Iterated Integrals. f (x; y) dy dx. p(x) To evaluate a type I integral, we rst evaluate the inner integral Z q(x) f (x; y) dy.

Size: px
Start display at page:

Download "Iterated Integrals. f (x; y) dy dx. p(x) To evaluate a type I integral, we rst evaluate the inner integral Z q(x) f (x; y) dy."

Transcription

1 Iterted Integrls Type I Integrls In this section, we begin the study of integrls over regions in the plne. To do so, however, requires tht we exmine the importnt ide of iterted integrls, in which inde nite integrls re the integrnd of de nite integrl. To begin with, we de ne type I iterted integrl to be n integrl of the form p(x) f (x; y) dy dx To evlute type I integrl, we rst evlute the inner integrl Z q(x) p(x) f (x; y) dy treting x s constnt. We then evlute the result with respect to x: Z " b Z # q(x) f (x; y) dy dx f (x; y) dy dx p(x) p(x) EXAMPLE Evlute the type I integrl Z Z x xy + dydx Solution: To begin with, we integrte with respect to y: Z x xy + dy x y3 x 3 + y x x x3 3 + x As result, we hve Z Z x 3 x4 + x xy + Z dydx 3 x4 + x dx x x + 7

2 Often we evlute the innermost integrl inside the integrnd of the outer integrl rther thn writing the integrtions seprtely. EXAMPLE Evlute the type I integrl Z Z x x ydydx Solution: We rst evlute the inner integrl: Z Z x Z Z x x ydydx x ydy dx Z x y x dx Z x x Z 8 5 x 4 x x dx dx Check your Reding: Why is 5 the denomintor of the result in exmple? Type II Integrls Similrly, we de ne type II integrl to be n iterted integrl of the form Z d Z v(y) c u(y) f (x; y) dxdy It is evluted by considering y to be constnt in the innermost integrl, nd then integrting the result with respect to y. EXAMPLE 3 Evlute the type II integrl Z Z y y (x + y) dxdy

3 Solution: We tret y s constnt in the innermost integrl: Z Z y Z Z y (x y) dxdy (x y) dx dy y y Z hx xy i yy dy Z Z h y 4 y y y 3 dy y i y y dy EXAMPLE 4 Evlute the type II integrl Z Z y sin (y) dxdy Solution: Since we tret y s constnt in the innermost integrl, the function sin (y) cn be considered constnt nd Z Z y Z Z y sin (y) dxdy sin (y) dx dy Z [y sin (y)] dy We now use integrtion by prts with u y nd dv sin (y) dy to obtin u y dv sin (y) dy du dy v cos (y) As result, we hve Z Z [y sin (y)] dy y cos (y)j + cos (y) dy Z Z y sin (y) dxdy cos () Check your Reding: Why cn we write R y sin (y) dx s sin (y) R y dx? Volumes of Solids over Type I Regions 3

4 Let g; h be continuous on [; b] nd supppose tht g (x) h (x) for x in [; b]. If R is region in the xy-plne which is bounded by the curves x ; x b; y g (x), nd y h (x), then R is sid to be type I region. Let s nd the volume of the solid between the grph of f (x; y) nd the xy-plne over type I region R when f (x; y) : To do so, let s notice tht if the solid is sliced with plne prllel to the xz-plne, then its re is A (x) Z h(x) g(x) f (x; y) dy 4

5 It follows tht if fx j ; t j g, j ; : : : ; n, is tgged prtition of [; b] ; then the volume of the solid under the grph of f (x; y) nd over the region R is V nx A (t j ) x j j 5

6 A limit of such simple function pproximtions yields the volumes by slicing formul V Z b A (x) dx 6

7 which is illustrted below: After combining this with the de nition of A (x) ; the result is the iterted integrl Z " b Z # h(x) V f (x; y) dy dx () g(x) EXAMPLE 5 Find the volume of the solid under the grph of f (x; y) x y over the type I region x y x y x Solution: According to (), the volume of the solid is Z Z x V x y dy dx 7

8 We evlute the resulting type I iterted integrl by rst evluting the innermost integrl:d V 3 Z Z y x x y 3 x y 3 dx 4 3 x3 dx Check your Reding: Why is x y non-negtive over the region bounded by x ; x ; y ; y x? Explin. Volumes of Solids over Type II Regions 8

9 Similrly, if p (y) q (y) for y in [c; d], then the region R in the xy-plne bounded by the curves y c; y d; x p (y), nd x q (y), is sid to be type II region. Correspondingly, if f (x; y) for ll (x; y) in type II region R; then the volume of the solid under z f (x; y) nd over the region R is V Z d Z q(y) c p(y) f (x; y) dxdy () EXAMPLE 6 Find the volume of the solid under the grph of f (x; y) x + y over the type II region y x y y x y Solution: To do so, we use () to see tht V Z Z y y x + y dxdy Evluting the innermost integrl leds to Z " # x 3 y V 3 + xy dy y Z 4 3 y3 3 y6 y 4 dy 3 35 Finlly, let us note tht unbounded regions cn led to convergent improper integrls. Indeed, unbounded solids cn hve nite volume. 9

10 EXAMPLE 7 Find the volume of the solid under the grph of f (x; y) e x y over the rst qudrnt. Solution: In the rst qudrnt, x is in (; ) nd y is in (; ) : Thus, () implies tht V Z Z e x y dydx The inner integrl is evluted s n improper integrl V Z Z R lim e x R! Z Z y dydx lim e x e x R dx R! e x dx The resulting integrl is lso evluted s n improper integrl, leding to Z S V lim e x dx lim S! S! e e R Exercises

11 Identify ech integrl s either type I or type II nd evlute: R R R R R 4 R sec(x) tn(x) R R R exp(x) R R (x + y) dydx. R R 3 x y dydx R 3 xy dxdy 4. R R 3 R dydx x x + y R R sin(x) R dydx 6. dydx cos (x) dydx 8. R R x sin (y) dydx R R sin(x) dydx. ydydx R x sin (x) dydx. R R y ex+y dxdy R R y xdydx 4. sin y dxdy R y ln y + R dxdy 6. x ey dxdy R 3 7. R R x x x +y dydx 8. R R x x +y dydx Sketch the region R nd determine its type. Then nd the volume of the solid under z f (x; y) nd over the given region. 9. f (x; y) x + y. f (x; y) 3 R: y ; y R: x ; x x ; x y ; y 4. f (x; y) 3x + y. f (x; y) 6x + y R: x ; x R: x ; x 3 y ; y x y ; y e x 3. f (x; y) xy 4. f (x; y) y R: y ; y R: y ; y x y; x y x ; x sin (y) 5. f (x; y) e x+y 6. f (x; y) 9 x y R: y ; y R: x ; x 3 x ; x y y x; y x The following regions re unbounded. Sketch the region R nd determine its type. Then nd the volume of the solid under z f (x; y) nd over the given region f (x; y) x y 8. f (x; y) x +y R: x in (; ) ; y in (; ) R: x ; x 9. f (x; y) x e y 3. f (x; y) R: x in (; ) R: x in (; ) y ; y x y x e x ; y x + e x 3. A regulr cone with height h nd bse with rdius R is positioned so tht its xis is horizontl. Find the re A (x) of verticl cross-section of

12 the cone perpendiculr to the xis s function of x in [; h] : Wht is the volume of regulr cone with height h nd bse with rdius R? 3. A hemisphere with rdius R is positioned so tht its xis is horizontl. Find the re A (x) of verticl cross-section of the cone perpendiculr to the xis s function of x in [; R] : Wht is the volume of hemisphere with rdius R? 33. A regulr pyrmid hs height h nd squre bse with ech side length s: It is positioned s shown in the gure below:

13 Find the re A (x) of cross-section t x. Wht is the volume of the pyrmid? 34. The Gret Pyrmid is 48 tll nd hs squre bse which is 756 wide on ech side. Wht is the volume of the Gret Pyrmid? (hint: see problem 33). 35. Explin why the re of type I region cn be written in the form A Z b Z h(x) g(x) dydx 36. Explin why the re of type II region cn be written in the form A Z d Z q(y) c p(y) dxdy 37. Explin why if ; b; c; nd d re ll constnt, then Z b Z d c f (x; y) dydx Z d Z b c f (x; y) dxdy when both iterted integrls exist. 38. Show tht if ; b; c; nd d re constnt, then Z b Z " d Z # " b Z # d f (x) g (y) dydx f (x) dx g (y) dy c 39. Use properties of the integrl to show tht p(x) [f (x; y) + g (x; y)] dy dx p(x) c f (x; y) dy dx+ p(x) g (x; y) dy dx 3

14 4. Use properties of the integrl to show tht [f (x; y) + g (x; y)] dy dx f (x; y) dy dx+ p(x) p(x) p(x) g (x; y) dy dx 4. Show tht if f is di erentible on (; b), then for ll c in (; b) we hve f (c) (b ) + Z b f (x) dx Z b Z x c f (u) dudx 4. Show tht if f is di erentible nd if f () ; then Z b f (x) dx Z b Z f (ux) dudx 4

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area:

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area: Bck to Are: Are & Volume Chpter 6. & 6. Septemer 5, 6 We cn clculte the re etween the x-xis nd continuous function f on the intervl [,] using the definite integrl:! f x = lim$ f x * i )%x n i= Where fx

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a Mth 176 Clculus Sec. 6.: Volume I. Volume By Slicing A. Introduction We will e trying to find the volume of solid shped using the sum of cross section res times width. We will e driving towrd developing

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes by disks: volume prt ii 6 6 Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem 6) nd the ccumultion process is to determine so-clled volumes

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION Chpter 3 DACS 1 Lok 004/05 CHAPTER 5 APPLICATIONS OF INTEGRATION 5.1 Geometricl Interprettion-Definite Integrl (pge 36) 5. Are of Region (pge 369) 5..1 Are of Region Under Grph (pge 369) Figure 5.7 shows

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

Applications of the Definite Integral ( Areas and Volumes)

Applications of the Definite Integral ( Areas and Volumes) Mth1242 Project II Nme: Applictions of the Definite Integrl ( Ares nd Volumes) In this project, we explore some pplictions of the definite integrl. We use integrls to find the re etween the grphs of two

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

9.1 apply the distance and midpoint formulas

9.1 apply the distance and midpoint formulas 9.1 pply the distnce nd midpoint formuls DISTANCE FORMULA MIDPOINT FORMULA To find the midpoint between two points x, y nd x y 1 1,, we Exmple 1: Find the distnce between the two points. Then, find the

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

Math 35 Review Sheet, Spring 2014

Math 35 Review Sheet, Spring 2014 Mth 35 Review heet, pring 2014 For the finl exm, do ny 12 of the 15 questions in 3 hours. They re worth 8 points ech, mking 96, with 4 more points for netness! Put ll your work nd nswers in the provided

More information

Graphing Conic Sections

Graphing Conic Sections Grphing Conic Sections Definition of Circle Set of ll points in plne tht re n equl distnce, clled the rdius, from fixed point in tht plne, clled the center. Grphing Circle (x h) 2 + (y k) 2 = r 2 where

More information

8.2 Areas in the Plane

8.2 Areas in the Plane 39 Chpter 8 Applictions of Definite Integrls 8. Ares in the Plne Wht ou will lern out... Are Between Curves Are Enclosed Intersecting Curves Boundries with Chnging Functions Integrting with Respect to

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

Math 17 - Review. Review for Chapter 12

Math 17 - Review. Review for Chapter 12 Mth 17 - eview Ying Wu eview for hpter 12 1. Given prmetric plnr curve x = f(t), y = g(t), where t b, how to eliminte the prmeter? (Use substitutions, or use trigonometry identities, etc). How to prmeterize

More information

Math Line Integrals I

Math Line Integrals I Mth 213 - Line Integrls I Peter A. Perry University of Kentucky November 16, 2018 Homework Re-Red Section 16.2 for Mondy Work on Stewrt problems for 16.2: 1-21 (odd), 33-41 (odd), 49, 50 Begin Webwork

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

Pythagoras theorem and trigonometry (2)

Pythagoras theorem and trigonometry (2) HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

More information

Matlab s Numerical Integration Commands

Matlab s Numerical Integration Commands Mtlb s Numericl Integrtion Commnds The relevnt commnds we consider re qud nd dblqud, triplequd. See the Mtlb help files for other integrtion commnds. By the wy, qud refers to dptive qudrture. To integrte:

More information

Conic Sections Parabola Objective: Define conic section, parabola, draw a parabola, standard equations and their graphs

Conic Sections Parabola Objective: Define conic section, parabola, draw a parabola, standard equations and their graphs Conic Sections Prol Ojective: Define conic section, prol, drw prol, stndrd equtions nd their grphs The curves creted y intersecting doule npped right circulr cone with plne re clled conic sections. If

More information

Lecture 7: Integration Techniques

Lecture 7: Integration Techniques Lecture 7: Integrtion Techniques Antiderivtives nd Indefinite Integrls. In differentil clculus, we were interested in the derivtive of given rel-vlued function, whether it ws lgeric, eponentil or logrithmic.

More information

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts Clss-XI Mthemtics Conic Sections Chpter-11 Chpter Notes Key Concepts 1. Let be fixed verticl line nd m be nother line intersecting it t fixed point V nd inclined to it t nd ngle On rotting the line m round

More information

Yoplait with Areas and Volumes

Yoplait with Areas and Volumes Yoplit with Ares nd Volumes Yoplit yogurt comes in two differently shped continers. One is truncted cone nd the other is n ellipticl cylinder (see photos below). In this exercise, you will determine the

More information

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals Double Integrls MATH 375 Numericl Anlysis J. Robert Buchnn Deprtment of Mthemtics Fll 2013 J. Robert Buchnn Double Integrls Objectives Now tht we hve discussed severl methods for pproximting definite integrls

More information

MA 124 (Calculus II) Lecture 2: January 24, 2019 Section A3. Professor Jennifer Balakrishnan,

MA 124 (Calculus II) Lecture 2: January 24, 2019 Section A3. Professor Jennifer Balakrishnan, Wht is on tody Professor Jennifer Blkrishnn, jbl@bu.edu 1 Velocity nd net chnge 1 2 Regions between curves 3 1 Velocity nd net chnge Briggs-Cochrn-Gillett 6.1 pp. 398-46 Suppose you re driving long stright

More information

Integration. September 28, 2017

Integration. September 28, 2017 Integrtion September 8, 7 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my

More information

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola.

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola. Review of conic sections Conic sections re grphs of the form REVIEW OF CONIC SECTIONS prols ellipses hperols P(, ) F(, p) O p =_p REVIEW OF CONIC SECTIONS In this section we give geometric definitions

More information

Integration. October 25, 2016

Integration. October 25, 2016 Integrtion October 5, 6 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my hve

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

Supplemental Notes: Line Integrals

Supplemental Notes: Line Integrals Nottion: Supplementl Notes: Line Integrls Let be n oriented curve prmeterized by r(t) = x(t), y(t), z(t) where t b. denotes the curve with its orienttion reversed. 1 + 2 mens tke curve 1 nd curve 2 nd

More information

Naming 3D objects. 1 Name the 3D objects labelled in these models. Use the word bank to help you.

Naming 3D objects. 1 Name the 3D objects labelled in these models. Use the word bank to help you. Nming 3D ojects 1 Nme the 3D ojects lelled in these models. Use the word nk to help you. Word nk cue prism sphere cone cylinder pyrmid D A C F A B C D cone cylinder cue cylinder E B E prism F cue G G pyrmid

More information

)

) Chpter Five /SOLUTIONS Since the speed ws between nd mph during this five minute period, the fuel efficienc during this period is between 5 mpg nd 8 mpg. So the fuel used during this period is between

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E 4-1 NAME DATE PERIOD Pges 142 147 Prllel Lines nd Plnes When plnes do not intersect, they re sid to e prllel. Also, when lines in the sme plne do not intersect, they re prllel. But when lines re not in

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Math 4 Review for Quarter 2 Cumulative Test

Math 4 Review for Quarter 2 Cumulative Test Mth 4 Review for Qurter 2 Cumultive Test Nme: I. Right Tringle Trigonometry (3.1-3.3) Key Fcts Pythgoren Theorem - In right tringle, 2 + b 2 = c 2 where c is the hypotenuse s shown below. c b Trigonometric

More information

Algebra II Notes Unit Ten: Conic Sections

Algebra II Notes Unit Ten: Conic Sections Sllus Ojective: 0. The student will sketch the grph of conic section with centers either t or not t the origin. (PARABOLAS) Review: The Midpoint Formul The midpoint M of the line segment connecting the

More information

1 The Definite Integral

1 The Definite Integral The Definite Integrl Definition. Let f be function defined on the intervl [, b] where

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

x )Scales are the reciprocal of each other. e

x )Scales are the reciprocal of each other. e 9. Reciprocls A Complete Slide Rule Mnul - eville W Young Chpter 9 Further Applictions of the LL scles The LL (e x ) scles nd the corresponding LL 0 (e -x or Exmple : 0.244 4.. Set the hir line over 4.

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Objective: Students will understand what it means to describe, graph and write the equation of a parabola. Parabolas

Objective: Students will understand what it means to describe, graph and write the equation of a parabola. Parabolas Pge 1 of 8 Ojective: Students will understnd wht it mens to descrie, grph nd write the eqution of prol. Prols Prol: collection of ll points P in plne tht re the sme distnce from fixed point, the focus

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Integrl When we compute the derivtive of complicted function, like + sin, we usull use differentition rules, like d [f()+g()] d f()+ d g(), to reduce the computtion d d d to

More information

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral Lesson - FTC PART 2 Review! We hve seen definition/formul for definite integrl s n b A() = lim f ( i )Δ = f ()d = F() = F(b) F() n i=! where F () = f() (or F() is the ntiderivtive of f() b! And hve seen

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

This notebook investigates the properties of non-integer differential operators using Fourier analysis.

This notebook investigates the properties of non-integer differential operators using Fourier analysis. Frctionl erivtives.nb Frctionl erivtives by Fourier ecomposition by Eric Thrne 4/9/6 This notebook investigtes the properties of non-integer differentil opertors using Fourier nlysis. In[]:=

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

It is recommended to change the limits of integration while doing a substitution.

It is recommended to change the limits of integration while doing a substitution. MAT 21 eptember 7, 216 Review Indrjit Jn. Generl Tips It is recommended to chnge the limits of integrtion while doing substitution. First write the min formul (eg. centroid, moment of inerti, mss, work

More information

Chapter Spline Method of Interpolation More Examples Electrical Engineering

Chapter Spline Method of Interpolation More Examples Electrical Engineering Chpter. Spline Method of Interpoltion More Exmples Electricl Engineering Exmple Thermistors re used to mesure the temperture of bodies. Thermistors re bsed on mterils chnge in resistnce with temperture.

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

Simplifying Algebra. Simplifying Algebra. Curriculum Ready.

Simplifying Algebra. Simplifying Algebra. Curriculum Ready. Simplifying Alger Curriculum Redy www.mthletics.com This ooklet is ll out turning complex prolems into something simple. You will e le to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give this

More information

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure Lecture Overview Knowledge-bsed systems in Bioinformtics, MB6 Scheme lecture Procedurl bstrction Higher order procedures Procedures s rguments Procedures s returned vlues Locl vribles Dt bstrction Compound

More information

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals MATH 234 Excercises on Integration in everal Variables I. Double Integrals Problem 1. D = {(x, y) : y x 1, 0 y 1}. Compute D ex3 da. Problem 2. Find the volume of the solid bounded above by the plane 3x

More information

SIMPLIFYING ALGEBRA PASSPORT.

SIMPLIFYING ALGEBRA PASSPORT. SIMPLIFYING ALGEBRA PASSPORT www.mthletics.com.u This booklet is ll bout turning complex problems into something simple. You will be ble to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give

More information

Solutions to Math 41 Final Exam December 12, 2011

Solutions to Math 41 Final Exam December 12, 2011 Solutions to Mth Finl Em December,. ( points) Find ech of the following its, with justifiction. If there is n infinite it, then eplin whether it is or. ( ) / ln() () (5 points) First we compute the it:

More information

AP * Calculus Review. Area and Volume

AP * Calculus Review. Area and Volume AP * Calculus Review Area and Volume Student Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of,

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x Bsic Integrtion This chpter contins the fundmentl theory of integrtion. We begin with some problems to motivte the min ide: pproximtion by sum of slices. The chpter confronts this squrely, nd Chpter 3

More information

6.3 Definite Integrals and Antiderivatives

6.3 Definite Integrals and Antiderivatives Section 6. Definite Integrls nd Antiderivtives 8 6. Definite Integrls nd Antiderivtives Wht ou will lern out... Properties of Definite Integrls Averge Vlue of Function Men Vlue Theorem for Definite Integrls

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

1 Drawing 3D Objects in Adobe Illustrator

1 Drawing 3D Objects in Adobe Illustrator Drwing 3D Objects in Adobe Illustrtor 1 1 Drwing 3D Objects in Adobe Illustrtor This Tutoril will show you how to drw simple objects with three-dimensionl ppernce. At first we will drw rrows indicting

More information

Study Sheet ( )

Study Sheet ( ) Key Terms prol circle Ellipse hyperol directrix focus focl length xis of symmetry vertex Study Sheet (11.1-11.4) Conic Section A conic section is section of cone. The ellipse, prol, nd hyperol, long with

More information

MENSURATION-IV

MENSURATION-IV MENSURATION-IV Theory: A solid is figure bounded by one or more surfce. Hence solid hs length, bredth nd height. The plne surfces tht bind solid re clled its fces. The fundmentl difference between plne

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

Summer Review Packet For Algebra 2 CP/Honors

Summer Review Packet For Algebra 2 CP/Honors Summer Review Pcket For Alger CP/Honors Nme Current Course Mth Techer Introduction Alger uilds on topics studied from oth Alger nd Geometr. Certin topics re sufficientl involved tht the cll for some review

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments...

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments... PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Introduction...1 3. Timetable... 3 4. Assignments...5 i PMTH212, Multivariable Calculus Assignment Summary 2009

More information

Double integrals over a General (Bounded) Region

Double integrals over a General (Bounded) Region ouble integrals over a General (Bounded) Region Recall: Suppose z f (x, y) iscontinuousontherectangularregionr [a, b] [c, d]. We define the double integral of f on R by R f (x, y) da lim max x i, y j!0

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

6.4: SHELL METHOD 6.5: WORK AND ENERGY NAME: SOLUTIONS Math 1910 September 26, 2017

6.4: SHELL METHOD 6.5: WORK AND ENERGY NAME: SOLUTIONS Math 1910 September 26, 2017 6.4: SHELL METHOD 6.5: WORK AND ENERGY NAME: SOLUTIONS Mt 9 September 26, 27 ONE-PAGE REVIEW Sell Metod: Wen you rotte te region between two grps round n xis, te segments prllel to te xis generte cylindricl

More information

arxiv: v2 [math.ho] 4 Jun 2012

arxiv: v2 [math.ho] 4 Jun 2012 Volumes of olids of Revolution. Unified pproch Jorge Mrtín-Morles nd ntonio M. Oller-Mrcén jorge@unizr.es, oller@unizr.es rxiv:5.v [mth.ho] Jun Centro Universitrio de l Defens - IUM. cdemi Generl Militr,

More information

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t.

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t. MATH 127 ALULU III Name: 1. Let r(t) = e t i + e t sin t j + e t cos t k (a) Find r (t) Final Exam Review (b) Reparameterize r(t) with respect to arc length measured for the point (1,, 1) in the direction

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MATH 116 REVIEW PROBLEMS for the FINAL EXAM MATH 116 REVIEW PROBLEMS for the FINAL EXAM The following questions are taken from old final exams of various calculus courses taught in Bilkent University 1. onsider the line integral (2xy 2 z + y)dx

More information

Integration. Example Find x 3 dx.

Integration. Example Find x 3 dx. Integration A function F is called an antiderivative of the function f if F (x)=f(x). The set of all antiderivatives of f is called the indefinite integral of f with respect to x and is denoted by f(x)dx.

More information

Date: 9.1. Conics: Parabolas

Date: 9.1. Conics: Parabolas Dte: 9. Conics: Prols Preclculus H. Notes: Unit 9 Conics Conic Sections: curves tht re formed y the intersection of plne nd doulenpped cone Syllus Ojectives:. The student will grph reltions or functions,

More information

Area and Volume. where x right and x left are written in terms of y.

Area and Volume. where x right and x left are written in terms of y. Area and Volume Area between two curves Sketch the region and determine the points of intersection. Draw a small strip either as dx or dy slicing. Use the following templates to set up a definite integral:

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

The Divergence Theorem

The Divergence Theorem The Divergence Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Summer 2011 Green s Theorem Revisited Green s Theorem: M(x, y) dx + N(x, y) dy = C R ( N x M ) da y y x Green

More information

ONU Calculus I Math 1631

ONU Calculus I Math 1631 ONU Clculus I Mth 1631 2013-2014 Syllus Mrs. Trudy Thompson tthompson@lcchs.edu Text: Clculus 8 th Edition, Anton, Bivens nd Dvis Prerequisites: C or etter in Pre-Clc nd techer s permission This course

More information

Thirty-fourth Annual Columbus State Invitational Mathematics Tournament. Instructions

Thirty-fourth Annual Columbus State Invitational Mathematics Tournament. Instructions Thirty-fourth Annul Columbus Stte Invittionl Mthemtics Tournment Sponsored by Columbus Stte University Deprtment of Mthemtics Februry, 008 ************************* The Mthemtics Deprtment t Columbus Stte

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

10.7 Triple Integrals. The Divergence Theorem of Gauss

10.7 Triple Integrals. The Divergence Theorem of Gauss 10.7 riple Integrals. he Divergence heorem of Gauss We begin by recalling the definition of the triple integral f (x, y, z) dv, (1) where is a bounded, solid region in R 3 (for example the solid ball {(x,

More information

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1)

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1) POLAR EQUATIONS AND GRAPHS GEOMETRY INU4/54 (MATHS ) Dr Adrin Jnnett MIMA CMth FRAS Polr equtions nd grphs / 6 Adrin Jnnett Objectives The purpose of this presenttion is to cover the following topics:

More information