CS453 INTRODUCTION TO DATAFLOW ANALYSIS

Size: px
Start display at page:

Download "CS453 INTRODUCTION TO DATAFLOW ANALYSIS"

Transcription

1 CS453 INTRODUCTION TO DATAFLOW ANALYSIS CS453 Leture Register llotion using liveness nlysis 1 Introdution to Dt-flow nlysis Lst Time Register llotion for expression trees nd lol nd prm vrs Tody Register llotion in GCC nd LLVM Control flow grphs 3-ddress ode Register llotion using liveness nlysis Reding for this week Ch 8 in online book These slides dpted from Clvin Lin nd E. Christopher Lewis. CS453 Leture Register llotion using liveness nlysis 2

2 Introdution to Dt-flow nlysis Previous leture: Register llotion for expression trees minimizing the register use. r1 r1 r2 r1 r2 r2 r3 r1 r2 r3 r4 To generte better ode (e.g. use fewer registers) we need to nlyze our progrms better 3-ddress ode Control flow nlysis nd ontrol flow grphs to determine dynmi hrteristis of the progrm Register llotion using liveness (live: still needed) nlysis CS453 Leture Register llotion using liveness nlysis 3 A Low-Level IR: 3-ddress ode We wnt to do nlysis on n Intermedite Representtion: 3-ddress ode Liner representtion: ssignments, lbels, (onditionl) jumps Typilly lnguge-independent nd nerly orresponds to mhine instrutions, differene: no stk ode, but (temporry) vribles There re nmed vribles (prmeters, vribles) nd temporries (expressions). We n nme the temporries ssuming unbounded number of (symboli) registers. Exmple opertions (Indexed) opy x = y[i], y[i] = x, x = z, t1 = t2 Unry / binry op x = op z, x = v op z, t1 = t2 op t3 Address of p = & v Dereferene x = *p, *p = x Pss prm prm t0 Cll t1 = ll f, 1 (onditinl) Brnh goto L1, if t1 goto L1 CS453 Leture Intermedite Representtions 4

3 Register Allotion in GCC nd LLVM Comprison between GCC nd LLVM Both used in ompiler reserh. GCC sine 1987, LLVM sine LLVM hs BSD-like liense nd GCC hs GPL liense. Both hve 3-ddress ode bsed IR (LLVM hs LLVM, GCC hs GIMPLE). Both rete stti single ssignment representtion for their 3-ddress ode intermedite representtion. GCC Register Allotion Lower GIMPLE into RTL (Register trnsfer lnguge) Regionl register llotor bsed on Chitin-Briggs (oloring pproh to register llotion tht is bsed on onept of live rnges) LLVM Register Allotion Fst (inside single bsi blok), Bsi, Greedy, PBQP All but Fst bsed on live rnges Show nd CS453 Leture Register llotion using liveness nlysis 5 Dt-flow Anlysis Ide Dt-flow nlysis derives informtion bout the dynmi behvior of progrm by only exmining the stti ode Exmple How mny registers do we need for the progrm on the right? Esy bound: the number of vribles used + expr temp (4) Better nswer is found by onsidering the dynmi requirements of the progrm 1 := 0 2 L1: b := := + b 4 := b * 2 5 if < 9 goto L1 6 return CS453 Leture Register llotion using liveness nlysis 6

4 Liveness Anlysis Definition A vrible is live t prtiulr point in the progrm if its vlue t tht point will be used in the future (ded, otherwise). To ompute liveness t given point, we need to look into the future Motivtion: Register Allotion A progrm ontins n unbounded number of vribles Must exeute on mhine with bounded number of registers Two vribles n use the sme register if they re never in use t the sme time (i.e, never simultneously live). Register llotion uses liveness informtion CS453 Leture Register llotion using liveness nlysis 7 Control Flow Grphs (CFGs) Definition A CFG is grph whose nodes represent progrm sttements nd whose direted edges represent ontrol flow Exmple 1 = 0 1 := 0 2 L1: b := := + b 4 := b * 2 5 if < 9 goto L1 6 return 6 return No b = + 1 = + b 4 = b * 2 <9 Yes CS453 Leture Register llotion using liveness nlysis 8

5 Terminology Flow Grph Terms A CFG node hs out-edges tht led to suessor nodes nd in-edges tht ome from predeessor nodes pred[n] is the set of ll predeessors of node n 1 su[n] is the set of ll suessors of node n = 0 Exmples Out-edges of node 5: su[5] = {2,6} pred[5] = {4} pred[2] = {1,5} (5 6) nd (5 2) b = + 1 = + b 4 = b * 2 <9 6 return No Yes CS453 Leture Register llotion using liveness nlysis 9 Liveness by Exmple Wht is the live rnge of b? Vrible b is red in sttement 4, so b is live on the (3 4) edge Sine sttement 3 does not ssign into b, b is lso live on the (2 3) edge Sttement 2 ssigns b, so ny vlue of b on the (1 2) nd (5 2) edges re not needed, so b is ded long these edges b s live rnge is (2 3 4) 6 return = 0 b = = b * 2 5 No = + b <9 Yes CS453 Leture Register llotion using liveness nlysis 10

6 Liveness by Exmple (ont) Live rnge of is live from (1 2) nd gin from (4 5 2) is ded from (2 3 4) 1 2 = 0 b = + 1 Live rnge of b b is live from (2 3 4) Live rnge of is live from (entry , 5 6) 6 return 3 4 = b * 2 5 No = + b <9 Vribles nd b re never simultneously live, so they n shre register Yes CS453 Leture Register llotion using liveness nlysis 11 Uses nd Defs Def (or definition) An ssignment of vlue to vrible def_node[v] = set of CFG nodes tht define vrible v def[n] = set of vribles tht re defined t node n = 0 Use A red of vrible s vlue use_node[v] = set of CFG nodes tht use vrible v use[n] = set of vribles tht re used t node n < 9? v live def_node[v] More preise definition of liveness A vrible v is live on CFG edge if use_node[v] (1) direted pth from tht edge to use of v (node in use_node[v]), nd (2) tht pth does not go through ny def of v (no nodes in def_node[v]) CS453 Leture Register llotion using liveness nlysis 12

7 The Flow of Liveness Dt-flow Liveness of vribles is property tht flows through the edges of the CFG Diretion of Flow Liveness flows bkwrds through the CFG, beuse the behvior t future nodes determines liveness t given node Consider Consider b Other properties flow forwrd 1 := b := + 1 := + b := b * 2 No 6 return < 9? Yes CS453 Leture Register llotion using liveness nlysis 13 Liveness t Nodes We hve liveness on edges How do we tlk bout liveness t nodes? = 0 edges progrm points just before omputtion just fter omputtion Two More Definitions A vrible is live-out t node if it is live on ny of tht node s out-edges n live-out out-edges A vrible is live-in t node if it is live on ny of tht node s in-edges n live-in in-edges CS453 Leture Register llotion using liveness nlysis 14

8 Computing Liveness Rules for omputing liveness (1) Generte liveness: If vrible is in use[n], it is live-in t node n Dt-flow equtions n live-in use (2) Push liveness ross edges: If vrible is live-in t node n then it is live-out t ll nodes in pred[n] live-out (3) Push liveness ross nodes: If vrible is live-out t node n nd not in def[n] then the vrible is lso live-in t n live-out n live-in n live-out live-in live-out pred[n] (1) in[n] = use[n] (out[n] def[n]) (3) out[n] = in[s] s su[n] (2) CS453 Leture Register llotion using liveness nlysis 15 Solving the Dt-flow Equtions Algorithm for eh node n in CFG in[n] = ; out[n] = repet for eh node n in CFG in [n] = in[n] out [n] = out[n] in[n] = use[n] (out[n] def[n]) out[n] = in[s] s su[n] until in [n]=in[n] nd out [n]=out[n] for ll n initilize solutions sve urrent results solve dt-flow equtions test for onvergene This is itertive dt-flow nlysis (for liveness nlysis) CS453 Leture Register llotion using liveness nlysis 16

9 Exmple node # 1 2 b 3 b 5 1st 2nd 3rd 4th 5th 6th 7th use def in out in out in out in out in out in out in out 4 b 6 b b b b b b b b b b b b b b b b b b b b b b b b b b 1 := 0 2 b := := + b 4 := b * 2 Dt-flow Equtions for Liveness in[n] = use[n] (out[n] def[n]) out[n] = in[s] s su[n] No 6 return 5 < 9? Yes CS453 Leture Register llotion using liveness nlysis 17 Liveness Anlysis in the MeggyJv ompiler Currently Prse into AST Allote spe on stk for lols nd prmeters nd spe in hep for member vribles Use stk for expression evlution Generte AVR ode from AST To perform dt-flow nlysis Need intermedite representtion like 3-ddress ode Use temporries/symboli registers for expression results Indite uses nd defs of temporries nd lols nd prmeters in eh 3- ddress ode instrution Crete ontrol-flow grph with eh 3-ddress ode instrution s node CS453 Leture Register llotion using liveness nlysis 18

10 A Low-Level IR: 3-ddress ode 3-ddress ode Liner representtion Typilly lnguge-independent nd nerly orresponds to mhine instrutions Eh vr is ssumed to hve bse + offset Assumes infinite temps (t#), or symboli registers, re vilble Exmple opertions Copy x = z, t1 = t2 Indexed opy x = y[i], y[i] = x, t1 = y[i] Unry op x = op z Binry op x = v op z, t1 = t2 op t3 Address of p = & v Lod x = *p Store *p = x, Pss prm prm t0 Cll t1 = ll f, 1 Brnh goto L1 Cbrnh if (x==y) goto L1 CS453 Leture Intermedite Representtions 19 Expression Exmple CS453 Leture Register llotion using liveness nlysis 20

11 Another MeggyJv Exmple int ; int b; int ; int d; int e; int [] v; int [] z; Foo r; = b + + (d+e); v[i] = z[i] * 3 + v.length; r.br(42); CS453 Leture Register llotion using liveness nlysis 21 MeggyJv Loop Exmple int ; int b; = 1; b = 0; while (<7) { = + 1; b = b + 3; } Meggy.setPixel((byte), (byte) b, Meggy.BLUE); CS453 Leture Register llotion using liveness nlysis 22

12 Register Allotion Problem Assign n unbounded number of symboli registers, or temporries, to fixed number of rhiteturl registers Simultneously live dt must be ssigned to different rhiteturl registers Gol Minimize overhed of essing dt Memory opertions (lods & stores) Register moves CS453 Leture Register llotion using liveness nlysis 23 Sope of Register Allotion Expression Lol Loop Globl Interproedurl CS453 Leture Register llotion using liveness nlysis 24

13 Grnulrity of Allotion Wht is lloted to registers? Vribles Live rnges/webs (i.e., du-hins with ommon uses) Vlues (i.e., definitions; sme s vribles with SSA) s 1 : x := 5 b 2 s 2 : y := x b 3 s 3 : x := y+1 b 4 b 1 s 6 :... x... s 4 :... x... s 5 : x := 3 Vribles: 2 (x & y) Live Rnges/Web: 3 (s 1 s 2,s 4 ; s 2 s 3 ; s 3,s 5 s 6 ) Vlues: 4 (s 1, s 2, s 3, s 5, φ (s 3,s 5 )) CS453 Leture Register llotion using liveness nlysis 25 Globl Register Allotion by Grph Coloring Ide [Coke 71], First llotor [Chitin 81] 1. Construt interferene grph G=(N,E) Represents notion of simultneously live Nodes re units of llotion (e.g., vribles, live rnges, vlues) edge (n 1,n 2 ) E if n 1 nd n 2 re simultneously live Symmetri (not reflexive nor trnsitive) 2. Find k-oloring of G (for k registers) Adjent nodes n t hve sme olor 3. Allote the sme register to ll llotion units of the sme olor Adjent nodes must be lloted to distint registers t2 t1 t3 CS453 Leture Register llotion using liveness nlysis 26

14 Interferene Grph Exmple (Vribles) :=... b :=... := d :=... := :=... e b e := e b... :=... d CS453 Leture Register llotion using liveness nlysis 27 Computing the Interferene Grph Use results of live vrible nlysis for eh symboli-register/temporry/vr t i do for eh symboli-register/temporry/vr t j (j < i) do for eh def {definitions of t i } do if (t j is live out t def) then E E (t i,t j ) Options tret ll instrutions the sme tret MOVE instrutions speil whih is better? CS453 Leture Register llotion using liveness nlysis 28

15 Alloting Registers Using the Interferene Grph K-oloring Color grph nodes using up to k olors Adjent nodes must hve different olors Alloting to k registers finding k-oloring of the interferene grph Adjent nodes must be lloted to distint registers But... Optiml grph oloring is NP-omplete Optiml register llotion is NP-omplete, too (must pproximte) Wht if we n t k-olor grph? (must spill) CS453 Leture Register llotion using liveness nlysis 29 Register Allotion: Spilling If we n t find k-oloring of the interferene grph Spill vribles (nodes) until the grph is olorble Choosing vribles to spill Choose rbitrrily or Choose lest frequently essed vribles Brek ties by hoosing nodes with the most onflits in the interferene grph Yes, these re heuristis! CS453 Leture Register llotion using liveness nlysis 30

16 Spilling (Originl CFG nd Interferene Grph) :=... b :=... := d :=... f := f :=... e b e := f e b... :=... f d CS453 Leture Register llotion using liveness nlysis 31 Spilling (After spilling b ) f :=... :=... b :=... *(Y+4) := b := d := f :=... e b e := f e... b = *(Y+4)... b... :=... f d CS453 Leture Register llotion using liveness nlysis 32

17 Simple Greedy Algorithm for Register Allotion for eh n N do { selet n in deresing order of weight } if n n be olored then do it { reserve register for n } else Remove n (nd its edges) from grph { llote n to stk (spill) } :=... r24 :=... *(Y+4):= r24 := d :=... (After spilling b ) e := f e... r24 = *(Y+4)... r24... CS453 Leture Register llotion using liveness nlysis 33 e f d Exmple Attempt to 3-olor this grph (,, ) e f b d Weighted order: b d f e Wht if you use different order? CS453 Leture Register llotion using liveness nlysis 34

18 Exmple Attempt to 2-olor this grph (, ) Weighted order: b b CS453 Leture Register llotion using liveness nlysis 35 Conepts Liveness Used in register llotion Generting liveness Flow nd diretion Dt-flow equtions nd nlysis 3-ddress ode nd Control flow grphs Register llotion sope of llotion grnulrity: wht is being lloted to register order tht llotion units re visited in mtters in ll heuristi lgorithms Globl pproh: greedy oloring CS453 Leture Register llotion using liveness nlysis 36

19 Liveness in the MiniJv ompiler CS453 Leture Register llotion using liveness nlysis 37

CS553 Lecture Introduction to Data-flow Analysis 1

CS553 Lecture Introduction to Data-flow Analysis 1 ! Ide Introdution to Dt-flow nlysis!lst Time! Implementing Mrk nd Sweep GC!Tody! Control flow grphs! Liveness nlysis! Register llotion CS553 Leture Introdution to Dt-flow Anlysis 1 Dt-flow Anlysis! Dt-flow

More information

Control-Flow Analysis and Loop Detection

Control-Flow Analysis and Loop Detection ! Control-Flow Anlysis nd Loop Detection!Lst time! PRE!Tody! Control-flow nlysis! Loops! Identifying loops using domintors! Reducibility! Using loop identifiction to identify induction vribles CS553 Lecture

More information

Plan for Today. Concepts. Next Time. Some slides are from Calvin Lin s grad compiler slides. CS553 Lecture 2 Optimizations and LLVM 1

Plan for Today. Concepts. Next Time. Some slides are from Calvin Lin s grad compiler slides. CS553 Lecture 2 Optimizations and LLVM 1 Plan for Today Quiz 2 How to automate the process of performance optimization LLVM: Intro to Intermediate Representation Loops as iteration spaces Data-flow Analysis Intro Control-flow graph terminology

More information

Midterm 2 Sample solution

Midterm 2 Sample solution Nme: Instructions Midterm 2 Smple solution CMSC 430 Introduction to Compilers Fll 2012 November 28, 2012 This exm contins 9 pges, including this one. Mke sure you hve ll the pges. Write your nme on the

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distriuted Systems Priniples nd Prdigms Christoph Dorn Distriuted Systems Group, Vienn University of Tehnology.dorn@infosys.tuwien..t http://www.infosys.tuwien..t/stff/dorn Slides dpted from Mrten vn Steen,

More information

CMPUT101 Introduction to Computing - Summer 2002

CMPUT101 Introduction to Computing - Summer 2002 CMPUT Introdution to Computing - Summer 22 %XLOGLQJ&RPSXWHU&LUFXLWV Chpter 4.4 3XUSRVH We hve looked t so fr how to uild logi gtes from trnsistors. Next we will look t how to uild iruits from logi gtes,

More information

Paradigm 5. Data Structure. Suffix trees. What is a suffix tree? Suffix tree. Simple applications. Simple applications. Algorithms

Paradigm 5. Data Structure. Suffix trees. What is a suffix tree? Suffix tree. Simple applications. Simple applications. Algorithms Prdigm. Dt Struture Known exmples: link tble, hep, Our leture: suffix tree Will involve mortize method tht will be stressed shortly in this ourse Suffix trees Wht is suffix tree? Simple pplitions History

More information

UNIT 11. Query Optimization

UNIT 11. Query Optimization UNIT Query Optimiztion Contents Introduction to Query Optimiztion 2 The Optimiztion Process: An Overview 3 Optimiztion in System R 4 Optimiztion in INGRES 5 Implementing the Join Opertors Wei-Png Yng,

More information

Lesson 4.4. Euler Circuits and Paths. Explore This

Lesson 4.4. Euler Circuits and Paths. Explore This Lesson 4.4 Euler Ciruits nd Pths Now tht you re fmilir with some of the onepts of grphs nd the wy grphs onvey onnetions nd reltionships, it s time to egin exploring how they n e used to model mny different

More information

Type Checking. Roadmap (Where are we?) Last lecture Context-sensitive analysis. This lecture Type checking. Symbol tables

Type Checking. Roadmap (Where are we?) Last lecture Context-sensitive analysis. This lecture Type checking. Symbol tables Type Cheking Rodmp (Where re we?) Lst leture Contet-sensitie nlysis Motition Attriute grmmrs Ad ho Synt-direted trnsltion This leture Type heking Type systems Using synt direted trnsltion Symol tles Leil

More information

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems Distriuted Systems Priniples nd Prdigms Mrten vn Steen VU Amsterdm, Dept. Computer Siene steen@s.vu.nl Chpter 11: Distriuted File Systems Version: Deemer 10, 2012 2 / 14 Distriuted File Systems Distriuted

More information

CS 241 Week 4 Tutorial Solutions

CS 241 Week 4 Tutorial Solutions CS 4 Week 4 Tutoril Solutions Writing n Assemler, Prt & Regulr Lnguges Prt Winter 8 Assemling instrutions utomtilly. slt $d, $s, $t. Solution: $d, $s, nd $t ll fit in -it signed integers sine they re 5-it

More information

Correcting the Dynamic Call Graph Using Control Flow Constraints

Correcting the Dynamic Call Graph Using Control Flow Constraints Correting the Dynmi Cll Grph Using Control Flow Constrints Byeongheol Lee Kevin Resnik Mihel Bond Kthryn MKinley 1 Appered in CC2007 Motivtion Complexity of lrge objet oriented progrms Deompose the progrm

More information

CS 551 Computer Graphics. Hidden Surface Elimination. Z-Buffering. Basic idea: Hidden Surface Removal

CS 551 Computer Graphics. Hidden Surface Elimination. Z-Buffering. Basic idea: Hidden Surface Removal CS 55 Computer Grphis Hidden Surfe Removl Hidden Surfe Elimintion Ojet preision lgorithms: determine whih ojets re in front of others Uses the Pinter s lgorithm drw visile surfes from k (frthest) to front

More information

Languages. L((a (b)(c))*) = { ε,a,bc,aa,abc,bca,... } εw = wε = w. εabba = abbaε = abba. (a (b)(c)) *

Languages. L((a (b)(c))*) = { ε,a,bc,aa,abc,bca,... } εw = wε = w. εabba = abbaε = abba. (a (b)(c)) * Pln for Tody nd Beginning Next week Interpreter nd Compiler Structure, or Softwre Architecture Overview of Progrmming Assignments The MeggyJv compiler we will e uilding. Regulr Expressions Finite Stte

More information

Minimal Memory Abstractions

Minimal Memory Abstractions Miniml Memory Astrtions (As implemented for BioWre Corp ) Nthn Sturtevnt University of Alert GAMES Group Ferury, 7 Tlk Overview Prt I: Building Astrtions Minimizing memory requirements Performnes mesures

More information

To access your mailbox from inside your organization. For assistance, call:

To access your mailbox from inside your organization. For assistance, call: 2001 Ative Voie, In. All rights reserved. First edition 2001. Proteted y one or more of the following United Sttes ptents:,070,2;,3,90;,88,0;,33,102;,8,0;,81,0;,2,7;,1,0;,90,88;,01,11. Additionl U.S. nd

More information

box Boxes and Arrows 3 true 7.59 'X' An object is drawn as a box that contains its data members, for example:

box Boxes and Arrows 3 true 7.59 'X' An object is drawn as a box that contains its data members, for example: Boxes nd Arrows There re two kinds of vriles in Jv: those tht store primitive vlues nd those tht store references. Primitive vlues re vlues of type long, int, short, chr, yte, oolen, doule, nd flot. References

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Compilation Lecture 11a. Register Allocation Noam Rinetzky. Text book: Modern compiler implementation in C Andrew A.

Compilation Lecture 11a. Register Allocation Noam Rinetzky. Text book: Modern compiler implementation in C Andrew A. Compilation 0368-3133 Leture 11a Text book: Modern ompiler implementation in C Andrew A. Appel Register Alloation Noam Rinetzky 1 Registers Dediated memory loations that an be aessed quikly, an have omputations

More information

Systems I. Logic Design I. Topics Digital logic Logic gates Simple combinational logic circuits

Systems I. Logic Design I. Topics Digital logic Logic gates Simple combinational logic circuits Systems I Logic Design I Topics Digitl logic Logic gtes Simple comintionl logic circuits Simple C sttement.. C = + ; Wht pieces of hrdwre do you think you might need? Storge - for vlues,, C Computtion

More information

Homework. Context Free Languages III. Languages. Plan for today. Context Free Languages. CFLs and Regular Languages. Homework #5 (due 10/22)

Homework. Context Free Languages III. Languages. Plan for today. Context Free Languages. CFLs and Regular Languages. Homework #5 (due 10/22) Homework Context Free Lnguges III Prse Trees nd Homework #5 (due 10/22) From textbook 6.4,b 6.5b 6.9b,c 6.13 6.22 Pln for tody Context Free Lnguges Next clss of lnguges in our quest! Lnguges Recll. Wht

More information

CS201 Discussion 10 DRAWTREE + TRIES

CS201 Discussion 10 DRAWTREE + TRIES CS201 Discussion 10 DRAWTREE + TRIES DrwTree First instinct: recursion As very generic structure, we could tckle this problem s follows: drw(): Find the root drw(root) drw(root): Write the line for the

More information

Shared Memory Architectures. Programming and Synchronization. Today s Outline. Page 1. Message passing review Cosmic Cube discussion

Shared Memory Architectures. Programming and Synchronization. Today s Outline. Page 1. Message passing review Cosmic Cube discussion Tody s Outline Arhitetures Progrmming nd Synhroniztion Disuss pper on Cosmi Cube (messge pssing) Messge pssing review Cosmi Cube disussion > Messge pssing mhine Shred memory model > Communition > Synhroniztion

More information

Lecture 13: Graphs I: Breadth First Search

Lecture 13: Graphs I: Breadth First Search Leture 13 Grphs I: BFS 6.006 Fll 2011 Leture 13: Grphs I: Bredth First Serh Leture Overview Applitions of Grph Serh Grph Representtions Bredth-First Serh Rell: Grph G = (V, E) V = set of verties (ritrry

More information

Some Thoughts on Grad School. Undergraduate Compilers Review and Intro to MJC. Structure of a Typical Compiler. Lexing and Parsing

Some Thoughts on Grad School. Undergraduate Compilers Review and Intro to MJC. Structure of a Typical Compiler. Lexing and Parsing Undergrdute Compilers Review nd Intro to MJC Announcements Miling list is in full swing Tody Some thoughts on grd school Finish prsing Semntic nlysis Visitor pttern for bstrct syntx trees Some Thoughts

More information

INTEGRATED WORKFLOW ART DIRECTOR

INTEGRATED WORKFLOW ART DIRECTOR ART DIRECTOR Progrm Resoures INTEGRATED WORKFLOW PROGRAM PLANNING PHASE In this workflow phse proess, you ollorte with the Progrm Mnger, the Projet Mnger, nd the Art Speilist/ Imge Led to updte the resoures

More information

CSCI 446: Artificial Intelligence

CSCI 446: Artificial Intelligence CSCI 446: Artificil Intelligence Serch Instructor: Michele Vn Dyne [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t UC Berkeley. All CS188 mterils re vilble t http://i.berkeley.edu.]

More information

Duality in linear interval equations

Duality in linear interval equations Aville online t http://ijim.sriu..ir Int. J. Industril Mthemtis Vol. 1, No. 1 (2009) 41-45 Dulity in liner intervl equtions M. Movhedin, S. Slhshour, S. Hji Ghsemi, S. Khezerloo, M. Khezerloo, S. M. Khorsny

More information

V = set of vertices (vertex / node) E = set of edges (v, w) (v, w in V)

V = set of vertices (vertex / node) E = set of edges (v, w) (v, w in V) Definitions G = (V, E) V = set of verties (vertex / noe) E = set of eges (v, w) (v, w in V) (v, w) orere => irete grph (igrph) (v, w) non-orere => unirete grph igrph: w is jent to v if there is n ege from

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

Register Allocation III. Interference Graph Allocators. Coalescing. Granularity of Allocation (Renumber step in Briggs) Chaitin

Register Allocation III. Interference Graph Allocators. Coalescing. Granularity of Allocation (Renumber step in Briggs) Chaitin Register Alloation III Last time Register alloation aross funtion alls Toay Register alloation options Interferene Graph Alloators Chaitin Briggs CS553 Leture Register Alloation III 1 CS553 Leture Register

More information

Today. Search Problems. Uninformed Search Methods. Depth-First Search Breadth-First Search Uniform-Cost Search

Today. Search Problems. Uninformed Search Methods. Depth-First Search Breadth-First Search Uniform-Cost Search Uninformed Serch [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t UC Berkeley. All CS188 mterils re vilble t http://i.berkeley.edu.] Tody Serch Problems Uninformed Serch Methods

More information

Exam #1 for Computer Simulation Spring 2005

Exam #1 for Computer Simulation Spring 2005 Exm # for Computer Simultion Spring 005 >>> SOLUTION

More information

10.2 Graph Terminology and Special Types of Graphs

10.2 Graph Terminology and Special Types of Graphs 10.2 Grph Terminology n Speil Types of Grphs Definition 1. Two verties u n v in n unirete grph G re lle jent (or neighors) in G iff u n v re enpoints of n ege e of G. Suh n ege e is lle inient with the

More information

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2: Solutions. Please write your name in the upper corner of each page.

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2: Solutions. Please write your name in the upper corner of each page. 6045J/18400J: Automt, Computbility nd Complexity Mrh 30, 2005 Quiz 2: Solutions Prof Nny Lynh Vinod Vikuntnthn Plese write your nme in the upper orner of eh pge Problem Sore 1 2 3 4 5 6 Totl Q2-1 Problem

More information

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012 Dynmic Progrmming Andres Klppenecker [prtilly bsed on slides by Prof. Welch] 1 Dynmic Progrmming Optiml substructure An optiml solution to the problem contins within it optiml solutions to subproblems.

More information

From Dependencies to Evaluation Strategies

From Dependencies to Evaluation Strategies From Dependencies to Evlution Strtegies Possile strtegies: 1 let the user define the evlution order 2 utomtic strtegy sed on the dependencies: use locl dependencies to determine which ttriutes to compute

More information

Internet Routing. IP Packet Format. IP Fragmentation & Reassembly. Principles of Internet Routing. Computer Networks 9/29/2014.

Internet Routing. IP Packet Format. IP Fragmentation & Reassembly. Principles of Internet Routing. Computer Networks 9/29/2014. omputer Networks 9/29/2014 IP Pket Formt Internet Routing Ki Shen IP protool version numer heder length (words) for qulity of servie mx numer remining hops (deremented t eh router) upper lyer protool to

More information

CMSC 331 First Midterm Exam

CMSC 331 First Midterm Exam 0 00/ 1 20/ 2 05/ 3 15/ 4 15/ 5 15/ 6 20/ 7 30/ 8 30/ 150/ 331 First Midterm Exm 7 October 2003 CMC 331 First Midterm Exm Nme: mple Answers tudent ID#: You will hve seventy-five (75) minutes to complete

More information

Compilers. Topic 4. The Symbol Table and Block Structure PART II. Mick O Donnell: Alfonso Ortega:

Compilers. Topic 4. The Symbol Table and Block Structure PART II. Mick O Donnell: Alfonso Ortega: Compilers Topi 4 The ol Tle nd Blok Struture PART II Mik O Donnell: mihel.odonnell@um.es Alfonso Orteg: lfonso.orteg@um.es Topi 2: Blok Struture 2 1 ol tles with lok strutures Blok Struture Progrmming

More information

Data sharing in OpenMP

Data sharing in OpenMP Dt shring in OpenMP Polo Burgio polo.burgio@unimore.it Outline Expressing prllelism Understnding prllel threds Memory Dt mngement Dt cluses Synchroniztion Brriers, locks, criticl sections Work prtitioning

More information

Register Allocation III. Interference Graph Allocators. Computing the Interference Graph (in MiniJava compiler)

Register Allocation III. Interference Graph Allocators. Computing the Interference Graph (in MiniJava compiler) Register Alloation III Announements Reommen have interferene graph onstrution working by Monay Last leture Register alloation aross funtion alls Toay Register alloation options Interferene Graph Alloators

More information

ECE 468/573 Midterm 1 September 28, 2012

ECE 468/573 Midterm 1 September 28, 2012 ECE 468/573 Midterm 1 September 28, 2012 Nme:! Purdue emil:! Plese sign the following: I ffirm tht the nswers given on this test re mine nd mine lone. I did not receive help from ny person or mteril (other

More information

Fall 2018 Midterm 2 November 15, 2018

Fall 2018 Midterm 2 November 15, 2018 Nme: 15-112 Fll 2018 Midterm 2 November 15, 2018 Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

Introduction to Algebra

Introduction to Algebra INTRODUCTORY ALGEBRA Mini-Leture 1.1 Introdution to Alger Evlute lgeri expressions y sustitution. Trnslte phrses to lgeri expressions. 1. Evlute the expressions when =, =, nd = 6. ) d) 5 10. Trnslte eh

More information

10/9/2012. Operator is an operation performed over data at runtime. Arithmetic, Logical, Comparison, Assignment, Etc. Operators have precedence

10/9/2012. Operator is an operation performed over data at runtime. Arithmetic, Logical, Comparison, Assignment, Etc. Operators have precedence /9/22 P f Performing i Si Simple l Clcultions C l l ti with ith C#. Opertors in C# nd Opertor Precedence 2. Arithmetic Opertors 3. Logicl Opertors 4. Bitwise Opertors 5. Comprison Opertors 6. Assignment

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

Lecture 8: Graph-theoretic problems (again)

Lecture 8: Graph-theoretic problems (again) COMP36111: Advned Algorithms I Leture 8: Grph-theoreti prolems (gin) In Prtt-Hrtmnn Room KB2.38: emil: iprtt@s.mn..uk 2017 18 Reding for this leture: Sipser: Chpter 7. A grph is pir G = (V, E), where V

More information

CS 340, Fall 2016 Sep 29th Exam 1 Note: in all questions, the special symbol ɛ (epsilon) is used to indicate the empty string.

CS 340, Fall 2016 Sep 29th Exam 1 Note: in all questions, the special symbol ɛ (epsilon) is used to indicate the empty string. CS 340, Fll 2016 Sep 29th Exm 1 Nme: Note: in ll questions, the speil symol ɛ (epsilon) is used to indite the empty string. Question 1. [10 points] Speify regulr expression tht genertes the lnguge over

More information

binary trees, expression trees

binary trees, expression trees COMP 250 Lecture 21 binry trees, expression trees Oct. 27, 2017 1 Binry tree: ech node hs t most two children. 2 Mximum number of nodes in binry tree? Height h (e.g. 3) 3 Mximum number of nodes in binry

More information

LINX MATRIX SWITCHERS FIRMWARE UPDATE INSTRUCTIONS FIRMWARE VERSION

LINX MATRIX SWITCHERS FIRMWARE UPDATE INSTRUCTIONS FIRMWARE VERSION Overview LINX MATRIX SWITCHERS FIRMWARE UPDATE INSTRUCTIONS FIRMWARE VERSION 4.4.1.0 Due to the omplex nture of this updte, plese fmilirize yourself with these instrutions nd then ontt RGB Spetrum Tehnil

More information

9 Graph Cutting Procedures

9 Graph Cutting Procedures 9 Grph Cutting Procedures Lst clss we begn looking t how to embed rbitrry metrics into distributions of trees, nd proved the following theorem due to Brtl (1996): Theorem 9.1 (Brtl (1996)) Given metric

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

CPSC 213. Polymorphism. Introduction to Computer Systems. Readings for Next Two Lectures. Back to Procedure Calls

CPSC 213. Polymorphism. Introduction to Computer Systems. Readings for Next Two Lectures. Back to Procedure Calls Redings for Next Two Lectures Text CPSC 213 Switch Sttements, Understnding Pointers - 2nd ed: 3.6.7, 3.10-1st ed: 3.6.6, 3.11 Introduction to Computer Systems Unit 1f Dynmic Control Flow Polymorphism nd

More information

Agilent G3314AA BioConfirm Software

Agilent G3314AA BioConfirm Software Agilent G3314AA BioConfirm Softwre Quik Strt Guide Use this guide to instll nd get strted with the BioConfirm softwre. Wht is BioConfirm Softwre? Agilent G3314AA BioConfirm Softwre lets you onfirm the

More information

How to Design REST API? Written Date : March 23, 2015

How to Design REST API? Written Date : March 23, 2015 Visul Prdigm How Design REST API? Turil How Design REST API? Written Dte : Mrch 23, 2015 REpresenttionl Stte Trnsfer, n rchitecturl style tht cn be used in building networked pplictions, is becoming incresingly

More information

Introduction To Files In Pascal

Introduction To Files In Pascal Why other With Files? Introduction To Files In Pscl Too much informtion to input ll t once The informtion must be persistent (RAM is voltile) Etc. In this section of notes you will lern how to red from

More information

Pattern Matching. Pattern Matching. Pattern Matching. Review of Regular Expressions

Pattern Matching. Pattern Matching. Pattern Matching. Review of Regular Expressions Pttern Mthing Pttern Mthing Some of these leture slides hve een dpted from: lgorithms in C, Roert Sedgewik. Gol. Generlize string serhing to inompletely speified ptterns. pplitions. Test if string or its

More information

Error Numbers of the Standard Function Block

Error Numbers of the Standard Function Block A.2.2 Numers of the Stndrd Funtion Blok evlution The result of the logi opertion RLO is set if n error ours while the stndrd funtion lok is eing proessed. This llows you to rnh to your own error evlution

More information

UTMC APPLICATION NOTE UT1553B BCRT TO INTERFACE PSEUDO-DUAL-PORT RAM ARCHITECTURE INTRODUCTION ARBITRATION DETAILS DESIGN SELECTIONS

UTMC APPLICATION NOTE UT1553B BCRT TO INTERFACE PSEUDO-DUAL-PORT RAM ARCHITECTURE INTRODUCTION ARBITRATION DETAILS DESIGN SELECTIONS UTMC APPLICATION NOTE UT1553B BCRT TO 80186 INTERFACE INTRODUCTION The UTMC UT1553B BCRT is monolithi CMOS integrte iruit tht provies omprehensive Bus Controller n Remote Terminl funtions for MIL-STD-

More information

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation Union-Find Problem Given set {,,, n} of n elements. Initilly ech element is in different set. ƒ {}, {},, {n} An intermixed sequence of union nd find opertions is performed. A union opertion combines two

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

CSEP 573 Artificial Intelligence Winter 2016

CSEP 573 Artificial Intelligence Winter 2016 CSEP 573 Artificil Intelligence Winter 2016 Luke Zettlemoyer Problem Spces nd Serch slides from Dn Klein, Sturt Russell, Andrew Moore, Dn Weld, Pieter Abbeel, Ali Frhdi Outline Agents tht Pln Ahed Serch

More information

CS 241. Fall 2017 Midterm Review Solutions. October 24, Bits and Bytes 1. 3 MIPS Assembler 6. 4 Regular Languages 7.

CS 241. Fall 2017 Midterm Review Solutions. October 24, Bits and Bytes 1. 3 MIPS Assembler 6. 4 Regular Languages 7. CS 241 Fll 2017 Midterm Review Solutions Octoer 24, 2017 Contents 1 Bits nd Bytes 1 2 MIPS Assemly Lnguge Progrmming 2 3 MIPS Assemler 6 4 Regulr Lnguges 7 5 Scnning 9 1 Bits nd Bytes 1. Give two s complement

More information

Outline CS 412/413. Function calls. Stack layout. Tiling a call. Two translations

Outline CS 412/413. Function calls. Stack layout. Tiling a call. Two translations CS 412/413 Introduction to Compilers nd Trnsltors Cornell University Andrew Myers Outline Implementing function clls Implementing functions Optimizing wy the pointer Dynmiclly-llocted structures strings

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

Math 227 Problem Set V Solutions. f ds =

Math 227 Problem Set V Solutions. f ds = Mth 7 Problem Set V Solutions If is urve with prmetriztion r(t), t b, then we define the line integrl f ds b f ( r(t) ) dr dt (t) dt. Evlute the line integrl f(x,y,z)ds for () f(x,y,z) xosz, the urve with

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence Winter 2016 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl

More information

COSC 6374 Parallel Computation. Dense Matrix Operations

COSC 6374 Parallel Computation. Dense Matrix Operations COSC 6374 Prllel Computtion Dense Mtrix Opertions Edgr Griel Fll Edgr Griel Prllel Computtion Edgr Griel erminology Dense Mtrix: ll elements of the mtrix ontin relevnt vlues ypilly stored s 2-D rry, (e.g.

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5 CS321 Lnguges nd Compiler Design I Winter 2012 Lecture 5 1 FINITE AUTOMATA A non-deterministic finite utomton (NFA) consists of: An input lphet Σ, e.g. Σ =,. A set of sttes S, e.g. S = {1, 3, 5, 7, 11,

More information

9.1 apply the distance and midpoint formulas

9.1 apply the distance and midpoint formulas 9.1 pply the distnce nd midpoint formuls DISTANCE FORMULA MIDPOINT FORMULA To find the midpoint between two points x, y nd x y 1 1,, we Exmple 1: Find the distnce between the two points. Then, find the

More information

COMMON HALF YEARLY EXAMINATION DECEMBER 2018

COMMON HALF YEARLY EXAMINATION DECEMBER 2018 li.net i.net li.net i.net li.net i.net li.net i.net li.net i.net li.net i.net li.net i.net li.net i.net li.net i.net.pds.pds COMMON HALF YEARLY EXAMINATION DECEMBER 2018 STD : XI SUBJECT: COMPUTER SCIENCE

More information

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts. Introduction to Matroids and Applications. Srikumar Ramalingam

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts. Introduction to Matroids and Applications. Srikumar Ramalingam Cmrige, Msshusetts Introution to Mtrois n Applitions Srikumr Rmlingm MERL mm//yy Liner Alger (,0,0) (0,,0) Liner inepenene in vetors: v, v2,..., For ll non-trivil we hve s v s v n s, s2,..., s n 2v2...

More information

Digital Design. Chapter 1: Introduction. Digital Design. Copyright 2006 Frank Vahid

Digital Design. Chapter 1: Introduction. Digital Design. Copyright 2006 Frank Vahid Chpter : Introduction Copyright 6 Why Study?. Look under the hood of computers Solid understnding --> confidence, insight, even better progrmmer when wre of hrdwre resource issues Electronic devices becoming

More information

LING/C SC/PSYC 438/538. Lecture 21 Sandiway Fong

LING/C SC/PSYC 438/538. Lecture 21 Sandiway Fong LING/C SC/PSYC 438/538 Lecture 21 Sndiwy Fong Tody's Topics Homework 8 Review Optionl Homework 9 (mke up on Homework 7) Homework 8 Review Question1: write Prolog regulr grmmr for the following lnguge:

More information

CSc 453 Compilers and Systems Software. 6 : Top-Down Parsing I

CSc 453 Compilers and Systems Software. 6 : Top-Down Parsing I C 45 Compilers n ystems oftwre 6 : op-down Prsing I Christin Collberg Deprtment of Computer iene University of rizon ollberg@gmil.om Copyright 2009 Christin Collberg eptember 14, 2009 1 Overview 2 Compiler

More information

Sample Midterm Solutions COMS W4115 Programming Languages and Translators Monday, October 12, 2009

Sample Midterm Solutions COMS W4115 Programming Languages and Translators Monday, October 12, 2009 Deprtment of Computer cience Columbi University mple Midterm olutions COM W4115 Progrmming Lnguges nd Trnsltors Mondy, October 12, 2009 Closed book, no ids. ch question is worth 20 points. Question 5(c)

More information

Honors Thesis: Investigating the Algebraic Properties of Cayley Digraphs

Honors Thesis: Investigating the Algebraic Properties of Cayley Digraphs Honors Thesis: Investigting the Algebri Properties of Cyley Digrphs Alexis Byers, Wittenberg University Mthemtis Deprtment April 30, 2014 This pper utilizes Grph Theory to gin insight into the lgebri struture

More information

ECEN 468 Advanced Logic Design Lecture 36: RTL Optimization

ECEN 468 Advanced Logic Design Lecture 36: RTL Optimization ECEN 468 Advnced Logic Design Lecture 36: RTL Optimiztion ECEN 468 Lecture 36 RTL Design Optimiztions nd Trdeoffs 6.5 While creting dtpth during RTL design, there re severl optimiztions nd trdeoffs, involving

More information

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example:

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example: cisc1110 fll 2010 lecture VI.2 cll y vlue function prmeters more on functions more on cll y vlue nd cll y reference pssing strings to functions returning strings from functions vrile scope glol vriles

More information

Very sad code. Abstraction, List, & Cons. CS61A Lecture 7. Happier Code. Goals. Constructors. Constructors 6/29/2011. Selectors.

Very sad code. Abstraction, List, & Cons. CS61A Lecture 7. Happier Code. Goals. Constructors. Constructors 6/29/2011. Selectors. 6/9/ Abstrction, List, & Cons CS6A Lecture 7-6-9 Colleen Lewis Very sd code (define (totl hnd) (if (empty? hnd) (+ (butlst (lst hnd)) (totl (butlst hnd))))) STk> (totl (h c d)) 7 STk> (totl (h ks d)) ;;;EEEK!

More information

Agilent Mass Hunter Software

Agilent Mass Hunter Software Agilent Mss Hunter Softwre Quick Strt Guide Use this guide to get strted with the Mss Hunter softwre. Wht is Mss Hunter Softwre? Mss Hunter is n integrl prt of Agilent TOF softwre (version A.02.00). Mss

More information

pdfapilot Server 2 Manual

pdfapilot Server 2 Manual pdfpilot Server 2 Mnul 2011 by clls softwre gmbh Schönhuser Allee 6/7 D 10119 Berlin Germny info@cllssoftwre.com www.cllssoftwre.com Mnul clls pdfpilot Server 2 Pge 2 clls pdfpilot Server 2 Mnul Lst modified:

More information

Constrained Optimization. February 29

Constrained Optimization. February 29 Constrined Optimiztion Februry 9 Generl Problem min f( ) ( NLP) s.. t g ( ) i E i g ( ) i I i Modeling nd Constrints Adding constrints let s us model fr more richer set of problems. For our purpose we

More information

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation Representtion of Numbers Number Representtion Computer represent ll numbers, other thn integers nd some frctions with imprecision. Numbers re stored in some pproximtion which cn be represented by fixed

More information

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure Lecture Overview Knowledge-bsed systems in Bioinformtics, MB6 Scheme lecture Procedurl bstrction Higher order procedures Procedures s rguments Procedures s returned vlues Locl vribles Dt bstrction Compound

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

Complete Coverage Path Planning of Mobile Robot Based on Dynamic Programming Algorithm Peng Zhou, Zhong-min Wang, Zhen-nan Li, Yang Li

Complete Coverage Path Planning of Mobile Robot Based on Dynamic Programming Algorithm Peng Zhou, Zhong-min Wang, Zhen-nan Li, Yang Li 2nd Interntionl Conference on Electronic & Mechnicl Engineering nd Informtion Technology (EMEIT-212) Complete Coverge Pth Plnning of Mobile Robot Bsed on Dynmic Progrmming Algorithm Peng Zhou, Zhong-min

More information

Spring 2018 Midterm Exam 1 March 1, You may not use any books, notes, or electronic devices during this exam.

Spring 2018 Midterm Exam 1 March 1, You may not use any books, notes, or electronic devices during this exam. 15-112 Spring 2018 Midterm Exm 1 Mrch 1, 2018 Nme: Andrew ID: Recittion Section: You my not use ny books, notes, or electronic devices during this exm. You my not sk questions bout the exm except for lnguge

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007 CS 88: Artificil Intelligence Fll 2007 Lecture : A* Serch 9/4/2007 Dn Klein UC Berkeley Mny slides over the course dpted from either Sturt Russell or Andrew Moore Announcements Sections: New section 06:

More information

MIPS I/O and Interrupt

MIPS I/O and Interrupt MIPS I/O nd Interrupt Review Floting point instructions re crried out on seprte chip clled coprocessor 1 You hve to move dt to/from coprocessor 1 to do most common opertions such s printing, clling functions,

More information

Stack. A list whose end points are pointed by top and bottom

Stack. A list whose end points are pointed by top and bottom 4. Stck Stck A list whose end points re pointed by top nd bottom Insertion nd deletion tke plce t the top (cf: Wht is the difference between Stck nd Arry?) Bottom is constnt, but top grows nd shrinks!

More information

GENG2140 Modelling and Computer Analysis for Engineers

GENG2140 Modelling and Computer Analysis for Engineers GENG4 Moelling n Computer Anlysis or Engineers Letures 9 & : Gussin qurture Crete y Grn Romn Joles, PhD Shool o Mehnil Engineering, UWA GENG4 Content Deinition o Gussin qurture Computtion o weights n points

More information

Data Flow Analysis. Suman Jana. Adopted From U Penn CIS 570: Modern Programming Language Implementa=on (Autumn 2006)

Data Flow Analysis. Suman Jana. Adopted From U Penn CIS 570: Modern Programming Language Implementa=on (Autumn 2006) Data Flow Analysis Suman Jana Adopted From U Penn CIS 570: Modern Programming Language Implementa=on (Autumn 2006) Data flow analysis Derives informa=on about the dynamic behavior of a program by only

More information

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chpter 9 Greey Tehnique Copyright 2007 Person Aison-Wesley. All rights reserve. Greey Tehnique Construts solution to n optimiztion prolem piee y piee through sequene of hoies tht re: fesile lolly optiml

More information

12/9/14. CS151 Fall 20124Lecture (almost there) 12/6. Graphs. Seven Bridges of Königsberg. Leonard Euler

12/9/14. CS151 Fall 20124Lecture (almost there) 12/6. Graphs. Seven Bridges of Königsberg. Leonard Euler CS5 Fll 04Leture (lmost there) /6 Seven Bridges of Königserg Grphs Prof. Tny Berger-Wolf Leonrd Euler 707-783 Is it possile to wlk with route tht rosses eh ridge e Seven Bridges of Königserg Forget unimportnt

More information

CSCI1950 Z Computa4onal Methods for Biology Lecture 2. Ben Raphael January 26, hhp://cs.brown.edu/courses/csci1950 z/ Outline

CSCI1950 Z Computa4onal Methods for Biology Lecture 2. Ben Raphael January 26, hhp://cs.brown.edu/courses/csci1950 z/ Outline CSCI1950 Z Comput4onl Methods for Biology Lecture 2 Ben Rphel Jnury 26, 2009 hhp://cs.brown.edu/courses/csci1950 z/ Outline Review of trees. Coun4ng fetures. Chrcter bsed phylogeny Mximum prsimony Mximum

More information

Compression Outline :Algorithms in the Real World. Lempel-Ziv Algorithms. LZ77: Sliding Window Lempel-Ziv

Compression Outline :Algorithms in the Real World. Lempel-Ziv Algorithms. LZ77: Sliding Window Lempel-Ziv Compression Outline 15-853:Algorithms in the Rel World Dt Compression III Introduction: Lossy vs. Lossless, Benchmrks, Informtion Theory: Entropy, etc. Proility Coding: Huffmn + Arithmetic Coding Applictions

More information