ARM Cortex-M4 Architecture and Instruction Set 3: Branching; Data definition and memory access instructions

Size: px
Start display at page:

Download "ARM Cortex-M4 Architecture and Instruction Set 3: Branching; Data definition and memory access instructions"

Transcription

1 ARM Cortex-M4 Architecture and Instruction Set 3: Branching; Data definition and memory access instructions M J Brockway February 17, 2016

2 Branching To do anything other than run a fixed sequence of instructions, the CPU needs to be able decide on the result of some test what instruction to execute next. In normal operaton, an instruction is fetched from the address pointed at by the Program Counter (PC = R15), and the PC immediately incremented by the size of that instruction: 2 or 4 bytes. Then the next instruction is the next in the RAM. A branch instruction overrides this by setting the PC to some other value - some other valid instruction address, we hope. This may be a conditonal branch: it only happens if some condition is met. In these cases, the next instruction to be fetched is the one whose address was loaded into the PC by the branch instruction.

3 Branching Syntax B{cond} label BL{cond} label BX{cond} Rm BLX{cond} Rm where: cond is an optional condition code, EQ, NE, LT, LE, GE, GT,... as seen before - reminder on next slide. Rm is a register containing the address to branch to. Curiously, the contents must have bit[0] == 1 (an odd number) although the address actually branched to has this bit set to 0 (The register contents are ANDed with 0xFFFFFFFE).

4 Condition Code Suffixes - reminder EQ equal: Z==1 NE not equal: Z==0 HS higher or same, unsigned: C==1 HI higher, unsigned: C==1 and Z==0 LO lower, unsigned: C==0 LS lower or same, unsigned: C==0 or Z==1 MI negative: N==1, PL positive or zero: N==0, VS overflow: V==1 VC no overflow: V==0 GE greater than or equal, signed: N==V GT greater than, signed: N==V and Z==0 LE less than or equal, signed: N!=V or Z==1 LT less than, signed: N!=V

5 Branching B and BL branch to the address indicated by the label - the PC-address of the instruction immediately after the label. The actual branch instruction operates using a PC-relative address: the address to branch to is specified as an offset relative to the current value of the PC of the branch instruction itself. PC-addresses can be stored in registers; hence BX and BLX options: these copy the value (an address) of the operand register to the PC, actually R15, and this causes the branch. BL and BLX branch to the label provided, or the address in the register, but first they copy the PC value to the link register, LR = R14. Typically BL is used to branch to a subroutine; returning from the subroutine then consists in using BX to branch to the address in LR. More of this later.

6 Branching - Example This code, which you have seein in the first lecture and lab in this series, has two examples of B, one with a condition suffix E0 main FUNCTION E0 ; initialize registers E0 F04F 000A MOV r0, # E4 F04F 0100 MOV r1, # E8 ; Calculating E8 loop E ADD r1, r EA 3801 SUBS r0, # EC D1FC BNE loop EE ; Result is now in R EE deadloop EE E7FE B deadloop F0 ENDFUNC F0 END

7 Branching - Example Having explored this example with the Microvision debugger, you may have noticed that at line 9, PC = 0x000000E4. This is because when an instruction is fetched, the PC is updated to the address of the next instruction. For this reason, a detailed look with the debugger shows the PC values (second column) changing as follows as execution progresses: 7 main FUNCTION 8 ; initialize registers E4 F04F 000A MOV r0, # E8 F04F 0100 MOV r1, #0 11 ; Calculating loop EC 4401 ADD r1, r EE 3801 SUBS r0, # F0 D1FC BNE loop 16 ; Result is now in R1 17 deadloop F2 E7FE B deadloop 19 ENDFUNC

8 Branching - Example... The PC values are all larger than the original assembly address by the size of the instruction. Line 12 declares loop to be a label; Line 15 indicates a BNE, a conditional (on NE: Z flag is clear) branch to the label loop; The binary version of this BNE instruction is D1FC. The second byte, FC, is numerically -4 (think: two s complement!). The BNE instruction has PC-address F0 (in hex); 4 back from here is EC: the ADD instruction following label loop! F0 + FC = EC in byte-sized 2 s-complement arithmetic Exercise for you: see if you can understand the branch at address F2 in similar fashion. This code runs on the spot for ever, by branching to PC-2 repeatedly.

9 Memory Access Instructions with immediate offset Syntax 1. op{type}{cond} Rt, [Rn] - no offset or write-back 2. op{type}{cond} Rt, [Rn, #offset] - immediate offset, no write-back 3. op{type}{cond} Rt, [Rn, #offset]! - pre-indexed 4. op{type}{cond} Rt, [Rn], #offset - post-indexed where: op is one of LDR - load register Rt from [...] STR - store register Rt to [...] type is one of B - unsigned byte (0-extended to 32 bits) SB - signed byte (on load, sign-extended to 32 bits) H - unsigned halfword (0-extended to 32 bits) SB - signed halfword (on load, sign-extended to 32 bits) omitted if whole word is to be loaded or stored Optional cond condition is EQ, NE,... as we defined above. Rt is register to load to or store from.

10 Memory Access Instructions with immediate offset The operand in [... ] specifies a memory address to load from or store to. Think of [addr] as the data at memory address addr. Register Rn contains a base memory address; offset is a value in range -255 to 1020, used to offset from the address in Rn. Thus the target memory address for load or store is (Rn) in the first form of the instruction, or (Rn + offset). Form number 1. simply loads/stores Rt from/to the memory location pointed at by Rn; 2. loads/stores Rt from/to the memory location pointed at by (Rn + offset); 3. increments Rn by offset, then loads/stores Rt from/to the memory location pointed at by Rn; 4. loads/stores Rt from/to the memory location pointed at by Rn then increments Rn by offset; The N,Z,C,V flags are not affected.

11 Examples LDR R8, [R10] load R8 from memory address R10 STR R2, [R5, #4] store R2 to memory address R5+4 Value in R5 is unchanged LDR R2, [R5, #4]! Add 4 onto contents of R5, then load R2 from memory address R5 STR R2, [R5], #-4 load R2 from memory address R5 then decrement contents of R5 by 4

12 Data Definitions These instructions assume we have a register containing an address pointing at an item of data, or perhaps an array of data. One way this comes about is via the assembler directives which define and reserve memory for data. {label} DCD expr{, expr}... {label} DCDU expr{, expr}... defines a 32-bit word or a sequence of words with optional label giving address. expr is a numeric expression The version without U adds padding so that the data is aligned on a word boundary, an address that is a multiple of 4. Usually the unaligned version is the simpler one to use. Example numarray DCDU , , , LDR R0, =numarray ;loads address of data into R0 LDR R1, [R0, #4] ;loads into R1 Why #4?

13 Data Definitions - example Adding up some numbers... numarray DCDU , , , , 0 We can use a post-incrementing to iterate through the array: MOV R2, #0 LDR R1, =numarray loop LDR R0, [R1], #4 ADD R2, R0 CMP R0, #0 BNE loop

14 Data Definitions ctd The ALIGN assembler directive can be used to make DCD work predictably: ALIGN 4 numarray DCD , , , , 0... The lab sheet accompanying this lecture explores this further.

15 Data Definitions - half-words {label} DCW expr{, expr}... {label} DCWU expr{, expr}... defines a 16-bit halfword or a sequence of words with optional label giving address. expr is a numeric expression The version without U adds padding so that the data is aligned on a halfword boundary, an address that is a multiple of 2. Usually the unaligned version is the simpler one to use. Example numarray DCWU 1000, 999, 998, 997 LDR R0, =numarray ; loads address of data into R0 LDR R1, [R0] ; loads 0x03E703E8 into R1 Why this?

16 Data Definitions - half-words On the other hand, LDRH R1, [R0] ; loads 0x03E8 into R1 The adding-up example can be adapted to work with half-words: numarray DCWU 1000, 999, 998, 997, 0 Iterate over data as before, but load haflwords and post-increment by their size, 2 rather than 4: MOV R2, #0 LDR R1, =numarray loop LDRH R0, [R1], #2 ADD R2, R0 CMP R0, #0 BNE loop

17 Data Definitions - bytes {label} DCB expr{, expr}... defines a byte or a sequence of bytes. Optional label gives address where byte(s) stored. expr must evaluate to a value between -128 and 255 Examples littlenum DCB 42 littlebytearray DCB 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 hellostg DCB "hello world", 0 LDR R0, =littlenum ;loads address of data into R0 LDR R1, [R0] ;loads data into R1 Careful! R1 ends up containing 0x A. Why?

18 Data Definitions - bytes The adding-up example can be adapted to work with bytes: numarray DCDU 10,9,8,7,6,5,4,3,2,1,0 Iterate over data as before, but load bytes and post-increment by their size, 1: MOV R2, #0 LDR R1, =numarray loop LDRB R0, [R1], #1 ADD R2, R0 CMP R0, #0 BNE loop

19 References DUI0553A cortex m4 dgug.pdf: The Cortex M4 Generic User Guide The second item is the on-line manual for the Microvision assembler, and is easy to find with Google. In connection with this lecture see especially the GUG sections 3.10, 3.4 and sections 12.15, of the assembler manual.

ARM Cortex-M4 Architecture and Instruction Set 2: General Data Processing Instructions

ARM Cortex-M4 Architecture and Instruction Set 2: General Data Processing Instructions ARM Cortex-M4 Architecture and Instruction Set 2: General Data Processing Instructions M J Brockway January 31, 2016 Cortex-M4 Machine Instructions - simple example... main FUNCTION ; initialize registers

More information

Control Flow. September 2, Indiana University. Geoffrey Brown, Bryce Himebaugh 2015 September 2, / 21

Control Flow. September 2, Indiana University. Geoffrey Brown, Bryce Himebaugh 2015 September 2, / 21 Control Flow Geoffrey Brown Bryce Himebaugh Indiana University September 2, 2016 Geoffrey Brown, Bryce Himebaugh 2015 September 2, 2016 1 / 21 Outline Condition Codes C Relational Operations C Logical

More information

The PAW Architecture Reference Manual

The PAW Architecture Reference Manual The PAW Architecture Reference Manual by Hansen Zhang For COS375/ELE375 Princeton University Last Update: 20 September 2015! 1. Introduction The PAW architecture is a simple architecture designed to be

More information

Comparison InstruCtions

Comparison InstruCtions Status Flags Now it is time to discuss what status flags are available. These five status flags are kept in a special register called the Program Status Register (PSR). The PSR also contains other important

More information

ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines

ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines M J Brockway February 13, 2016 The Cortex-M4 Stack SP The subroutine stack is full, descending It grows downwards from higher

More information

Writing ARM Assembly. Steven R. Bagley

Writing ARM Assembly. Steven R. Bagley Writing ARM Assembly Steven R. Bagley Hello World B main hello DEFB Hello World\n\0 goodbye DEFB Goodbye Universe\n\0 ALIGN main ADR R0, hello ; put address of hello string in R0 SWI 3 ; print it out ADR

More information

ARM Shift Operations. Shift Type 00 - logical left 01 - logical right 10 - arithmetic right 11 - rotate right. Shift Amount 0-31 bits

ARM Shift Operations. Shift Type 00 - logical left 01 - logical right 10 - arithmetic right 11 - rotate right. Shift Amount 0-31 bits ARM Shift Operations A novel feature of ARM is that all data-processing instructions can include an optional shift, whereas most other architectures have separate shift instructions. This is actually very

More information

STEVEN R. BAGLEY ARM: PROCESSING DATA

STEVEN R. BAGLEY ARM: PROCESSING DATA STEVEN R. BAGLEY ARM: PROCESSING DATA INTRODUCTION CPU gets instructions from the computer s memory Each instruction is encoded as a binary pattern (an opcode) Assembly language developed as a human readable

More information

Flow Control In Assembly

Flow Control In Assembly Chapters 6 Flow Control In Assembly Embedded Systems with ARM Cortext-M Updated: Monday, February 19, 2018 Overview: Flow Control Basics of Flowcharting If-then-else While loop For loop 2 Flowcharting

More information

3 Assembly Programming (Part 2) Date: 07/09/2016 Name: ID:

3 Assembly Programming (Part 2) Date: 07/09/2016 Name: ID: 3 Assembly Programming (Part 2) 43 Date: 07/09/2016 Name: ID: Name: ID: 3 Assembly Programming (Part 2) This laboratory session discusses about Secure Shell Setup and Assembly Programming. The students

More information

Introduction to C. Write a main() function that swaps the contents of two integer variables x and y.

Introduction to C. Write a main() function that swaps the contents of two integer variables x and y. Introduction to C Write a main() function that swaps the contents of two integer variables x and y. void main(void){ int a = 10; int b = 20; a = b; b = a; } 1 Introduction to C Write a main() function

More information

Chapter 2 Instructions Sets. Hsung-Pin Chang Department of Computer Science National ChungHsing University

Chapter 2 Instructions Sets. Hsung-Pin Chang Department of Computer Science National ChungHsing University Chapter 2 Instructions Sets Hsung-Pin Chang Department of Computer Science National ChungHsing University Outline Instruction Preliminaries ARM Processor SHARC Processor 2.1 Instructions Instructions sets

More information

MNEMONIC OPERATION ADDRESS / OPERAND MODES FLAGS SET WITH S suffix ADC

MNEMONIC OPERATION ADDRESS / OPERAND MODES FLAGS SET WITH S suffix ADC ECE425 MNEMONIC TABLE MNEMONIC OPERATION ADDRESS / OPERAND MODES FLAGS SET WITH S suffix ADC Adds operands and Carry flag and places value in destination register ADD Adds operands and places value in

More information

Chapters 5. Load & Store. Embedded Systems with ARM Cortex-M. Updated: Thursday, March 1, 2018

Chapters 5. Load & Store. Embedded Systems with ARM Cortex-M. Updated: Thursday, March 1, 2018 Chapters 5 Load & Store Embedded Systems with ARM Cortex-M Updated: Thursday, March 1, 2018 Overview: Part I Machine Codes Branches and Offsets Subroutine Time Delay 2 32-Bit ARM Vs. 16/32-Bit THUMB2 Assembly

More information

18-349: Introduction to Embedded Real- Time Systems Lecture 3: ARM ASM

18-349: Introduction to Embedded Real- Time Systems Lecture 3: ARM ASM 18-349: Introduction to Embedded Real- Time Systems Lecture 3: ARM ASM Anthony Rowe Electrical and Computer Engineering Carnegie Mellon University Lecture Overview Exceptions Overview (Review) Pipelining

More information

Lab5 2-Nov-18, due 16-Nov-18 (2 weeks duration) Lab6 16-Nov-19, due 30-Nov-18 (2 weeks duration)

Lab5 2-Nov-18, due 16-Nov-18 (2 weeks duration) Lab6 16-Nov-19, due 30-Nov-18 (2 weeks duration) CS1021 AFTER READING WEEK Mid-Semester Test NOW Thurs 8th Nov @ 9am in Goldsmith Hall (ALL students to attend at 9am) Final 2 Labs Lab5 2-Nov-18, due 16-Nov-18 (2 weeks duration) Lab6 16-Nov-19, due 30-Nov-18

More information

ARM Architecture and Instruction Set

ARM Architecture and Instruction Set AM Architecture and Instruction Set Ingo Sander ingo@imit.kth.se AM Microprocessor Core AM is a family of ISC architectures, which share the same design principles and a common instruction set AM does

More information

The ARM Cortex-M0 Processor Architecture Part-2

The ARM Cortex-M0 Processor Architecture Part-2 The ARM Cortex-M0 Processor Architecture Part-2 1 Module Syllabus ARM Cortex-M0 Processor Instruction Set ARM and Thumb Instruction Set Cortex-M0 Instruction Set Data Accessing Instructions Arithmetic

More information

Raspberry Pi / ARM Assembly. OrgArch / Fall 2018

Raspberry Pi / ARM Assembly. OrgArch / Fall 2018 Raspberry Pi / ARM Assembly OrgArch / Fall 2018 The Raspberry Pi uses a Broadcom System on a Chip (SoC), which is based on an ARM CPU. https://en.wikipedia.org/wiki/arm_architecture The 64-bit ARM processor

More information

Systems Architecture The ARM Processor

Systems Architecture The ARM Processor Systems Architecture The ARM Processor The ARM Processor p. 1/14 The ARM Processor ARM: Advanced RISC Machine First developed in 1983 by Acorn Computers ARM Ltd was formed in 1988 to continue development

More information

Cortex M3 Programming

Cortex M3 Programming Cortex M3 Programming EE8205: Embedded Computer Systems http://www.ee.ryerson.ca/~courses/ee8205/ Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering Ryerson University

More information

ARM Cortex-M4 Architecture and Instruction Set 1: Architecture Overview

ARM Cortex-M4 Architecture and Instruction Set 1: Architecture Overview ARM Cortex-M4 Architecture and Instruction Set 1: Architecture Overview M J Brockway January 25, 2016 UM10562 All information provided in this document is subject to legal disclaimers. NXP B.V. 2014. All

More information

Unsigned and signed integer numbers

Unsigned and signed integer numbers Unsigned and signed integer numbers Binary Unsigned Signed 0000 0 0 0001 1 1 0010 2 2 0011 3 3 0100 4 4 Subtraction sets C flag opposite of carry (ARM specialty)! - if (carry = 0) then C=1 - if (carry

More information

CprE 288 Introduction to Embedded Systems ARM Assembly Programming: Translating C Control Statements and Function Calls

CprE 288 Introduction to Embedded Systems ARM Assembly Programming: Translating C Control Statements and Function Calls CprE 288 Introduction to Embedded Systems ARM Assembly Programming: Translating C Control Statements and Function Calls Instructors: Dr. Phillip Jones 1 Announcements Final Projects Projects: Mandatory

More information

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2016 1 ISA is the HW/SW

More information

F28HS2 Hardware-Software Interfaces. Lecture 6: ARM Assembly Language 1

F28HS2 Hardware-Software Interfaces. Lecture 6: ARM Assembly Language 1 F28HS2 Hardware-Software Interfaces Lecture 6: ARM Assembly Language 1 CISC & RISC CISC: complex instruction set computer original CPUs very simple poorly suited to evolving high level languages extended

More information

Embedded assembly is more useful. Embedded assembly places an assembly function inside a C program and can be used with the ARM Cortex M0 processor.

Embedded assembly is more useful. Embedded assembly places an assembly function inside a C program and can be used with the ARM Cortex M0 processor. EE 354 Fall 2015 ARM Lecture 4 Assembly Language, Floating Point, PWM The ARM Cortex M0 processor supports only the thumb2 assembly language instruction set. This instruction set consists of fifty 16-bit

More information

Branch Instructions. R type: Cond

Branch Instructions. R type: Cond Branch Instructions Standard branch instructions, B and BL, change the PC based on the PCR. The next instruction s address is found by adding a 24-bit signed 2 s complement immediate value

More information

Chapter 15. ARM Architecture, Programming and Development Tools

Chapter 15. ARM Architecture, Programming and Development Tools Chapter 15 ARM Architecture, Programming and Development Tools Lesson 5 ARM 16-bit Thumb Instruction Set 2 - Thumb 16 bit subset Better code density than 32-bit architecture instruction set 3 Basic Programming

More information

ARM Cortex M3 Instruction Set Architecture. Gary J. Minden March 29, 2016

ARM Cortex M3 Instruction Set Architecture. Gary J. Minden March 29, 2016 ARM Cortex M3 Instruction Set Architecture Gary J. Minden March 29, 2016 1 Calculator Exercise Calculate: X = (45 * 32 + 7) / (65 2 * 18) G. J. Minden 2014 2 Instruction Set Architecture (ISA) ISAs define

More information

ARM Cortex-M4 Programming Model Flow Control Instructions

ARM Cortex-M4 Programming Model Flow Control Instructions ARM Cortex-M4 Programming Model Flow Control Instructions Textbook: Chapter 4, Section 4.9 (CMP, TEQ,TST) Chapter 6 ARM Cortex-M Users Manual, Chapter 3 1 CPU instruction types Data movement operations

More information

EE251: Tuesday September 5

EE251: Tuesday September 5 EE251: Tuesday September 5 Shift/Rotate Instructions Bitwise logic and Saturating Instructions A Few Math Programming Examples ARM Assembly Language and Assembler Assembly Process Assembly Structure Assembler

More information

ECE251: Tuesday September 18

ECE251: Tuesday September 18 ECE251: Tuesday September 18 Subroutine Parameter Passing (Important) Allocating Memory in Subroutines (Important) Recursive Subroutines (Good to know) Debugging Hints Programming Hints Preview of I/O

More information

ARM Cortex-M4 Programming Model Memory Addressing Instructions

ARM Cortex-M4 Programming Model Memory Addressing Instructions ARM Cortex-M4 Programming Model Memory Addressing Instructions References: Textbook Chapter 4, Sections 4.1-4.5 Chapter 5, Sections 5.1-5.4 ARM Cortex-M Users Manual, Chapter 3 2 CPU instruction types

More information

6 THE ETRAX Introduction. Special registers. 6 The ETRAX 4

6 THE ETRAX Introduction. Special registers. 6 The ETRAX 4 6 THE ETRAX 4 6.1 Introduction The ETRAX 4 is the processor prior to the ETRAX 1 in the ETRAX family. The differences between the CRIS implementation in the ETRAX 1 and the ETRAX 4 are presented in this

More information

The ARM Instruction Set

The ARM Instruction Set The ARM Instruction Set Minsoo Ryu Department of Computer Science and Engineering Hanyang University msryu@hanyang.ac.kr Topics Covered Data Processing Instructions Branch Instructions Load-Store Instructions

More information

CprE 288 Introduction to Embedded Systems Course Review for Exam 3. Instructors: Dr. Phillip Jones

CprE 288 Introduction to Embedded Systems Course Review for Exam 3. Instructors: Dr. Phillip Jones CprE 288 Introduction to Embedded Systems Course Review for Exam 3 Instructors: Dr. Phillip Jones 1 Announcements Exam 3: See course website for day/time. Exam 3 location: Our regular classroom Allowed

More information

Processor Status Register(PSR)

Processor Status Register(PSR) ARM Registers Register internal CPU hardware device that stores binary data; can be accessed much more rapidly than a location in RAM ARM has 13 general-purpose registers R0-R12 1 Stack Pointer (SP) R13

More information

Topic 10: Instruction Representation

Topic 10: Instruction Representation Topic 10: Instruction Representation CSE 30: Computer Organization and Systems Programming Summer Session II Dr. Ali Irturk Dept. of Computer Science and Engineering University of California, San Diego

More information

The ARM instruction set

The ARM instruction set Outline: The ARM instruction set privileged modes and exceptions instruction set details system code example hands-on: system software - SWI handler 2005 PEVE IT Unit ARM System Design Instruction set

More information

ECE251: Intro to Microprocessors Name: Solutions Mid Term Exam October 4, 2018

ECE251: Intro to Microprocessors Name: Solutions Mid Term Exam October 4, 2018 ECE251: Intro to Microprocessors Name: Solutions Mid Term Exam October 4, 2018 (PRINT) Instructions: No calculators, books, or cell phones; do not communicate with any other student. One side of a single

More information

Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan ARM Programmers Model Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan chanhl@maili.cgu.edu.twcgu Current program status register (CPSR) Prog Model 2 Data processing

More information

Assembler: Basics. Alberto Bosio October 20, Univeristé de Montpellier

Assembler: Basics. Alberto Bosio October 20, Univeristé de Montpellier Assembler: Basics Alberto Bosio bosio@lirmm.fr Univeristé de Montpellier October 20, 2017 Assembler Program Template. t e x t / S t a r t o f the program code s e c t i o n /.data / V a r i a b l e s /

More information

EE319K Exam 1 Summer 2014 Page 1. Exam 1. Date: July 9, Printed Name:

EE319K Exam 1 Summer 2014 Page 1. Exam 1. Date: July 9, Printed Name: EE319K Exam 1 Summer 2014 Page 1 Exam 1 Date: July 9, 2014 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 3

ECE 571 Advanced Microprocessor-Based Design Lecture 3 ECE 571 Advanced Microprocessor-Based Design Lecture 3 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 22 January 2013 The ARM Architecture 1 Brief ARM History ACORN Wanted a chip

More information

VE7104/INTRODUCTION TO EMBEDDED CONTROLLERS UNIT III ARM BASED MICROCONTROLLERS

VE7104/INTRODUCTION TO EMBEDDED CONTROLLERS UNIT III ARM BASED MICROCONTROLLERS VE7104/INTRODUCTION TO EMBEDDED CONTROLLERS UNIT III ARM BASED MICROCONTROLLERS Introduction to 32 bit Processors, ARM Architecture, ARM cortex M3, 32 bit ARM Instruction set, Thumb Instruction set, Exception

More information

EE319K Fall 2013 Exam 1B Modified Page 1. Exam 1. Date: October 3, 2013

EE319K Fall 2013 Exam 1B Modified Page 1. Exam 1. Date: October 3, 2013 EE319K Fall 2013 Exam 1B Modified Page 1 Exam 1 Date: October 3, 2013 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will

More information

EE319K Spring 2015 Exam 1 Page 1. Exam 1. Date: Feb 26, 2015

EE319K Spring 2015 Exam 1 Page 1. Exam 1. Date: Feb 26, 2015 EE319K Spring 2015 Exam 1 Page 1 Exam 1 Date: Feb 26, 2015 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help

More information

ECE 471 Embedded Systems Lecture 6

ECE 471 Embedded Systems Lecture 6 ECE 471 Embedded Systems Lecture 6 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 15 September 2016 Announcements HW#3 will be posted today 1 What the OS gives you at start Registers

More information

ARM Assembly Language. Programming

ARM Assembly Language. Programming Outline: ARM Assembly Language the ARM instruction set writing simple programs examples Programming hands-on: writing simple ARM assembly programs 2005 PEVE IT Unit ARM System Design ARM assembly language

More information

Control Flow Instructions

Control Flow Instructions Control Flow Instructions CSE 30: Computer Organization and Systems Programming Diba Mirza Dept. of Computer Science and Engineering University of California, San Diego 1 So Far... v All instructions have

More information

Overview COMP Microprocessors and Embedded Systems. Lectures 14: Making Decisions in C/Assembly Language II

Overview COMP Microprocessors and Embedded Systems. Lectures 14: Making Decisions in C/Assembly Language II OMP 3221 Microprocessors and Embedded Systems Lectures 14: Making Decisions in /Assembly Language II Overview ompare instruction mechanism Flag setting Instructions onditional Instructions onclusion http://www.cse.unsw.edu.au/~cs3221

More information

ARM Cortex-A9 ARM v7-a. A programmer s perspective Part 2

ARM Cortex-A9 ARM v7-a. A programmer s perspective Part 2 ARM Cortex-A9 ARM v7-a A programmer s perspective Part 2 ARM Instructions General Format Inst Rd, Rn, Rm, Rs Inst Rd, Rn, #0ximm 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

More information

ARM7TDMI Instruction Set Reference

ARM7TDMI Instruction Set Reference ARM7TDMI Instruction Set Reference Table of Contents 1 Instruction Encoding... 1 1.1 ARM7TDMI ARM Instructions... 1 1.2 ARM7TDMI THUMB Instructions... 2 2 Conditional Execution... 2 2.1 Condition Field...

More information

Chapter 15. ARM Architecture, Programming and Development Tools

Chapter 15. ARM Architecture, Programming and Development Tools Chapter 15 ARM Architecture, Programming and Development Tools Lesson 4 ARM CPU 32 bit ARM Instruction set 2 Basic Programming Features- ARM code size small than other RISCs 32-bit un-segmented memory

More information

ARM-7 ADDRESSING MODES INSTRUCTION SET

ARM-7 ADDRESSING MODES INSTRUCTION SET ARM-7 ADDRESSING MODES INSTRUCTION SET Dr. P. H. Zope 1 Assistant Professor SSBT s COET Bambhori Jalgaon North Maharashtra University Jalgaon India phzope@gmail.com 9860631040 Addressing modes When accessing

More information

Exam 1. Date: Oct 4, 2018

Exam 1. Date: Oct 4, 2018 Exam 1 Date: Oct 4, 2018 UT EID: Professor: Valvano Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat

More information

ECE 471 Embedded Systems Lecture 5

ECE 471 Embedded Systems Lecture 5 ECE 471 Embedded Systems Lecture 5 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 17 September 2013 HW#1 is due Thursday Announcements For next class, at least skim book Chapter

More information

Exam 1 Fun Times. EE319K Fall 2012 Exam 1A Modified Page 1. Date: October 5, Printed Name:

Exam 1 Fun Times. EE319K Fall 2012 Exam 1A Modified Page 1. Date: October 5, Printed Name: EE319K Fall 2012 Exam 1A Modified Page 1 Exam 1 Fun Times Date: October 5, 2012 Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will

More information

Assembly Language Programming

Assembly Language Programming Experiment 3 Assembly Language Programming Every computer, no matter how simple or complex, has a microprocessor that manages the computer s arithmetical, logical and control activities. A computer program

More information

Lecture 15 ARM Processor A RISC Architecture

Lecture 15 ARM Processor A RISC Architecture CPE 390: Microprocessor Systems Fall 2017 Lecture 15 ARM Processor A RISC Architecture Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

More information

ECE251: Tuesday September 12

ECE251: Tuesday September 12 ECE251: Tuesday September 12 Finish Branch related instructions Stack Subroutines Note: Lab 3 is a 2 week lab, starting this week and covers the Stack and Subroutines. Labs: Lab #2 is due this week. Lab

More information

(2) Part a) Registers (e.g., R0, R1, themselves). other Registers do not exists at any address in the memory map

(2) Part a) Registers (e.g., R0, R1, themselves). other Registers do not exists at any address in the memory map (14) Question 1. For each of the following components, decide where to place it within the memory map of the microcontroller. Multiple choice select: RAM, ROM, or other. Select other if the component is

More information

Assembly Language. CS2253 Owen Kaser, UNBSJ

Assembly Language. CS2253 Owen Kaser, UNBSJ Assembly Language CS2253 Owen Kaser, UNBSJ Assembly Language Some insane machine-code programming Assembly language as an alternative Assembler directives Mnemonics for instructions Machine-Code Programming

More information

A block of memory (FlashROM) starts at address 0x and it is 256 KB long. What is the last address in the block?

A block of memory (FlashROM) starts at address 0x and it is 256 KB long. What is the last address in the block? A block of memory (FlashROM) starts at address 0x00000000 and it is 256 KB long. What is the last address in the block? 1 A block of memory (FlashROM) starts at address 0x00000000 and it is 256 KB long.

More information

EE319K Spring 2016 Exam 1 Solution Page 1. Exam 1. Date: Feb 25, UT EID: Solution Professor (circle): Janapa Reddi, Tiwari, Valvano, Yerraballi

EE319K Spring 2016 Exam 1 Solution Page 1. Exam 1. Date: Feb 25, UT EID: Solution Professor (circle): Janapa Reddi, Tiwari, Valvano, Yerraballi EE319K Spring 2016 Exam 1 Solution Page 1 Exam 1 Date: Feb 25, 2016 UT EID: Solution Professor (circle): Janapa Reddi, Tiwari, Valvano, Yerraballi Printed Name: Last, First Your signature is your promise

More information

ARM Instruction Set Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

ARM Instruction Set Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University ARM Instruction Set Architecture Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Condition Field (1) Most ARM instructions can be conditionally

More information

Writing ARM Assembly. Steven R. Bagley

Writing ARM Assembly. Steven R. Bagley Writing ARM Assembly Steven R. Bagley Introduction Previously, looked at how the system is built out of simple logic gates Last week, started to look at the CPU Writing code in ARM assembly language Assembly

More information

ECE251: Tuesday Aug. 29

ECE251: Tuesday Aug. 29 ECE251: Tuesday Aug. 29 ARM Cortex Architecture: Data Movement Loading memory data into registers Storing register data into memory Indexed Addressing Reading: Chapters 1 and 5 Labs: #1 due this week at

More information

CS 310 Embedded Computer Systems CPUS. Seungryoul Maeng

CS 310 Embedded Computer Systems CPUS. Seungryoul Maeng 1 EMBEDDED SYSTEM HW CPUS Seungryoul Maeng 2 CPUs Types of Processors CPU Performance Instruction Sets Processors used in ES 3 Processors used in ES 4 Processors used in Embedded Systems RISC type ARM

More information

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University What is Assembly Language? Assembly language is a programming language

More information

Chapters 3. ARM Assembly. Embedded Systems with ARM Cortext-M. Updated: Wednesday, February 7, 2018

Chapters 3. ARM Assembly. Embedded Systems with ARM Cortext-M. Updated: Wednesday, February 7, 2018 Chapters 3 ARM Assembly Embedded Systems with ARM Cortext-M Updated: Wednesday, February 7, 2018 Programming languages - Categories Interpreted based on the machine Less complex, not as efficient Efficient,

More information

Who am I and what am I doing?

Who am I and what am I doing? Who am I and what am I doing? Airscanner.com Mobile Security (AV, firewall, sniffer) Dissemination of Information Reverse-engineering is a tool not a weapon Knowing your computer Don t steal pay the programmers

More information

CSIS1120A. 10. Instruction Set & Addressing Mode. CSIS1120A 10. Instruction Set & Addressing Mode 1

CSIS1120A. 10. Instruction Set & Addressing Mode. CSIS1120A 10. Instruction Set & Addressing Mode 1 CSIS1120A 10. Instruction Set & Addressing Mode CSIS1120A 10. Instruction Set & Addressing Mode 1 Elements of a Machine Instruction Operation Code specifies the operation to be performed, e.g. ADD, SUB

More information

ECE 498 Linux Assembly Language Lecture 5

ECE 498 Linux Assembly Language Lecture 5 ECE 498 Linux Assembly Language Lecture 5 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 29 November 2012 Clarifications from Lecture 4 What is the Q saturate status bit? Some

More information

ARM Instruction Set. Computer Organization and Assembly Languages Yung-Yu Chuang. with slides by Peng-Sheng Chen

ARM Instruction Set. Computer Organization and Assembly Languages Yung-Yu Chuang. with slides by Peng-Sheng Chen ARM Instruction Set Computer Organization and Assembly Languages g Yung-Yu Chuang with slides by Peng-Sheng Chen Introduction The ARM processor is easy to program at the assembly level. (It is a RISC)

More information

Instruction Sets: Characteristics and Functions Addressing Modes

Instruction Sets: Characteristics and Functions Addressing Modes Instruction Sets: Characteristics and Functions Addressing Modes Chapters 10 and 11, William Stallings Computer Organization and Architecture 7 th Edition What is an Instruction Set? The complete collection

More information

ARM Cortex-M4 Programming Model

ARM Cortex-M4 Programming Model ARM Cortex-M4 Programming Model ARM = Advanced RISC Machines, Ltd. ARM licenses IP to other companies (ARM does not fabricate chips) 2005: ARM had 75% of embedded RISC market, with 2.5 billion processors

More information

Introduction to Embedded Systems EE319K (Gerstlauer), Spring 2013

Introduction to Embedded Systems EE319K (Gerstlauer), Spring 2013 The University of Texas at Austin Department of Electrical and Computer Engineering Introduction to Embedded Systems EE319K (Gerstlauer), Spring 2013 Midterm 1 Solutions Date: February 21, 2013 UT EID:

More information

Assembly language Simple, regular instructions building blocks of C, Java & other languages Typically one-to-one mapping to machine language

Assembly language Simple, regular instructions building blocks of C, Java & other languages Typically one-to-one mapping to machine language Assembly Language Readings: 2.1-2.7, 2.9-2.10, 2.14 Green reference card Assembly language Simple, regular instructions building blocks of C, Java & other languages Typically one-to-one mapping to machine

More information

Problem Sheet 1: ANSWERS (NOT ) (NOT ) 3. 37, ,

Problem Sheet 1: ANSWERS (NOT ) (NOT ) 3. 37, , Problem Sheet 1 1. Convert 512 10 toa16-bittwo's complement binarynumber [P&H, Ex.4.1] 2. Convert 1; 023 10 to a 16-bit two's complement binary number [P&H, Ex.4.2] 3. What hexadecimal number does the

More information

Programming the ARM. Computer Design 2002, Lecture 4. Robert Mullins

Programming the ARM. Computer Design 2002, Lecture 4. Robert Mullins Programming the ARM Computer Design 2002, Lecture 4 Robert Mullins 2 Quick Recap The Control Flow Model Ordered list of instructions, fetch/execute, PC Instruction Set Architectures Types of internal storage

More information

This has already been done for you within the School of CS at Nottingham.

This has already been done for you within the School of CS at Nottingham. AASM Manual (with School of CS, U. of Nottm., additions) ======================================================= (This is more of a set of notes than a true manual.) Beta - release! Compiling the assembler

More information

Assembly language Simple, regular instructions building blocks of C, Java & other languages Typically one-to-one mapping to machine language

Assembly language Simple, regular instructions building blocks of C, Java & other languages Typically one-to-one mapping to machine language Assembly Language Readings: 2.1-2.7, 2.9-2.10, 2.14 Green reference card Assembly language Simple, regular instructions building blocks of C, Java & other languages Typically one-to-one mapping to machine

More information

What are the differences between these three ARM instructions: (3 marks) ADD R1, R2, R3 ADDS R1, R2, R3 and ADDEQ R1, R2, R3

What are the differences between these three ARM instructions: (3 marks) ADD R1, R2, R3 ADDS R1, R2, R3 and ADDEQ R1, R2, R3 OMP15111 Lecture 7 1/41 From last time What are the differences between these three ARM instructions: (3 marks) ADD R1, R2, R3 ADDS R1, R2, R3 and ADDEQ R1, R2, R3 Explain how using S (as for ADDS above)

More information

Embedded Systems Ch 12B ARM Assembly Language

Embedded Systems Ch 12B ARM Assembly Language Embedded Systems Ch 12B ARM Assembly Language Byung Kook Kim Dept of EECS Korea Advanced Institute of Science and Technology Overview 6. Exceptions 7. Conditional Execution 8. Branch Instructions 9. Software

More information

ARM Instruction Set. Introduction. Memory system. ARM programmer model. The ARM processor is easy to program at the

ARM Instruction Set. Introduction. Memory system. ARM programmer model. The ARM processor is easy to program at the Introduction ARM Instruction Set The ARM processor is easy to program at the assembly level. (It is a RISC) We will learn ARM assembly programming at the user level l and run it on a GBA emulator. Computer

More information

NET3001. Advanced Assembly

NET3001. Advanced Assembly NET3001 Advanced Assembly Arrays and Indexing supposed we have an array of 16 bytes at 0x0800.0100 write a program that determines if the array contains the byte '0x12' set r0=1 if the byte is found plan:

More information

Lecture 4 (part 2): Data Transfer Instructions

Lecture 4 (part 2): Data Transfer Instructions Lecture 4 (part 2): Data Transfer Instructions CSE 30: Computer Organization and Systems Programming Diba Mirza Dept. of Computer Science and Engineering University of California, San Diego Assembly Operands:

More information

Vorlesung / Course IN2075: Mikroprozessoren / Microprocessors

Vorlesung / Course IN2075: Mikroprozessoren / Microprocessors Vorlesung / Course IN2075: Mikroprozessoren / Microprocessors Pipelining 20 Nov 2017 Carsten Trinitis (LRR) P Techniques: Pipelining etc. Processor Organisation Tasks of a processor Input: Stream of instructions

More information

Exam 1. Date: February 23, 2016

Exam 1. Date: February 23, 2016 Exam 1 Date: February 23, 2016 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat on this exam:

More information

ARM Instruction Set 1

ARM Instruction Set 1 ARM Instruction Set 1 What is an embedded system? Components: Processor(s) Co-processors (graphics, security) Memory (disk drives, DRAM, SRAM, CD/DVD) input (mouse, keyboard, mic) output (display, printer)

More information

CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing. Instructors: Dr. Phillip Jones Dr.

CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing. Instructors: Dr. Phillip Jones Dr. CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing Instructors: Dr. Phillip Jones Dr. Zhao Zhang 1 Announcements Final Projects Projects: Mandatory Demos Deadweek

More information

Advanced Assembly, Branching, and Monitor Utilities

Advanced Assembly, Branching, and Monitor Utilities 2 Advanced Assembly, Branching, and Monitor Utilities 2.1 Objectives: There are several different ways for an instruction to form effective addresses to acquire data, called addressing modes. One of these

More information

ECE251: Thursday September 27

ECE251: Thursday September 27 ECE251: Thursday September 27 Exceptions: Interrupts and Resets Chapter in text and Lab #6. READ ALL this material! This will NOT be on the mid-term exam. Lab Practical Exam #1 Homework # due today at

More information

Review Questions. 1 The DRAM problem [5 points] Suggest a solution. 2 Big versus Little Endian Addressing [5 points]

Review Questions. 1 The DRAM problem [5 points] Suggest a solution. 2 Big versus Little Endian Addressing [5 points] Review Questions 1 The DRAM problem [5 points] Suggest a solution 2 Big versus Little Endian Addressing [5 points] Consider the 32-bit hexadecimal number 0x21d3ea7d. 1. What is the binary representation

More information

EEM870 Embedded System and Experiment Lecture 4: ARM Instruction Sets

EEM870 Embedded System and Experiment Lecture 4: ARM Instruction Sets EEM870 Embedded System and Experiment Lecture 4 ARM Instruction Sets Wen-Yen Lin, Ph.D. Department of Electrical Engineering Chang Gung University Email wylin@mail.cgu.edu.tw March 2014 Introduction Embedded

More information

ECE/CS 3710 RISC Processor Specification

ECE/CS 3710 RISC Processor Specification ECE/CS 3710 RISC Processor Specification ISA FOR PROCESSOR FALL 2009 ImmHi/Op ImmLo/ Op Code Rdest Code Ext Rsrc Mnemonic Operands 15 12 11 8 7 4 3 0 Notes (* is baseline) ADD Rsrc, Rdest 0000 Rdest 0101

More information

EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 1 of 5

EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 1 of 5 EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 1 of 5 First Name: Last Name: April 21, 2017, 10:00 to 10:50am Open book, open notes, calculator (no laptops, phones, devices with screens larger than a

More information

ECE 471 Embedded Systems Lecture 8

ECE 471 Embedded Systems Lecture 8 ECE 471 Embedded Systems Lecture 8 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 21 September 2018 Announcements HW#2 was due HW#3 will be posted today. Work in groups? Note

More information