efficiency

GPU-centric communication for improved efficiency GPU-centric communication for improved efficiency Benjamin Klenk *, Lena Oden, Holger Fröning * * Heidelberg University, Germany Fraunhofer Institute for Industrial Mathematics, Germany GPCDP Workshop

More information

Real Parallel Computers

Real Parallel Computers Real Parallel Computers Modular data centers Background Information Recent trends in the marketplace of high performance computing Strohmaier, Dongarra, Meuer, Simon Parallel Computing 2005 Short history

More information

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries How to Boost the Performance of Your MPI and PGAS s with MVAPICH2 Libraries A Tutorial at the MVAPICH User Group (MUG) Meeting 18 by The MVAPICH Team The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Communication-Computation Overlapping with Dynamic Loop Scheduling for Preconditioned Parallel Iterative Solvers on Multicore/Manycore Clusters

Communication-Computation Overlapping with Dynamic Loop Scheduling for Preconditioned Parallel Iterative Solvers on Multicore/Manycore Clusters Communication-Computation Overlapping with Dynamic Loop Scheduling for Preconditioned Parallel Iterative Solvers on Multicore/Manycore Clusters Kengo Nakajima, Toshihiro Hanawa Information Technology Center,

More information

Intro to Parallel Computing

Intro to Parallel Computing Outline Intro to Parallel Computing Remi Lehe Lawrence Berkeley National Laboratory Modern parallel architectures Parallelization between nodes: MPI Parallelization within one node: OpenMP Why use parallel

More information

Preparing for Highly Parallel, Heterogeneous Coprocessing

Preparing for Highly Parallel, Heterogeneous Coprocessing Preparing for Highly Parallel, Heterogeneous Coprocessing Steve Lantz Senior Research Associate Cornell CAC Workshop: Parallel Computing on Ranger and Lonestar May 17, 2012 What Are We Talking About Here?

More information

System Software for Big Data and Post Petascale Computing

System Software for Big Data and Post Petascale Computing The Japanese Extreme Big Data Workshop February 26, 2014 System Software for Big Data and Post Petascale Computing Osamu Tatebe University of Tsukuba I/O performance requirement for exascale applications

More information

Titan - Early Experience with the Titan System at Oak Ridge National Laboratory

Titan - Early Experience with the Titan System at Oak Ridge National Laboratory Office of Science Titan - Early Experience with the Titan System at Oak Ridge National Laboratory Buddy Bland Project Director Oak Ridge Leadership Computing Facility November 13, 2012 ORNL s Titan Hybrid

More information

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit Analyzing the Performance of IWAVE on a Cluster using HPCToolkit John Mellor-Crummey and Laksono Adhianto Department of Computer Science Rice University {johnmc,laksono}@rice.edu TRIP Meeting March 30,

More information

High Performance MPI-2 One-Sided Communication over InfiniBand

High Performance MPI-2 One-Sided Communication over InfiniBand High Performance MPI-2 One-Sided Communication over InfiniBand Weihang Jiang Jiuxing Liu Hyun-Wook Jin Dhabaleswar K. Panda William Gropp Rajeev Thakur Computer and Information Science The Ohio State University

More information

Introduction of Fujitsu s next-generation supercomputer

Introduction of Fujitsu s next-generation supercomputer Introduction of Fujitsu s next-generation supercomputer MATSUMOTO Takayuki July 16, 2014 HPC Platform Solutions Fujitsu has a long history of supercomputing over 30 years Technologies and experience of

More information

Early Experiences Writing Performance Portable OpenMP 4 Codes

Early Experiences Writing Performance Portable OpenMP 4 Codes Early Experiences Writing Performance Portable OpenMP 4 Codes Verónica G. Vergara Larrea Wayne Joubert M. Graham Lopez Oscar Hernandez Oak Ridge National Laboratory Problem statement APU FPGA neuromorphic

More information

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber NERSC Site Update National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory Richard Gerber NERSC Senior Science Advisor High Performance Computing Department Head Cori

More information

Carlo Cavazzoni, HPC department, CINECA

Carlo Cavazzoni, HPC department, CINECA Introduction to Shared memory architectures Carlo Cavazzoni, HPC department, CINECA Modern Parallel Architectures Two basic architectural scheme: Distributed Memory Shared Memory Now most computers have

More information

A Multi-Kernel Survey for High-Performance Computing

A Multi-Kernel Survey for High-Performance Computing A Multi-Kernel Survey for High-Performance Computing Balazs Gerofi, Yutaka Ishikawa, Rolf Riesen, Robert W. Wisniewski, Yoonho Park, Bryan Rosenburg RIKEN Advanced Institute for Computational Science,

More information

I/O Monitoring at JSC, SIONlib & Resiliency

I/O Monitoring at JSC, SIONlib & Resiliency Mitglied der Helmholtz-Gemeinschaft I/O Monitoring at JSC, SIONlib & Resiliency Update: I/O Infrastructure @ JSC Update: Monitoring with LLview (I/O, Memory, Load) I/O Workloads on Jureca SIONlib: Task-Local

More information

Pedraforca: a First ARM + GPU Cluster for HPC

Pedraforca: a First ARM + GPU Cluster for HPC www.bsc.es Pedraforca: a First ARM + GPU Cluster for HPC Nikola Puzovic, Alex Ramirez We ve hit the power wall ALL computers are limited by power consumption Energy-efficient approaches Multi-core Fujitsu

More information

FUJITSU PHI Turnkey Solution

FUJITSU PHI Turnkey Solution FUJITSU PHI Turnkey Solution Integrated ready to use XEON-PHI based platform Dr. Pierre Lagier ISC2014 - Leipzig PHI Turnkey Solution challenges System performance challenges Parallel IO best architecture

More information

Memory Footprint of Locality Information On Many-Core Platforms Brice Goglin Inria Bordeaux Sud-Ouest France 2018/05/25

Memory Footprint of Locality Information On Many-Core Platforms Brice Goglin Inria Bordeaux Sud-Ouest France 2018/05/25 ROME Workshop @ IPDPS Vancouver Memory Footprint of Locality Information On Many- Platforms Brice Goglin Inria Bordeaux Sud-Ouest France 2018/05/25 Locality Matters to HPC Applications Locality Matters

More information

Oak Ridge National Laboratory Computing and Computational Sciences

Oak Ridge National Laboratory Computing and Computational Sciences Oak Ridge National Laboratory Computing and Computational Sciences OFA Update by ORNL Presented by: Pavel Shamis (Pasha) OFA Workshop Mar 17, 2015 Acknowledgments Bernholdt David E. Hill Jason J. Leverman

More information

Accelerating HPC. (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing

Accelerating HPC. (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing Accelerating HPC (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing SAAHPC, Knoxville, July 13, 2010 Legal Disclaimer Intel may make changes to specifications and product

More information

Extreme-Scale Operating Systems

Extreme-Scale Operating Systems Extreme-Scale Operating Systems Rolf Riesen 23 August 2016 Copyright c 2016 Intel Corporation. All rights reserved. ROME Legal Disclaimer Intel and the Intel logo are trademarks of Intel Corporation in

More information

Initial Performance Evaluation of the Cray SeaStar Interconnect

Initial Performance Evaluation of the Cray SeaStar Interconnect Initial Performance Evaluation of the Cray SeaStar Interconnect Ron Brightwell Kevin Pedretti Keith Underwood Sandia National Laboratories Scalable Computing Systems Department 13 th IEEE Symposium on

More information

Challenges in High Performance Computing. William Gropp

Challenges in High Performance Computing. William Gropp Challenges in High Performance Computing William Gropp www.cs.illinois.edu/~wgropp 2 What is HPC? High Performance Computing is the use of computing to solve challenging problems that require significant

More information

GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks

GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks Presented By : Esthela Gallardo Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, Jonathan Perkins, Hari Subramoni,

More information

On the Scalability, Performance Isolation and Device Driver Transparency of the IHK/McKernel Hybrid Lightweight Kernel

On the Scalability, Performance Isolation and Device Driver Transparency of the IHK/McKernel Hybrid Lightweight Kernel On the Scalability, Performance Isolation and Device Driver Transparency of the IHK/ Hybrid Lightweight Kernel Balazs Gerofi, Masamichi Takagi, Atsushi Hori, Gou Nakamura, Tomoki Shirasawa and Yutaka Ishikawa

More information

What does Heterogeneity bring?

What does Heterogeneity bring? What does Heterogeneity bring? Ken Koch Scientific Advisor, CCS-DO, LANL LACSI 2006 Conference October 18, 2006 Some Terminology Homogeneous Of the same or similar nature or kind Uniform in structure or

More information

LBRN - HPC systems : CCT, LSU

LBRN - HPC systems : CCT, LSU LBRN - HPC systems : CCT, LSU HPC systems @ CCT & LSU LSU HPC Philip SuperMike-II SuperMIC LONI HPC Eric Qeenbee2 CCT HPC Delta LSU HPC Philip 3 Compute 32 Compute Two 2.93 GHz Quad Core Nehalem Xeon 64-bit

More information

Performance-Centric System Design

Performance-Centric System Design Performance-Centric System Design Torsten Hoefler Swiss Federal Institute of Technology, ETH Zürich Performance-Centric System Design - modeling, programming, and architecture - Torsten Hoefler ETH Zürich

More information

Introduction to the Intel Xeon Phi on Stampede

Introduction to the Intel Xeon Phi on Stampede June 10, 2014 Introduction to the Intel Xeon Phi on Stampede John Cazes Texas Advanced Computing Center Stampede - High Level Overview Base Cluster (Dell/Intel/Mellanox): Intel Sandy Bridge processors

More information

Adaptive Connection Management for Scalable MPI over InfiniBand

Adaptive Connection Management for Scalable MPI over InfiniBand Adaptive Connection Management for Scalable MPI over InfiniBand Weikuan Yu Qi Gao Dhabaleswar K. Panda Network-Based Computing Lab Dept. of Computer Sci. & Engineering The Ohio State University {yuw,gaoq,panda}@cse.ohio-state.edu

More information

LLVM-based Communication Optimizations for PGAS Programs

LLVM-based Communication Optimizations for PGAS Programs LLVM-based Communication Optimizations for PGAS Programs nd Workshop on the LLVM Compiler Infrastructure in HPC @ SC15 Akihiro Hayashi (Rice University) Jisheng Zhao (Rice University) Michael Ferguson

More information

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster H. W. Jin, S. Sur, L. Chai, and D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering

More information