Lecture 7: Integration Techniques

Size: px
Start display at page:

Download "Lecture 7: Integration Techniques"

Transcription

1 Lecture 7: Integrtion Techniques Antiderivtives nd Indefinite Integrls. In differentil clculus, we were interested in the derivtive of given rel-vlued function, whether it ws lgeric, eponentil or logrithmic. Here we re concerned with the inverse of the opertion of differentition. Tht is, the opertion of serching for functions where derivtives re given function.. Consider ny ritrry rel-vlued function f: X R defined on suset of the rel line, i.e. X R. By the ntiderivtive (primitive) of f; we men ny differentile function F: X R whose derivtive is the given function f. Hence, df d = F () = f().. Let c e ny rel numer c R, (which is constnt). Now since the derivtive of c with respect to or dc/d =, we hve: Theorem. If function F: X R is n ntiderivtive of f: X R, so is the function F + c: X R defined y (F + c) () = F() + c, for every X R. Remrk : Hence, the derived function f() is trcele ck to n infinite numer of possile primry, ntiderivtive or primitive functions of the form F() + c. Remrk : However, here there is sutle point. Every ntiderivtive fn of f is of the form F() + c if X R is connected suset of the rel line R.

2 Def : A set X R is connected if nd only if, for ny two rel numers, X with <, X contins the closed intervl [, ]. Emple: Consider the function f() =, where f: X R, X = [, ). It hs n ntiderivtive function defined y F() = +, since F () = df/d =. However, it lso hs n ntiderivtive function defined y G() = / +, since dg ( ) =. In fct, ny function of the form d F() = + c, for ny c R is n ntiderivtive function of f() =. Theorem. If F: X R is n ntiderivtive function of rel-vlued function f: X R, where X R is connected, then {F + c: c R} is the set of ll ntiderivtives of f. Def.. The set of ll ntiderivtive functions of rel vlued function f: X R, X R, is clled the indefinite integrl of f nd is denoted y f( ) d. Remrk : The symol is the integrl sign. If f hs no ntiderivtive (nonintegrle), then its indefinite integrl is. The f() prt is the integrnd. The f() d my e tken s the differentil df of primry or ntiderivtive function. Remrk 4: The process of determining the indefinite integrl of given rel-vlued function sy f: X R is termed the indefinite integrtion of f. We hve tht d d F() = f() implies f ( ) d = F ( ) + c

3 for ny rel c, where X connected. The constnt will e referred to s the ritrry constnt of integrtion. If X is not connected, then f( ) d = F + c mens only tht F + c is n ntiderivtive of f for some. Counteremple. Let denote the suset of R which consists of ll non-zero rel numers: X = { R: } () Consider the fn f() = /, f: X R. Then the fn. F() is n ntiderivtive of f. F() = - -, F: X R () Consider the function G(), G: X R, + if > G ( ) if < Note dg/d = G () is given y: G () = / = f(). G() is lso n ntiderivtive of f. However, G - F = ; if > Hence G - F = + ; if < G - F = + if > if <

4 Thus, G - F c, where c represents constnt function, for ll. Hence, G is not of form F() + c, for ll. Bsic Rules of Integrtion. Theorem. If F is n ntiderivtive of f nd G is n ntiderivtive of g, then F + G is n ntiderivtive of f + g. Hence, [f() + g()] d = f() d + g() d. (holds for finite sum). Theorem. If F is n ntiderivtive of f, then cf is n ntiderivtive of cf for every c R. Thus, cf() d = c f() d.. Theorem. For every N, N+ /N + is the ntiderivtive of N. Thus, N d = N + XN+ + c. 4. Emples: # Let f() = 4, then check: 4 d = c. 5 ( / 5) d d = 4. # Let f() = + 5 4, then [ ] d = d d = 4 /4 + 5( 5 /5) + c = 4 / c check. 4

5 # Let f() = - d d (4 /4 + 5 ) = [ - ] d = d + - d = / - d + c = / - ( /) + c = / - + c. 5. Theorem 4. The ntiderivtive of e is given y e d = e + c. Theorem 5. The ntiderivtive of -, is given y d = ln + c. Remrk : (Why ln insted of ln.) Note tht the function f() = - is such tht f: R - {} R. Tht is, f() = - is defined on the set of non-zero rel numers. Now, the nturl logrithmic function G() = ln, is such tht G: P R, where P {: R, > }. Tht is, ln is defined only on the positive rel numers. Thus, G() = ln, G: P R, cn not e n ntiderivtive function of f() = -, where f: R - {} R. This is true since the ntiderivtive of f must mp from the sme domin. In this cse, clerly, R- {} P. To e le to define n ntiderivtive function of -, we must etend the function ln to the set R - {} somehow. Thus, we define the function F() = ln( ), where, of course F: R-{} R. Tht is, ln ( ) is defined on ll non-zero rel numers. Emple: Let f() = e - -. f() d = e d - - d = e - ln + c. 5

6 The Methods of Integrtion y Sustitution nd y Prts.. Method of Sustitution: To determine the indefinite integrl of function f(), we choose y inspection suitle differentile fn u() such tht the given function f() cn e epressed s the product g(u()) u (), where g(u()) is function of u nd constnts. Then we hve f() d = g(u) u () d = g(u) du. Remrk : We hve tht u = u(); hence, du = u () d.. Emples # Let f() = ( + ) /, find f() d. Choose u = u() = +, then we hve tht u () =, such tht du = u () d = d Now f() = g(u) u () f() = ( + ) / = / = / u ( ) u u Here, g(u) = (/)(u -/ ). Thus f() d = ( + ) ut du = u () d, hence f() d = g(u) du = Now integrte the lst result. f() d = u -/ du / d = / u ( ) d u u / du. 6

7 = u / + c + = u/ + c = u / + c Sustitute for u = +, then ( + ) To check, find / d = ( +) / + c. d d ( +) / = ½ ( +) -/ = ( + ) / # Let f() = ( + ) 4 () Choose u = ( ) /. Find f d. u () = 4 -, such tht du = (4 - ) d. () Construct the product g(u) u () such tht f() = g(u) u () f() = ( + ) 4 ( ) u ( ) = u = u ( ) u / = / u Here g(u) = u 7

8 () Thus we hve tht f() d = g(u) u () d = u u () d = u du Tke lst integrl: f() d = u-/ du = u + c = 4 u + c To check tke d/d 4 = ( 4 ) + + c = (4 - + ) -/ (4 - ) = 4 ( + ) 4 / = ( + ) 4 /. Method of Integrtion y Prts. To determine the indefinite integrl of the fn f(), we choose y inspection two differentile functions u(), v() such tht f() d = u dv = uv - v du. Remrk. If we cn find u nd v such tht f() = u v (), then dv = v () d nd f() d = u v () d = u dv. To see tht u dv = uv - v du, let z vu, then dz = u dv + v du 8

9 Integrte oth sides dz = u dv + v du z = u dv + v du u dv = z - u du u du = uv - v du. Emples. # Let f() = e () Choose dv so tht it is the most complicted epression, ut is esy to integrte Let dv = e d Let u = such tht du = d () u dv = e - v du Now since dv = e d dv = v = e d v = e Also since u = du = d u dv = e - v du = e - e d 9

10 = e - e d = e - e + c e d = e - e + c. check d d e e e e = + e = e # Let f() = 6 e + () Let v = e +. Integrte y prts. then dv = e + d Hence, let u = du = d = () Then f() d = u dv Hence, = e + - e + du = To check: 6 e + d = e + + c d ( e d + ) = 6 e +. Definite Integrls. Let f() e continuous on n intervl X R, where f: X R. Let F() e n ntiderivtive of f, then f() d = F() + c.

11 . Now choose, X such tht <. Form the difference [F() + c] - [F() + c] = F() - F(). (note indep. of c) This difference F() - F() is clled the definite integrl of f from to. The point is termed the lower limit of integrtion nd the point, the upper limit of integrtion.. Nottion: We would write fd ( ) F ( )] F ( ) = F ( ) F ( ) 4. All tht we hve descried thus fr is known s the fundmentl theorem of clculus. We stte these results formlly s follows: Theorem : For ny ntiderivtive function F(), F: X R, X R, of continuous function f(), f: X R defined on closed intervl I = [, ], we hve fd ( ) = F() - F(). Emples # Let f() =, find 4 d () ( ) 4 4 = = = 4. 5, # f() = e, find fd ( ) 5 5 e = e = e 5 - e 9 5. The definite integrl represents the re under f() etween the points nd. 6. Properties of Definite Integrls. P. If f() is such tht f ( ) d over [, ], then

12 fd ( ) = fd ( ). P. If f() is defined nd continuous t the point, then fd ( ) =. P. If f() is defined nd continuous on ech of the closed intervls [, ],, [ N, N+ ], where N, the numer of suintervls, is finite nd i [ i, i+ ] = [, N+ ] U, then N+ N+ fd ( ) = fd ( ) + fd ( ) + K+ fd ( ) P. 4 If f() nd g() re such tht f ( ) d nd g ( ) Improper Integrls (i) kf( ) d = k f( ) d, for ny k R [ ] ( ) ( ) (ii) f( ) + g( ) d = f d + g d.. Consider fn. f() nd the definite integrl fd ( ) undefined for some [, ], the ove epression is termed improper. N d, then. If or or oth re infinite or if f() is Def. If f() is defined for [, ), then the epression f ( ). d is defined s lim f ( ) d. If f() is defined for (-, ], then f ( ) d is defined s lim f ( ) Def. If f() is defined for [, ] then the epression f ( ) + () lim fd. + d. d is defined s

13 Def. If f() is defined for [, ), R, ut not defined for =, then fd ( ) c defined s lim fd ( ) c. If f() is defined for (, ], R, ut not defined for =, then the epression fd ( ) is defined s lim fd () c c +. Def 4. If the limit of the improper integrls clled for in Def., or eists, the improper integrl is sid to e convergent, otherwise divergent.. Emples: 7 # Evlute d. Hence, y Definition, 7 d 6 = lim lim = = 6 6 lim 6 = lim 7 d is = 6 6 our integrl is convergent nd = ( ) 6 6 # Evlute d = lim+ [ ] d lim d= lim = lim + lim = Hence our integrl is divergent nd hs no vlue. + # Do # for d

14 + d = d + d ut we found ove tht lim d= lim = it diverges. #4 Let f() e continuous proility density function with support (domin) (-,). We know tht the following improper integrl is convergent. f ()d =. Both the epecttion nd the vrince of the rndom vrile re convergent improper integrls. E() = f ()d, Vr() = ( E()) f ()d. Likewise, the distriution function of is convergent improper integrl. This function is defined y ' F(') = f ()d = Pr o( '). Differentition of n Integrl. The following rule pplies q(y) q f (,y)d = f y (, y)d + f (q, y)q'(y) f (p,y)p'(y) y. p(y) p 4

15 . Emple: In Economics, we study consumer's demnd function in inverse form p = p(q), where Q is quntitiy demnded nd p denotes the mimum uniform price tht the consumer is willing to py for given quntity level Q. We ssume tht p' is negtive. The definite integrl Q p (z)dz = TV(Q) is clled totl vlue t Q. It gives us the mimum revenue tht could e etrcted from the consumer for Q units of the product. The dollr mount TV(Q) p(q)q = CS(Q) is clled consumer's surplus. Let C(Q) e the cost of supplying Q units. If firm could etrct mimum revenue from the consumer, its profit function would e Q p (z)dz C(Q). The output level mimizing the firm's profit sets the derivtive of the previous definite integrl equl to zero. This implies p(q) = C'(Q). Some Notes on Multiple Integrls. In this section, we will consider the integrtion of functions of more thn one independent vrile. The technique is nlogous to tht of prtil differentition. When performing integrtion with respect to one vrile, other vriles re treted s constnts. Consider the following emple: d c f (, y)ddy. 5

16 We red the integrl opertors from the inside out. The ounds, refer to those on, while the ounds c,d refer to y. Likewise, d ppers first nd dy ppers second. The integrl is computed in two steps: #. Compute f (, y)d = g(y). #. Compute (y)dy = d c d g c f (, y)ddy. If there were n vriles, you would follow the sme recursive steps n times. Ech successive integrtion elimintes single independent vrile.. Some Emples. Emple : Suppose tht z = f(,y). We wish to compute integrls of the form d c f (,y)ddy. Consider the emple f = y, where c = = nd d =, =. We hve yddy. Begin y integrting with respect to, treting y s constnt y d = y = y. Net, we integrte the ltter epression with respect to y. ydy = y Emple : Compute (y + = 4 6 z)ddydz, =. where the limits of integrtion re nd, in ech cse. Begin with. 6

17 y y ( + z) = + z. Net, y y ( 4 + zy) = + z. 4 Finlly, z z ( + z 4 ) = 7. 4 Emple. Let f(,y) e joint proility density function defined on the continuous rndom vriles (,y) with support R. The unconditionl epecttion of is defined s the doule integrl E() = f (, y) dyd. This epecttion cn e rewritten in terms of the mrginl proility density function for Thus, f () = E() = f (,y) dy f () d.. The conditionl epecttion of for given vlue of y is quite different. The conditionl density of, given y, is g ( y) = f(,y)/f (y), nd the conditionl epecttion is E( y) = g ( y)d. 7

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Integrl When we compute the derivtive of complicted function, like + sin, we usull use differentition rules, like d [f()+g()] d f()+ d g(), to reduce the computtion d d d to

More information

Solutions to Math 41 Final Exam December 12, 2011

Solutions to Math 41 Final Exam December 12, 2011 Solutions to Mth Finl Em December,. ( points) Find ech of the following its, with justifiction. If there is n infinite it, then eplin whether it is or. ( ) / ln() () (5 points) First we compute the it:

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

1 The Definite Integral

1 The Definite Integral The Definite Integrl Definition. Let f be function defined on the intervl [, b] where

More information

Integration. September 28, 2017

Integration. September 28, 2017 Integrtion September 8, 7 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral Lesson - FTC PART 2 Review! We hve seen definition/formul for definite integrl s n b A() = lim f ( i )Δ = f ()d = F() = F(b) F() n i=! where F () = f() (or F() is the ntiderivtive of f() b! And hve seen

More information

)

) Chpter Five /SOLUTIONS Since the speed ws between nd mph during this five minute period, the fuel efficienc during this period is between 5 mpg nd 8 mpg. So the fuel used during this period is between

More information

6.3 Definite Integrals and Antiderivatives

6.3 Definite Integrals and Antiderivatives Section 6. Definite Integrls nd Antiderivtives 8 6. Definite Integrls nd Antiderivtives Wht ou will lern out... Properties of Definite Integrls Averge Vlue of Function Men Vlue Theorem for Definite Integrls

More information

Integration. October 25, 2016

Integration. October 25, 2016 Integrtion October 5, 6 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my hve

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers?

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers? 1.1 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS Prepring for 2A.6.K, 2A.7.I Intervl Nottion nd Set Nottion Essentil Question When is it convenient to use set-uilder nottion to represent set of numers? A collection

More information

8.2 Areas in the Plane

8.2 Areas in the Plane 39 Chpter 8 Applictions of Definite Integrls 8. Ares in the Plne Wht ou will lern out... Are Between Curves Are Enclosed Intersecting Curves Boundries with Chnging Functions Integrting with Respect to

More information

Iterated Integrals. f (x; y) dy dx. p(x) To evaluate a type I integral, we rst evaluate the inner integral Z q(x) f (x; y) dy.

Iterated Integrals. f (x; y) dy dx. p(x) To evaluate a type I integral, we rst evaluate the inner integral Z q(x) f (x; y) dy. Iterted Integrls Type I Integrls In this section, we begin the study of integrls over regions in the plne. To do so, however, requires tht we exmine the importnt ide of iterted integrls, in which inde

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

this grammar generates the following language: Because this symbol will also be used in a later step, it receives the

this grammar generates the following language: Because this symbol will also be used in a later step, it receives the LR() nlysis Drwcks of LR(). Look-hed symols s eplined efore, concerning LR(), it is possile to consult the net set to determine, in the reduction sttes, for which symols it would e possile to perform reductions.

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

This notebook investigates the properties of non-integer differential operators using Fourier analysis.

This notebook investigates the properties of non-integer differential operators using Fourier analysis. Frctionl erivtives.nb Frctionl erivtives by Fourier ecomposition by Eric Thrne 4/9/6 This notebook investigtes the properties of non-integer differentil opertors using Fourier nlysis. In[]:=

More information

Math 35 Review Sheet, Spring 2014

Math 35 Review Sheet, Spring 2014 Mth 35 Review heet, pring 2014 For the finl exm, do ny 12 of the 15 questions in 3 hours. They re worth 8 points ech, mking 96, with 4 more points for netness! Put ll your work nd nswers in the provided

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

Introduction. Chapter 4: Complex Integration. Introduction (Cont d)

Introduction. Chapter 4: Complex Integration. Introduction (Cont d) Introduction Chpter 4: Complex Integrtion Li, Yongzho Stte Key Lbortory of Integrted Services Networks, Xidin University October 10, 2010 The two-dimensionl nture of the complex plne required us to generlize

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

WebAssign Lesson 1-3a Substitution Part 1 (Homework)

WebAssign Lesson 1-3a Substitution Part 1 (Homework) WeAssign Lesson -3 Sustitution Prt (Homework) Current Score : / 3 Due : Fridy, June 7 04 :00 AM MDT Jimos Skriletz Mth 75, section 3, Summer 04 Instructor: Jimos Skriletz. /.5 points Suppose you hve the

More information

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards A Tutology Checker loosely relted to Stålmrck s Algorithm y Mrtin Richrds mr@cl.cm.c.uk http://www.cl.cm.c.uk/users/mr/ University Computer Lortory New Museum Site Pemroke Street Cmridge, CB2 3QG Mrtin

More information

Section 5.3 : Finding Area Between Curves

Section 5.3 : Finding Area Between Curves MATH 9 Section 5. : Finding Are Between Curves Importnt: In this section we will lern just how to set up the integrls to find re etween curves. The finl nswer for ech emple in this hndout is given for

More information

Fig.25: the Role of LEX

Fig.25: the Role of LEX The Lnguge for Specifying Lexicl Anlyzer We shll now study how to uild lexicl nlyzer from specifiction of tokens in the form of list of regulr expressions The discussion centers round the design of n existing

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

Revisit: Limits at Infinity

Revisit: Limits at Infinity Revisit: Limits t Infinity Limits t Infinity: Wewrite to men the following: f () =L, or f ()! L s! + Conceptul Mening: Thevlueoff () willbesclosetol s we like when is su Forml Definition: Forny"> 0(nomtterhowsmll)thereeistsnM

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5 CS321 Lnguges nd Compiler Design I Winter 2012 Lecture 5 1 FINITE AUTOMATA A non-deterministic finite utomton (NFA) consists of: An input lphet Σ, e.g. Σ =,. A set of sttes S, e.g. S = {1, 3, 5, 7, 11,

More information

Lesson 11 MA Nick Egbert

Lesson 11 MA Nick Egbert Lesson MA 62 Nick Eert Overview In this lesson we return to stndrd Clculus II mteril with res etween curves. Recll rom irst semester clculus tht the deinite interl hd eometric menin, nmel the re under

More information

Presentation Martin Randers

Presentation Martin Randers Presenttion Mrtin Rnders Outline Introduction Algorithms Implementtion nd experiments Memory consumption Summry Introduction Introduction Evolution of species cn e modelled in trees Trees consist of nodes

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

Matrices and Systems of Equations

Matrices and Systems of Equations Mtrices Mtrices nd Sstems of Equtions A mtri is rectngulr rr of rel numbers. CHAT Pre-Clculus Section 8. m m m............ n n n mn We will use the double subscript nottion for ech element of the mtri.

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION Chpter 3 DACS 1 Lok 004/05 CHAPTER 5 APPLICATIONS OF INTEGRATION 5.1 Geometricl Interprettion-Definite Integrl (pge 36) 5. Are of Region (pge 369) 5..1 Are of Region Under Grph (pge 369) Figure 5.7 shows

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

CSCE 531, Spring 2017, Midterm Exam Answer Key

CSCE 531, Spring 2017, Midterm Exam Answer Key CCE 531, pring 2017, Midterm Exm Answer Key 1. (15 points) Using the method descried in the ook or in clss, convert the following regulr expression into n equivlent (nondeterministic) finite utomton: (

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

Simplifying Algebra. Simplifying Algebra. Curriculum Ready.

Simplifying Algebra. Simplifying Algebra. Curriculum Ready. Simplifying Alger Curriculum Redy www.mthletics.com This ooklet is ll out turning complex prolems into something simple. You will e le to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give this

More information

COMMON FRACTIONS. or a / b = a b. , a is called the numerator, and b is called the denominator.

COMMON FRACTIONS. or a / b = a b. , a is called the numerator, and b is called the denominator. COMMON FRACTIONS BASIC DEFINITIONS * A frtion is n inite ivision. or / * In the frtion is lle the numertor n is lle the enomintor. * The whole is seprte into "" equl prts n we re onsiering "" of those

More information

Chapter 2 Sensitivity Analysis: Differential Calculus of Models

Chapter 2 Sensitivity Analysis: Differential Calculus of Models Chpter 2 Sensitivity Anlysis: Differentil Clculus of Models Abstrct Models in remote sensing nd in science nd engineering, in generl re, essentilly, functions of discrete model input prmeters, nd/or functionls

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes by disks: volume prt ii 6 6 Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem 6) nd the ccumultion process is to determine so-clled volumes

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

Applications of the Definite Integral ( Areas and Volumes)

Applications of the Definite Integral ( Areas and Volumes) Mth1242 Project II Nme: Applictions of the Definite Integrl ( Ares nd Volumes) In this project, we explore some pplictions of the definite integrl. We use integrls to find the re etween the grphs of two

More information

Compilers Spring 2013 PRACTICE Midterm Exam

Compilers Spring 2013 PRACTICE Midterm Exam Compilers Spring 2013 PRACTICE Midterm Exm This is full length prctice midterm exm. If you wnt to tke it t exm pce, give yourself 7 minutes to tke the entire test. Just like the rel exm, ech question hs

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming Lecture 10 Evolutionry Computtion: Evolution strtegies nd genetic progrmming Evolution strtegies Genetic progrmming Summry Negnevitsky, Person Eduction, 2011 1 Evolution Strtegies Another pproch to simulting

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Dt Mining y I. H. Witten nd E. Frnk Simplicity first Simple lgorithms often work very well! There re mny kinds of simple structure, eg: One ttriute does ll the work All ttriutes contriute eqully

More information

ASTs, Regex, Parsing, and Pretty Printing

ASTs, Regex, Parsing, and Pretty Printing ASTs, Regex, Prsing, nd Pretty Printing CS 2112 Fll 2016 1 Algeric Expressions To strt, consider integer rithmetic. Suppose we hve the following 1. The lphet we will use is the digits {0, 1, 2, 3, 4, 5,

More information

Graphing Conic Sections

Graphing Conic Sections Grphing Conic Sections Definition of Circle Set of ll points in plne tht re n equl distnce, clled the rdius, from fixed point in tht plne, clled the center. Grphing Circle (x h) 2 + (y k) 2 = r 2 where

More information

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials Product of polynomils Introduction to Progrmming (in C++) Numericl lgorithms Jordi Cortdell, Ricrd Gvldà, Fernndo Orejs Dept. of Computer Science, UPC Given two polynomils on one vrile nd rel coefficients,

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

A dual of the rectangle-segmentation problem for binary matrices

A dual of the rectangle-segmentation problem for binary matrices A dul of the rectngle-segmenttion prolem for inry mtrices Thoms Klinowski Astrct We consider the prolem to decompose inry mtrix into smll numer of inry mtrices whose -entries form rectngle. We show tht

More information

ONU Calculus I Math 1631

ONU Calculus I Math 1631 ONU Clculus I Mth 1631 2013-2014 Syllus Mrs. Trudy Thompson tthompson@lcchs.edu Text: Clculus 8 th Edition, Anton, Bivens nd Dvis Prerequisites: C or etter in Pre-Clc nd techer s permission This course

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a Mth 176 Clculus Sec. 6.: Volume I. Volume By Slicing A. Introduction We will e trying to find the volume of solid shped using the sum of cross section res times width. We will e driving towrd developing

More information

Control-Flow Analysis and Loop Detection

Control-Flow Analysis and Loop Detection ! Control-Flow Anlysis nd Loop Detection!Lst time! PRE!Tody! Control-flow nlysis! Loops! Identifying loops using domintors! Reducibility! Using loop identifiction to identify induction vribles CS553 Lecture

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy Recognition of Tokens if expressions nd reltionl opertors if è if then è then else è else relop

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

CSCI 3130: Formal Languages and Automata Theory Lecture 12 The Chinese University of Hong Kong, Fall 2011

CSCI 3130: Formal Languages and Automata Theory Lecture 12 The Chinese University of Hong Kong, Fall 2011 CSCI 3130: Forml Lnguges nd utomt Theory Lecture 12 The Chinese University of Hong Kong, Fll 2011 ndrej Bogdnov In progrmming lnguges, uilding prse trees is significnt tsk ecuse prse trees tell us the

More information

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x Bsic Integrtion This chpter contins the fundmentl theory of integrtion. We begin with some problems to motivte the min ide: pproximtion by sum of slices. The chpter confronts this squrely, nd Chpter 3

More information

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997.

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997. Forced convex n-gons in the plne F. R. K. Chung y University ofpennsylvni Phildelphi, Pennsylvni 19104 R. L. Grhm AT&T Ls - Reserch Murry Hill, New Jersey 07974 Mrch 2,1997 Astrct In seminl pper from 1935,

More information

Introduction to Algebra

Introduction to Algebra INTRODUCTORY ALGEBRA Mini-Leture 1.1 Introdution to Alger Evlute lgeri expressions y sustitution. Trnslte phrses to lgeri expressions. 1. Evlute the expressions when =, =, nd = 6. ) d) 5 10. Trnslte eh

More information

Supplemental Notes: Line Integrals

Supplemental Notes: Line Integrals Nottion: Supplementl Notes: Line Integrls Let be n oriented curve prmeterized by r(t) = x(t), y(t), z(t) where t b. denotes the curve with its orienttion reversed. 1 + 2 mens tke curve 1 nd curve 2 nd

More information

Example: 2:1 Multiplexer

Example: 2:1 Multiplexer Exmple: 2:1 Multiplexer Exmple #1 reg ; lwys @( or or s) egin if (s == 1') egin = ; else egin = ; 1 s B. Bs 114 Exmple: 2:1 Multiplexer Exmple #2 Normlly lwys include egin nd sttements even though they

More information

Summer Review Packet For Algebra 2 CP/Honors

Summer Review Packet For Algebra 2 CP/Honors Summer Review Pcket For Alger CP/Honors Nme Current Course Mth Techer Introduction Alger uilds on topics studied from oth Alger nd Geometr. Certin topics re sufficientl involved tht the cll for some review

More information

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola.

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola. Review of conic sections Conic sections re grphs of the form REVIEW OF CONIC SECTIONS prols ellipses hperols P(, ) F(, p) O p =_p REVIEW OF CONIC SECTIONS In this section we give geometric definitions

More information

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E 4-1 NAME DATE PERIOD Pges 142 147 Prllel Lines nd Plnes When plnes do not intersect, they re sid to e prllel. Also, when lines in the sme plne do not intersect, they re prllel. But when lines re not in

More information

GENG2140 Modelling and Computer Analysis for Engineers

GENG2140 Modelling and Computer Analysis for Engineers GENG4 Moelling n Computer Anlysis or Engineers Letures 9 & : Gussin qurture Crete y Grn Romn Joles, PhD Shool o Mehnil Engineering, UWA GENG4 Content Deinition o Gussin qurture Computtion o weights n points

More information

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples COMPUTER SCIENCE 123 Foundtions of Computer Science 6. Tuples Summry: This lecture introduces tuples in Hskell. Reference: Thompson Sections 5.1 2 R.L. While, 2000 3 Tuples Most dt comes with structure

More information

The notation y = f(x) gives a way to denote specific values of a function. The value of f at a can be written as f( a ), read f of a.

The notation y = f(x) gives a way to denote specific values of a function. The value of f at a can be written as f( a ), read f of a. Chpter Prerequisites for Clculus. Functions nd Grphs Wht ou will lern out... Functions Domins nd Rnges Viewing nd Interpreting Grphs Even Functions nd Odd Functions Smmetr Functions Defined in Pieces Asolute

More information

arxiv: v1 [math.co] 18 Sep 2015

arxiv: v1 [math.co] 18 Sep 2015 Improvements on the density o miml -plnr grphs rxiv:509.05548v [mth.co] 8 Sep 05 János Brát MTA-ELTE Geometric nd Algeric Comintorics Reserch Group rt@cs.elte.hu nd Géz Tóth Alréd Rényi Institute o Mthemtics,

More information

Lily Yen and Mogens Hansen

Lily Yen and Mogens Hansen SKOLID / SKOLID No. 8 Lily Yen nd Mogens Hnsen Skolid hs joined Mthemticl Myhem which is eing reformtted s stnd-lone mthemtics journl for high school students. Solutions to prolems tht ppered in the lst

More information

Calculus Differentiation

Calculus Differentiation //007 Clulus Differentition Jeffrey Seguritn person in rowot miles from the nerest point on strit shoreline wishes to reh house 6 miles frther down the shore. The person n row t rte of mi/hr nd wlk t rte

More information

4.4. Vertical Differentiation Vertical Differentiation

4.4. Vertical Differentiation Vertical Differentiation Mtilde Mchdo Industril Orgniztion- Mtilde Mchdo Verticl Differentition 4.4. Verticl Differentition The Hotelling model studies situtions of horizontl differentition since for equl prices there re lwys

More information

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis CS143 Hndout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexicl Anlysis In this first written ssignment, you'll get the chnce to ply round with the vrious constructions tht come up when doing lexicl

More information

Lists in Lisp and Scheme

Lists in Lisp and Scheme Lists in Lisp nd Scheme Lists in Lisp nd Scheme Lists re Lisp s fundmentl dt structures, ut there re others Arrys, chrcters, strings, etc. Common Lisp hs moved on from eing merely LISt Processor However,

More information

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1)

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1) POLAR EQUATIONS AND GRAPHS GEOMETRY INU4/54 (MATHS ) Dr Adrin Jnnett MIMA CMth FRAS Polr equtions nd grphs / 6 Adrin Jnnett Objectives The purpose of this presenttion is to cover the following topics:

More information

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe CSCI 0 fel Ferreir d Silv rfsilv@isi.edu Slides dpted from: Mrk edekopp nd Dvid Kempe LOG STUCTUED MEGE TEES Series Summtion eview Let n = + + + + k $ = #%& #. Wht is n? n = k+ - Wht is log () + log ()

More information

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search.

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search. CS 88: Artificil Intelligence Fll 00 Lecture : A* Serch 9//00 A* Serch rph Serch Tody Heuristic Design Dn Klein UC Berkeley Multiple slides from Sturt Russell or Andrew Moore Recp: Serch Exmple: Pncke

More information

Lexical Analysis: Constructing a Scanner from Regular Expressions

Lexical Analysis: Constructing a Scanner from Regular Expressions Lexicl Anlysis: Constructing Scnner from Regulr Expressions Gol Show how to construct FA to recognize ny RE This Lecture Convert RE to n nondeterministic finite utomton (NFA) Use Thompson s construction

More information

Study Guide for Exam 3

Study Guide for Exam 3 Mth 05 Elementry Algebr Fll 00 Study Guide for Em Em is scheduled for Thursdy, November 8 th nd ill cover chpters 5 nd. You my use "5" note crd (both sides) nd scientific clcultor. You re epected to no

More information