Synthesizable FPGA Fabrics Targetable by the VTR CAD Tool

Size: px
Start display at page:

Download "Synthesizable FPGA Fabrics Targetable by the VTR CAD Tool"

Transcription

1 Synthesizable FPGA Fabrics Targetable by the VTR CAD Tool Jin Hee Kim and Jason Anderson FPL 2015 London, UK September 3, 2015

2 2 Motivation for Synthesizable FPGA Trend towards ASIC design flow Design cost saving compared to custom layout Manual layout is time costly Number of design rule increases as process decreases Completes VTR (Verilog-to-Routing) flow Flow currently ends after routing Architectures from VTR can be realized in silicon SoC integration Easily integrated Allows programmability on SoCs Democratizes access to FPGA fabrics Dominated by big companies Opens up FPGAs to other companies

3 3 Motivation for Synthesizable FPGA Trend towards ASIC design flow Design cost saving compared to custom layout Manual layout is time costly Number of design rule increases as process decreases Completes VTR (Verilog-to-Routing) flow Flow currently ends after routing Architectures from VTR can be realized in silicon SoC integration Easily integrated Allows programmability on SoCs Democratizes access to FPGA fabrics Dominated by big companies Opens up FPGAs to other companies

4 4 Motivation for Synthesizable FPGA Trend towards ASIC design flow Design cost saving compared to custom layout Manual layout is time costly Number of design rule increases as process decreases Completes VTR (Verilog-to-Routing) flow Flow currently ends after routing Architectures from VTR can be realized in silicon SoC integration Easily integrated Allows programmability on SoCs Democratizes access to FPGA fabrics Dominated by big companies Opens up FPGAs to other companies

5 5 FPGA Architecture Island-style FPGA block IO IO IO 6-LUT IO IO IO IO IO IO xbar 6-LUT 6-LUT IO IO IO Island-style FPGA

6 6 FPGA Architecture Horizontal and vertical routing tracks Switch block and connection block IO IO IO IO IO IO IO IO IO Switch IO IO IO Island-style FPGA Connection

7 7 Extensive Architecture (EArch) 1 Fracturable LUT 8 inputs (2 shared) 1 Luu, Jason. Architecture-Aware Packing and CAD Infrastructure for Field-Programmable Gate Arrays. Diss. University of Toronto, 2014.

8 8 VTR Flow Takes Verilog circuits and places and route on an FPGA Currently VTR ends after routing Verilog Circuits Elaboration Odin II Synthesis & Tech Map ABC FPGA Architecture Description File Packing Placement VPR Routing Timing & Area Estimation Quality of Results

9 9 VTR Flow C code to extend VTR to generate RTL (Verilog) and bitstream Verilog Circuits Elaboration Odin II Synthesis & Tech Map ABC FPGA Architecture Description File Packing Placement Routing VPR FPGA Fabric RTL and Bitstream Generator Timing & Area Estimation Quality of Results

10 10 FPGA Fabric RTL Generation VTR represents the complete architecture in memory Walk the in-memory architecture model to generate Verilog for: blocks Intra-logic block routing Inter-logic block routing

11 11 Generating Verilog for blocks: Declare and instantiate modules from primitives (IO, LUT, ) 6-LUT LL U T F F F F F F F F F F F FPGA Element

12 12 Generating Verilog for Routing Intra-logic block routing: 6-LUT crossbar connectivity multiple edges connecting to one pin Inter-logic block routing: Switch Connection

13 13 Generating Verilog for Configuration Configuration cells () are attached to all MUXes and LUTs Switch Connection

14 14 Generating Verilog for Configuration Configuration cells are all connected like a shift register Number of configuration bits are in ~ for 20x20 FPGA Configuration Cell Chain

15 15 Bitstream Generation VTR stores placed and routed circuit in memory Follows the same order as RTL generation Configure LUTs and MUXes as necessary Connection

16 16 Bitstream Generation VTR stores placed and routed circuit in memory Follows the same order as RTL generation Configure LUTs and MUXes as necessary 0 1 Connection

17 17 ASIC Design Flow FPGA Fabric SDC FPGA Fabric RTL Synthesis: Synopsys Design Compiler Area Analysis Synthesized Netlist Technology Libraries Place and Route: Cadence Encounter GDSII Golden Netlist + Parasitic Capacitance Info Design SDC Timing Analysis: PrimeTime Delay Analysis

18 18 Synthesis: Constraints Area Top-level is not constrained For all other modules, constrain area to be minimum Set max area to 0 Timing Set clock frequency and input-to-output delays Cannot apply constraints with combinational loops Designs configured in FPGAs generally do not have loops Timing analysis tools does not know how to handle loops Need to break loops by disabling timing arcs Balanced Optimize for both area and timing

19 19 Synthesis: Constraints Area Top-level is not constrained For all other modules, constrain area to be minimum Set max area to 0 Timing Set clock frequency and input-to-output delays Cannot apply constraints with combinational loops Designs configured in FPGAs generally do not have loops Timing analysis tools does not know how to handle loops Need to break loops by disabling timing arcs Balanced Optimize for both area and timing

20 20 Synthesis: Constraints Area Top-level is not constrained 6- For all other modules, constrain area to be minimum Set max area to 0 Timing Set clock frequency and input-to-output xbar delays LUT Cannot apply constraints with combinational loops Designs configured in FPGAs generally do not have loops Timing analysis tools does not know how to handle 6- loops Need to break loops by disabling timing arcs LUT Balanced Optimize FPGA Top Level for both area and timing Breaking Combinational Loops LUT 6- F F 0 F F 1 F F n

21 21 Synthesis: Constraints Area Top-level is not constrained For all other modules, constrain area to be minimum Set max area to 0 Timing Set clock frequency and input-to-output delays Cannot apply constraints with combinational loops Designs configured in FPGAs generally do not have loops Timing analysis tools does not know how to handle loops Need to break loops by disabling timing arcs Balanced Optimize for both area and timing

22 22 Place and Route Placed and routed as a flat design VTR has certain notion of where each logic block is located but Encounter tool does not Floorplanning: blocks, IOs, and routing MUXes are floorplanned at their respective x and y location from VTR 85% utilization 2 Parasitic capacitances obtained 2 Kuon, Ian, and Jonathan Rose. "Measuring the gap between FPGAs and ASICs." Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 26.2 (2007):

23 23 Floorplanning Impact FPGA with Floorplanning FPGA without Floorplanning

24 24 Floorplanning Impact Configuration Cells Configuration Cells FPGA with Floorplanning FPGA without Floorplanning

25 25 Floorplanning Impact clb_1_9 clb_1_8 clb_1_9 clb_1_8 FPGA with Floorplanning FPGA without Floorplanning

26 FPGA Layout 26

27 27 PrimeTime Timing analysis for design on FPGA Find critical path and delay When programmed, should not have loops Unused blocks should not be included Constraint file produced from VTR to imitate a programmed FPGA Disable timing arc Different than synthesis

28 28 PrimeTime: Programming Design IO IO IO IO IO IO Bloc k Bloc k Bloc k Bloc k Bloc k Bloc k Bloc k Bloc k Bloc k IO IO IO xbar 6-LUT 6-LUT 6-LUT 0 1 n IO IO IO Green line represents programmed path

29 29 PrimeTime: Programming Design IO IO Bloc k Bloc k 6-LUT 6-LUT 1 Bloc k IO The critical path now will be determined from the used paths

30 30 Verification Pre-synthesis Post-synthesis Post-place and route Verilog Circuit Random Vector Testbench Design Original = ModelSim VTR + RTL and Bitstream Generator FPGA Fabric RTL Bitstream Design FPGA Initialize configuration cells

31 31 Experimental Setup FPGA architecture 20 x 20 logic blocks 300 routing channel width 3 87% length 4 wires and 13% length 16 wires 3 EArch (no carry chain and no hard blocks) 1 FPGA fabric type Area-optimized Timing-optimized Balanced TSMC 65nm library 3 Murray, Kevin E., et al. "Titan: Enabling large and complex benchmarks in academic CAD." Field Programmable and Applications (FPL), rd International Conference on. IEEE, 2013.

32 32 Area Comparison Similar architecture to Altera s Stratix III 65nm process 10 fracturable LUTs 50% depopulated crossbar No carry-chain Stratix III LAB tile area 4 : mm 2 Can achieve relatively close area with area-optimized FPGA Fabric # of Std. Cells Total Area (mm 2 ) Tile Area (mm 2 ) Area-optimized 3,577, x Timing-optimized 7,521, x Balanced 5,298, x Tile Area Vs. Stratix III 4 Wong, Henry, Vaughn Betz, and Jonathan Rose. "Comparing FPGA vs. custom CMOS and the impact on processor microarchitecture." Proceedings of the 19th ACM/SIGDA international symposium on Field programmable gate arrays. ACM, 2011.

33 33 Area Breakdown 100% 90% 7% 13% 20% 80% 70% 60% 50% 25% 25% 25% 2% 28% 1% Intra- Routing Inter- Routing (Buffers) 40% 30% 20% 10% 0% 40% 19% 14% 11% 7% 28% 21% 14% Area-optimized Timing-optimized Balanced Inter- Routing Configuration () Configuration (Routing)

34 34 Delay Comparison Experiment 1: Architecture delay (benchmark agnostic) L 0 : xbar LUT L 4 : length 4 wire xbar LUT L 16 : length 16 wire xbar LUT Experiment 2: Benchmark delay Design tool and architecture dependent

35 35 Delay Comparison: Architecture Average delay of paths in 6 different areas of FPGA 2.3x to 3.5x slower as the wire length grows FPGA Fabric L 0 (ns) L 4 (ns) L 16 (ns) Area-optimized Timing-optimized Balanced Stratix III

36 36 Delay Breakdown: Architecture 100% L 0 L 4 L 16 90% 80% 70% 60% 50% 40% 30% 20% Inter- Routing Intra- Routing 10% 0%

37 37 Delay Comparison: Design Benchmark Area-optimized (ns) Timing-optimized (ns) Balanced (ns) Stratix III (ns) alu apex des ex ex5p misex pdc seq spla diffeq dsip elliptic frisc tseng addshift fsm Geo. Mean Combinational circuits Sequential circuits 3.8x

38 38 Conclusion VTR extended to generate synthesizable FPGA fabric RTL and bitstream ASIC design flow used to synthesize 3 FPGA fabrics Area-optimized Timing-optimized Balanced Area-optimized fabric is 1.5x bigger than Stratix III Designs on timing-optimized fabric is 3.8x slower

39 Questions? 39

Synthesizable FPGA Fabrics Targetable by the Verilog-to-Routing (VTR) CAD Flow

Synthesizable FPGA Fabrics Targetable by the Verilog-to-Routing (VTR) CAD Flow Synthesizable FPGA Fabrics Targetable by the Verilog-to-Routing (VTR) CAD Flow Jin Hee Kim and Jason H. Anderson Dept. of Electrical and Computer Engineering University of Toronto, Toronto, ON, Canada

More information

Christophe HURIAUX. Embedded Reconfigurable Hardware Accelerators with Efficient Dynamic Reconfiguration

Christophe HURIAUX. Embedded Reconfigurable Hardware Accelerators with Efficient Dynamic Reconfiguration Mid-term Evaluation March 19 th, 2015 Christophe HURIAUX Embedded Reconfigurable Hardware Accelerators with Efficient Dynamic Reconfiguration Accélérateurs matériels reconfigurables embarqués avec reconfiguration

More information

SUBMITTED FOR PUBLICATION TO: IEEE TRANSACTIONS ON VLSI, DECEMBER 5, A Low-Power Field-Programmable Gate Array Routing Fabric.

SUBMITTED FOR PUBLICATION TO: IEEE TRANSACTIONS ON VLSI, DECEMBER 5, A Low-Power Field-Programmable Gate Array Routing Fabric. SUBMITTED FOR PUBLICATION TO: IEEE TRANSACTIONS ON VLSI, DECEMBER 5, 2007 1 A Low-Power Field-Programmable Gate Array Routing Fabric Mingjie Lin Abbas El Gamal Abstract This paper describes a new FPGA

More information

An FPGA Design And Implementation Framework Combined With Commercial VLSI CADs

An FPGA Design And Implementation Framework Combined With Commercial VLSI CADs An FPGA Design And Implementation Framework Combined With Commercial VLSI CADs ReCoSoC 2013 Qian Zhao Motoki Amagasaki Masahiro Iida Morihiro Kuga Toshinori Sueyoshi (, Japan) Background FPGA IP core development

More information

A Routing Approach to Reduce Glitches in Low Power FPGAs

A Routing Approach to Reduce Glitches in Low Power FPGAs A Routing Approach to Reduce Glitches in Low Power FPGAs Quang Dinh, Deming Chen, Martin Wong Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign This research

More information

Vdd Programmability to Reduce FPGA Interconnect Power

Vdd Programmability to Reduce FPGA Interconnect Power Vdd Programmability to Reduce FPGA Interconnect Power Fei Li, Yan Lin and Lei He Electrical Engineering Department University of California, Los Angeles, CA 90095 ABSTRACT Power is an increasingly important

More information

An overview of standard cell based digital VLSI design

An overview of standard cell based digital VLSI design An overview of standard cell based digital VLSI design Implementation of the first generation AsAP processor Zhiyi Yu and Tinoosh Mohsenin VCL Laboratory UC Davis Outline Overview of standard cellbased

More information

SPEED AND AREA TRADE-OFFS IN CLUSTER-BASED FPGA ARCHITECTURES

SPEED AND AREA TRADE-OFFS IN CLUSTER-BASED FPGA ARCHITECTURES SPEED AND AREA TRADE-OFFS IN CLUSTER-BASED FPGA ARCHITECTURES Alexander (Sandy) Marquardt, Vaughn Betz, and Jonathan Rose Right Track CAD Corp. #313-72 Spadina Ave. Toronto, ON, Canada M5S 2T9 {arm, vaughn,

More information

Buffer Design and Assignment for Structured ASIC *

Buffer Design and Assignment for Structured ASIC * JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 30, 107-124 (2014) Buffer Design and Assignment for Structured ASIC * Department of Computer Science and Engineering Yuan Ze University Chungli, 320 Taiwan

More information

Designing Heterogeneous FPGAs with Multiple SBs *

Designing Heterogeneous FPGAs with Multiple SBs * Designing Heterogeneous FPGAs with Multiple SBs * K. Siozios, S. Mamagkakis, D. Soudris, and A. Thanailakis VLSI Design and Testing Center, Department of Electrical and Computer Engineering, Democritus

More information

How Much Logic Should Go in an FPGA Logic Block?

How Much Logic Should Go in an FPGA Logic Block? How Much Logic Should Go in an FPGA Logic Block? Vaughn Betz and Jonathan Rose Department of Electrical and Computer Engineering, University of Toronto Toronto, Ontario, Canada M5S 3G4 {vaughn, jayar}@eecgutorontoca

More information

Detailed Router for 3D FPGA using Sequential and Simultaneous Approach

Detailed Router for 3D FPGA using Sequential and Simultaneous Approach Detailed Router for 3D FPGA using Sequential and Simultaneous Approach Ashokkumar A, Dr. Niranjan N Chiplunkar, Vinay S Abstract The Auction Based methodology for routing of 3D FPGA (Field Programmable

More information

FPGA Design Framework Combined with Commercial VLSI CAD

FPGA Design Framework Combined with Commercial VLSI CAD 1602 PAPER Special Section on Reconfigurable Systems FPGA Design Framework Combined with Commercial VLSI CAD Qian ZHAO a), Nonmember, Kazuki INOUE, Student Member, Motoki AMAGASAKI, Masahiro IIDA, Morihiro

More information

A Hierarchical Description Language and Packing Algorithm for Heterogenous FPGAs. Jason Luu

A Hierarchical Description Language and Packing Algorithm for Heterogenous FPGAs. Jason Luu A Hierarchical Description Language and Packing Algorithm for Heterogenous FPGAs by Jason Luu A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

A CAD Framework for MALIBU: An FPGA with Time-multiplexed Coarse-Grained Elements. David Grant

A CAD Framework for MALIBU: An FPGA with Time-multiplexed Coarse-Grained Elements. David Grant A CAD Framework for MALIBU: An FPGA with Time-multiplexed Coarse-Grained Elements David Grant Supervisor: Dr. Guy Lemieux FPGA 2011 -- Feb 28, 2011 Motivation Growing Industry Trend: Large FPGA Circuits

More information

Performance Improvement and Size Reduction Scheme over Circuits by Using LUT/MUX Architecture

Performance Improvement and Size Reduction Scheme over Circuits by Using LUT/MUX Architecture Performance Improvement and Size Reduction Scheme over Circuits by Using LUT/MUX Architecture R. Pradeepa 1, S.P. Senthil Kumar 2 M.E. VLSI Design, Shanmuganathan Engineering College, Arasampatti, Pudukkottai-622507,

More information

Hybrid LUT/Multiplexer FPGA Logic Architectures

Hybrid LUT/Multiplexer FPGA Logic Architectures Hybrid LUT/Multiplexer FPGA Logic Architectures Abstract: Hybrid configurable logic block architectures for field-programmable gate arrays that contain a mixture of lookup tables and hardened multiplexers

More information

FPGA for Software Engineers

FPGA for Software Engineers FPGA for Software Engineers Course Description This course closes the gap between hardware and software engineers by providing the software engineer all the necessary FPGA concepts and terms. The course

More information

101-1 Under-Graduate Project Digital IC Design Flow

101-1 Under-Graduate Project Digital IC Design Flow 101-1 Under-Graduate Project Digital IC Design Flow Speaker: Ming-Chun Hsiao Adviser: Prof. An-Yeu Wu Date: 2012/9/25 ACCESS IC LAB Outline Introduction to Integrated Circuit IC Design Flow Verilog HDL

More information

Design and Implementation of FPGA Logic Architectures using Hybrid LUT/Multiplexer

Design and Implementation of FPGA Logic Architectures using Hybrid LUT/Multiplexer Design and Implementation of FPGA Logic Architectures using Hybrid LUT/Multiplexer Krosuri Rajyalakshmi 1 J.Narashima Rao 2 rajyalakshmi.krosuri@gmail.com 1 jnarasimharao09@gmail.com 2 1 PG Scholar, VLSI,

More information

Introduction Warp Processors Dynamic HW/SW Partitioning. Introduction Standard binary - Separating Function and Architecture

Introduction Warp Processors Dynamic HW/SW Partitioning. Introduction Standard binary - Separating Function and Architecture Roman Lysecky Department of Electrical and Computer Engineering University of Arizona Dynamic HW/SW Partitioning Initially execute application in software only 5 Partitioned application executes faster

More information

VTR 7.0: Next Generation Architecture and CAD System for FPGAs

VTR 7.0: Next Generation Architecture and CAD System for FPGAs 6 VTR 7.0: Next Generation Architecture and CAD System for FPGAs JASON LUU, University of Toronto JEFFREY GOEDERS, University of British Columbia MICHAEL WAINBERG, University of Toronto ANDREW SOMERVILLE,

More information

Basic Block. Inputs. K input. N outputs. I inputs MUX. Clock. Input Multiplexors

Basic Block. Inputs. K input. N outputs. I inputs MUX. Clock. Input Multiplexors RPack: Rability-Driven packing for cluster-based FPGAs E. Bozorgzadeh S. Ogrenci-Memik M. Sarrafzadeh Computer Science Department Department ofece Computer Science Department UCLA Northwestern University

More information

ECE 459/559 Secure & Trustworthy Computer Hardware Design

ECE 459/559 Secure & Trustworthy Computer Hardware Design ECE 459/559 Secure & Trustworthy Computer Hardware Design VLSI Design Basics Garrett S. Rose Spring 2016 Recap Brief overview of VHDL Behavioral VHDL Structural VHDL Simple examples with VHDL Some VHDL

More information

On Hard Adders and Carry Chains in FPGAs

On Hard Adders and Carry Chains in FPGAs 2014 2014 IEEE IEEE 22nd 22nd Annual International Symposium on on Field-Programmable Custom Custom Computing Machines Machines On Hard Adders and Carry Chains in FPGAs Jason Luu, Conor McCullough, Sen

More information

mrfpga: A Novel FPGA Architecture with Memristor-Based Reconfiguration

mrfpga: A Novel FPGA Architecture with Memristor-Based Reconfiguration mrfpga: A Novel FPGA Architecture with Memristor-Based Reconfiguration Jason Cong Bingjun Xiao Department of Computer Science University of California, Los Angeles {cong, xiao}@cs.ucla.edu Abstract In

More information

RTL Coding General Concepts

RTL Coding General Concepts RTL Coding General Concepts Typical Digital System 2 Components of a Digital System Printed circuit board (PCB) Embedded d software microprocessor microcontroller digital signal processor (DSP) ASIC Programmable

More information

DIGITAL DESIGN TECHNOLOGY & TECHNIQUES

DIGITAL DESIGN TECHNOLOGY & TECHNIQUES DIGITAL DESIGN TECHNOLOGY & TECHNIQUES CAD for ASIC Design 1 INTEGRATED CIRCUITS (IC) An integrated circuit (IC) consists complex electronic circuitries and their interconnections. William Shockley et

More information

Interconnect Driver Design for Long Wires in Field-Programmable Gate Arrays1

Interconnect Driver Design for Long Wires in Field-Programmable Gate Arrays1 Interconnect Driver Design for Long Wires in Field-Programmable Gate Arrays1 Edmund Lee, Guy Lemieux, Shahriar Mirabbasi University of British Columbia, Vancouver, Canada { eddyl lemieux shahriar } @ ece.ubc.ca

More information

Review paper on hybrid LUT/MUX combinational architecture

Review paper on hybrid LUT/MUX combinational architecture Review paper on hybrid LUT/MUX combinational architecture International Journal of LNCT, Vol 2(5) ISSN (Online): 2456-9895 Shaili Jain 1, Shashilata Rawat 2 and Monika Kapoor 3 M.Tech Scholar,Department

More information

Don t expect to be able to write and debug your code during the lab session.

Don t expect to be able to write and debug your code during the lab session. EECS150 Spring 2002 Lab 4 Verilog Simulation Mapping UNIVERSITY OF CALIFORNIA AT BERKELEY COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Lab 4 Verilog Simulation Mapping

More information

160 M. Nadjarbashi, S.M. Fakhraie and A. Kaviani Figure 2. LUTB structure. each block-level track can be arbitrarily connected to each of 16 4-LUT inp

160 M. Nadjarbashi, S.M. Fakhraie and A. Kaviani Figure 2. LUTB structure. each block-level track can be arbitrarily connected to each of 16 4-LUT inp Scientia Iranica, Vol. 11, No. 3, pp 159{164 c Sharif University of Technology, July 2004 On Routing Architecture for Hybrid FPGA M. Nadjarbashi, S.M. Fakhraie 1 and A. Kaviani 2 In this paper, the routing

More information

IMPROVING LOGIC DENSITY THROUGH SYNTHESIS-INSPIRED ARCHITECTURE Jason H. Anderson

IMPROVING LOGIC DENSITY THROUGH SYNTHESIS-INSPIRED ARCHITECTURE Jason H. Anderson IMPROVING LOGIC DENITY THROUGH YNTHEI-INPIRED ARCHITECTURE Jason H. Anderson Dept. of ECE, Univ. of Toronto Toronto, ON Canada email: janders@eecg.toronto.edu ABTRACT We leverage properties of the logic

More information

Logic Block Clustering of Large Designs for Channel-Width Constrained FPGAs

Logic Block Clustering of Large Designs for Channel-Width Constrained FPGAs { Logic Block Clustering of Large Designs for Channel-Width Constrained FPGAs Marvin Tom marvint @ ece.ubc.ca Guy Lemieux lemieux @ ece.ubc.ca Dept of ECE, University of British Columbia, Vancouver, BC,

More information

IMPROVING MEMORY AND VALIDATION SUPPORT IN FPGA ARCHITECTURE EXPLORATION. Andrew Somerville

IMPROVING MEMORY AND VALIDATION SUPPORT IN FPGA ARCHITECTURE EXPLORATION. Andrew Somerville IMPROVING MEMORY AND VALIDATION SUPPORT IN FPGA ARCHITECTURE EXPLORATION by Andrew Somerville Bachelor of Computer Science, University of New Brunswick, 2010 A Thesis Submitted in Partial Fulfillment of

More information

DESIGN AND IMPLEMENTATION OF HYBRID LUT/MULTIPLEXER FPGA LOGIC ARCHITECTURES

DESIGN AND IMPLEMENTATION OF HYBRID LUT/MULTIPLEXER FPGA LOGIC ARCHITECTURES DESIGN AND IMPLEMENTATION OF HYBRID LUT/MULTIPLEXER FPGA LOGIC ARCHITECTURES Vutukuri Syam Kumar 1 Rambabu Kusuma 2 MJRN Prasad 3 syam.kumar875@gmail.com 1 ksrk73@gmail.com 2 prasad_mjm@yahoo.co.in 1 PG

More information

An Overview of Standard Cell Based Digital VLSI Design

An Overview of Standard Cell Based Digital VLSI Design An Overview of Standard Cell Based Digital VLSI Design With examples taken from the implementation of the 36-core AsAP1 chip and the 1000-core KiloCore chip Zhiyi Yu, Tinoosh Mohsenin, Aaron Stillmaker,

More information

Static and Dynamic Memory Footprint Reduction for FPGA Routing Algorithms

Static and Dynamic Memory Footprint Reduction for FPGA Routing Algorithms 18 Static and Dynamic Memory Footprint Reduction for FPGA Routing Algorithms SCOTT Y. L. CHIN and STEVEN J. E. WILTON University of British Columbia This article presents techniques to reduce the static

More information

Efficient Hardware Debugging using Parameterized FPGA Reconfiguration

Efficient Hardware Debugging using Parameterized FPGA Reconfiguration 2016 IEEE International Parallel and Distributed Processing Symposium Workshops Efficient Hardware Debugging using Parameterized FPGA Reconfiguration Alexandra Kourfali Department of Electronics and Information

More information

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011 FPGA for Complex System Implementation National Chiao Tung University Chun-Jen Tsai 04/14/2011 About FPGA FPGA was invented by Ross Freeman in 1989 SRAM-based FPGA properties Standard parts Allowing multi-level

More information

Abbas El Gamal. Joint work with: Mingjie Lin, Yi-Chang Lu, Simon Wong Work partially supported by DARPA 3D-IC program. Stanford University

Abbas El Gamal. Joint work with: Mingjie Lin, Yi-Chang Lu, Simon Wong Work partially supported by DARPA 3D-IC program. Stanford University Abbas El Gamal Joint work with: Mingjie Lin, Yi-Chang Lu, Simon Wong Work partially supported by DARPA 3D-IC program Stanford University Chip stacking Vertical interconnect density < 20/mm Wafer Stacking

More information

Lab 3 Verilog Simulation Mapping

Lab 3 Verilog Simulation Mapping University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences 1. Motivation Lab 3 Verilog Simulation Mapping In this lab you will learn how to use

More information

Exploring Logic Block Granularity for Regular Fabrics

Exploring Logic Block Granularity for Regular Fabrics 1530-1591/04 $20.00 (c) 2004 IEEE Exploring Logic Block Granularity for Regular Fabrics A. Koorapaty, V. Kheterpal, P. Gopalakrishnan, M. Fu, L. Pileggi {aneeshk, vkheterp, pgopalak, mfu, pileggi}@ece.cmu.edu

More information

Architecture Evaluation for

Architecture Evaluation for Architecture Evaluation for Power-efficient FPGAs Fei Li*, Deming Chen +, Lei He*, Jason Cong + * EE Department, UCLA + CS Department, UCLA Partially supported by NSF and SRC Outline Introduction Evaluation

More information

FPGA Power and Timing Optimization: Architecture, Process, and CAD

FPGA Power and Timing Optimization: Architecture, Process, and CAD FPGA Power and Timing Optimization: Architecture, Process, and CAD Chun Zhang 1, Lerong Cheng 2, Lingli Wang 1* and Jiarong Tong 1 1 State-Key-Lab of ASIC & System, Fudan University llwang@fudan.edu.cn

More information

Spiral 2-8. Cell Layout

Spiral 2-8. Cell Layout 2-8.1 Spiral 2-8 Cell Layout 2-8.2 Learning Outcomes I understand how a digital circuit is composed of layers of materials forming transistors and wires I understand how each layer is expressed as geometric

More information

Programmable Logic Devices HDL-Based Design Flows CMPE 415

Programmable Logic Devices HDL-Based Design Flows CMPE 415 HDL-Based Design Flows: ASIC Toward the end of the 80s, it became difficult to use schematic-based ASIC flows to deal with the size and complexity of >5K or more gates. HDLs were introduced to deal with

More information

CSE P567 - Winter 2010 Lab 1 Introduction to FGPA CAD Tools

CSE P567 - Winter 2010 Lab 1 Introduction to FGPA CAD Tools CSE P567 - Winter 2010 Lab 1 Introduction to FGPA CAD Tools This is a tutorial introduction to the process of designing circuits using a set of modern design tools. While the tools we will be using (Altera

More information

VPR 5.0: FPGA CAD and Architecture Exploration Tools with Single-Driver Routing, Heterogeneity and Process Scaling

VPR 5.0: FPGA CAD and Architecture Exploration Tools with Single-Driver Routing, Heterogeneity and Process Scaling VPR 5.: FPGA CAD and Architecture Exploration Tools with Single-Driver Routing, Heterogeneity and Process Scaling Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Mark Fang, and Jonathan Rose

More information

According to the Moore s law, the number of transistors. Parallel FPGA Router using Sub-Gradient method. Steiner tree.

According to the Moore s law, the number of transistors. Parallel FPGA Router using Sub-Gradient method. Steiner tree. 1 Parallel FPGA Router using Sub-Gradient method and Steiner tree Rohit Agrawal, Chin Hau Hoo, Kapil Ahuja, and Akash Kumar arxiv:1803.03885v2 [cs.dc] 19 Aug 2018 Abstract In the FPGA (Field Programmable

More information

Verilog-to-Routing Documentation

Verilog-to-Routing Documentation Verilog-to-Routing Documentation Release 8.0.0-dev VTR Developers Mar 08, 2018 Contents 1 VTR 3 1.1 Get VTR................................................. 3 1.2 Install VTR................................................

More information

Testability Optimizations for A Time Multiplexed CPLD Implemented on Structured ASIC Technology

Testability Optimizations for A Time Multiplexed CPLD Implemented on Structured ASIC Technology ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 14, Number 4, 2011, 392 398 Testability Optimizations for A Time Multiplexed CPLD Implemented on Structured ASIC Technology Traian TULBURE

More information

Academic Clustering and Placement Tools for Modern Field-Programmable Gate Array Architectures

Academic Clustering and Placement Tools for Modern Field-Programmable Gate Array Architectures Academic Clustering and Placement Tools for Modern Field-Programmable Gate Array Architectures by Daniele G Paladino A thesis submitted in conformity with the requirements for the degree of Master of Applied

More information

Application-Specific Mesh-based Heterogeneous FPGA Architectures

Application-Specific Mesh-based Heterogeneous FPGA Architectures Application-Specific Mesh-based Heterogeneous FPGA Architectures Husain Parvez H abib Mehrez Application-Specific Mesh-based Heterogeneous FPGA Architectures Husain Parvez Habib Mehrez Université Pierre

More information

An FPGA Architecture Supporting Dynamically-Controlled Power Gating

An FPGA Architecture Supporting Dynamically-Controlled Power Gating An FPGA Architecture Supporting Dynamically-Controlled Power Gating Altera Corporation March 16 th, 2012 Assem Bsoul and Steve Wilton {absoul, stevew}@ece.ubc.ca System-on-Chip Research Group Department

More information

Verilog for High Performance

Verilog for High Performance Verilog for High Performance Course Description This course provides all necessary theoretical and practical know-how to write synthesizable HDL code through Verilog standard language. The course goes

More information

Research Article FPGA Interconnect Topologies Exploration

Research Article FPGA Interconnect Topologies Exploration International Journal of Reconfigurable Computing Volume 29, Article ID 259837, 13 pages doi:1.1155/29/259837 Research Article FPGA Interconnect Topologies Exploration Zied Marrakchi, Hayder Mrabet, Umer

More information

Leakage Efficient Chip-Level Dual-Vdd Assignment with Time Slack Allocation for FPGA Power Reduction

Leakage Efficient Chip-Level Dual-Vdd Assignment with Time Slack Allocation for FPGA Power Reduction 44.1 Leakage Efficient Chip-Level Dual-Vdd Assignment with Time Slack Allocation for FPGA Power Reduction Yan Lin and Lei He Electrical Engineering Department University of California, Los Angeles, CA

More information

Hardware Design Environments. Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University

Hardware Design Environments. Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University Hardware Design Environments Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University Outline Welcome to COE 405 Digital System Design Design Domains and Levels of Abstractions Synthesis

More information

EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs)

EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) September 12, 2002 John Wawrzynek Fall 2002 EECS150 - Lec06-FPGA Page 1 Outline What are FPGAs? Why use FPGAs (a short history

More information

Outline. EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) FPGA Overview. Why FPGAs?

Outline. EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) FPGA Overview. Why FPGAs? EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) September 12, 2002 John Wawrzynek Outline What are FPGAs? Why use FPGAs (a short history lesson). FPGA variations Internal logic

More information

Development of tools supporting. MEANDER Design Framework

Development of tools supporting. MEANDER Design Framework Development of tools supporting FPGA reconfigurable hardware MEANDER Design Framework Presentation Outline Current state of academic design tools Proposed design flow Proposed graphical user interface

More information

ECEN 449 Microprocessor System Design. FPGAs and Reconfigurable Computing

ECEN 449 Microprocessor System Design. FPGAs and Reconfigurable Computing ECEN 449 Microprocessor System Design FPGAs and Reconfigurable Computing Some of the notes for this course were developed using the course notes for ECE 412 from the University of Illinois, Urbana-Champaign

More information

Linking Layout to Logic Synthesis: A Unification-Based Approach

Linking Layout to Logic Synthesis: A Unification-Based Approach Linking Layout to Logic Synthesis: A Unification-Based Approach Massoud Pedram Department of EE-Systems University of Southern California Los Angeles, CA February 1998 Outline Introduction Technology and

More information

EE 330 Laboratory Experiment Number 11

EE 330 Laboratory Experiment Number 11 EE 330 Laboratory Experiment Number 11 Design and Simulation of Digital Circuits using Hardware Description Languages Fall 2017 Contents Purpose:... 3 Background... 3 Part 1: Inverter... 4 1.1 Simulating

More information

What is Xilinx Design Language?

What is Xilinx Design Language? Bill Jason P. Tomas University of Nevada Las Vegas Dept. of Electrical and Computer Engineering What is Xilinx Design Language? XDL is a human readable ASCII format compatible with the more widely used

More information

Early Models in Silicon with SystemC synthesis

Early Models in Silicon with SystemC synthesis Early Models in Silicon with SystemC synthesis Agility Compiler summary C-based design & synthesis for SystemC Pure, standard compliant SystemC/ C++ Most widely used C-synthesis technology Structural SystemC

More information

FPGA: What? Why? Marco D. Santambrogio

FPGA: What? Why? Marco D. Santambrogio FPGA: What? Why? Marco D. Santambrogio marco.santambrogio@polimi.it 2 Reconfigurable Hardware Reconfigurable computing is intended to fill the gap between hardware and software, achieving potentially much

More information

ARCHITECTURE AND CAD FOR DEEP-SUBMICRON FPGAs

ARCHITECTURE AND CAD FOR DEEP-SUBMICRON FPGAs ARCHITECTURE AND CAD FOR DEEP-SUBMICRON FPGAs THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE ARCHITECTURE AND CAD FOR DEEP-SUBMICRON FPGAs Vaughn Betz Jonathan Rose Alexander Marquardt

More information

A Novel Net Weighting Algorithm for Timing-Driven Placement

A Novel Net Weighting Algorithm for Timing-Driven Placement A Novel Net Weighting Algorithm for Timing-Driven Placement Tim (Tianming) Kong Aplus Design Technologies, Inc. 10850 Wilshire Blvd., Suite #370 Los Angeles, CA 90024 Abstract Net weighting for timing-driven

More information

FABRICATION TECHNOLOGIES

FABRICATION TECHNOLOGIES FABRICATION TECHNOLOGIES DSP Processor Design Approaches Full custom Standard cell** higher performance lower energy (power) lower per-part cost Gate array* FPGA* Programmable DSP Programmable general

More information

FPGA-Based Rapid Prototyping of Digital Signal Processing Systems

FPGA-Based Rapid Prototyping of Digital Signal Processing Systems FPGA-Based Rapid Prototyping of Digital Signal Processing Systems Kevin Banovic, Mohammed A. S. Khalid, and Esam Abdel-Raheem Presented By Kevin Banovic July 29, 2005 To be presented at the 48 th Midwest

More information

Workspace for '4-FPGA' Page 1 (row 1, column 1)

Workspace for '4-FPGA' Page 1 (row 1, column 1) Workspace for '4-FPGA' Page 1 (row 1, column 1) Workspace for '4-FPGA' Page 2 (row 2, column 1) Workspace for '4-FPGA' Page 3 (row 3, column 1) ECEN 449 Microprocessor System Design FPGAs and Reconfigurable

More information

Reduce FPGA Power With Automatic Optimization & Power-Efficient Design. Vaughn Betz & Sanjay Rajput

Reduce FPGA Power With Automatic Optimization & Power-Efficient Design. Vaughn Betz & Sanjay Rajput Reduce FPGA Power With Automatic Optimization & Power-Efficient Design Vaughn Betz & Sanjay Rajput Previous Power Net Seminar Silicon vs. Software Comparison 100% 80% 60% 40% 20% 0% 20% -40% Percent Error

More information

Verilog-to-Routing Documentation

Verilog-to-Routing Documentation Verilog-to-Routing Documentation Release 8.0.0-dev VTR Developers Oct 26, 2018 Usage 1 VTR 3 1.1 Get VTR................................................. 3 1.2 Install VTR................................................

More information

Statistical Analysis and Design of HARP Routing Pattern FPGAs

Statistical Analysis and Design of HARP Routing Pattern FPGAs Statistical Analysis and Design of HARP Routing Pattern FPGAs Gang Wang Ý, Satish Sivaswamy Þ, Cristinel Ababei Þ, Kia Bazargan Þ, Ryan Kastner Ý and Eli Bozorgzadeh ÝÝ Ý Dept. of ECE Þ ECE Dept. ÝÝ Computer

More information

Research Challenges for FPGAs

Research Challenges for FPGAs Research Challenges for FPGAs Vaughn Betz CAD Scalability Recent FPGA Capacity Growth Logic Eleme ents (Thousands) 400 350 300 250 200 150 100 50 0 MCNC Benchmarks 250 nm FLEX 10KE Logic: 34X Memory Bits:

More information

ASIC, Customer-Owned Tooling, and Processor Design

ASIC, Customer-Owned Tooling, and Processor Design ASIC, Customer-Owned Tooling, and Processor Design Design Style Myths That Lead EDA Astray Nancy Nettleton Manager, VLSI ASIC Device Engineering April 2000 Design Style Myths COT is a design style that

More information

Verilog-to-Routing Documentation

Verilog-to-Routing Documentation Verilog-to-Routing Documentation Release 8.0.0-dev VTR Developers Jul 24, 2018 Usage 1 VTR 3 1.1 Get VTR................................................. 3 1.2 Install VTR................................................

More information

Overview. Design flow. Principles of logic synthesis. Logic Synthesis with the common tools. Conclusions

Overview. Design flow. Principles of logic synthesis. Logic Synthesis with the common tools. Conclusions Logic Synthesis Overview Design flow Principles of logic synthesis Logic Synthesis with the common tools Conclusions 2 System Design Flow Electronic System Level (ESL) flow System C TLM, Verification,

More information

FPGAs & Multi-FPGA Systems. FPGA Abstract Model. Logic cells imbedded in a general routing structure. Logic cells usually contain:

FPGAs & Multi-FPGA Systems. FPGA Abstract Model. Logic cells imbedded in a general routing structure. Logic cells usually contain: s & Multi- Systems Fit logic into a prefabricated system Fixed inter-chip routing Fixed on-chip logic & routing XBA Partitioning Global outing Technology Map. XBA XBA Placement outing 23 Abstract Model

More information

Digital IC- Project 1. Place and Route. Oskar Andersson. Oskar Andersson, EIT, LTH, Digital IC project and Verifica=on

Digital IC- Project 1. Place and Route. Oskar Andersson. Oskar Andersson, EIT, LTH, Digital IC project and Verifica=on Digital IC- Project 1 Oskar Andersson Outline Backend ASIC Design flow (Physical Design) General steps Input files Floorplanning Placement ClockTree- synthesis Rou=ng Typical Backend Design Flow Synthesis

More information

Graphics: Alexandra Nolte, Gesine Marwedel, Universität Dortmund. RTL Synthesis

Graphics: Alexandra Nolte, Gesine Marwedel, Universität Dortmund. RTL Synthesis Graphics: Alexandra Nolte, Gesine Marwedel, 2003 Universität Dortmund RTL Synthesis Purpose of HDLs Purpose of Hardware Description Languages: Capture design in Register Transfer Language form i.e. All

More information

Outline. SoC Encounter Flow. Typical Backend Design Flow. Digital IC-Project and Verification. Place and Route. Backend ASIC Design flow

Outline. SoC Encounter Flow. Typical Backend Design Flow. Digital IC-Project and Verification. Place and Route. Backend ASIC Design flow Outline Digital IC-Project and Verification Deepak Dasalukunte Backend ASIC Design flow General steps Input files Floorplanning Placement Clock-synthesis Routing Typical Backend Design Flow SoC Encounter

More information

DESIGN STRATEGIES & TOOLS UTILIZED

DESIGN STRATEGIES & TOOLS UTILIZED CHAPTER 7 DESIGN STRATEGIES & TOOLS UTILIZED 7-1. Field Programmable Gate Array The internal architecture of an FPGA consist of several uncommitted logic blocks in which the design is to be encoded. The

More information

FPGA Programmable Logic Block Evaluation using. Quantified Boolean Satisfiability

FPGA Programmable Logic Block Evaluation using. Quantified Boolean Satisfiability FPGA Programmable Logic Block Evaluation using Quantified Boolean Satisfiability Andrew C. Ling, Deshanand P. Singh, and Stephen D. Brown, December 12, 2005 Abstract This paper describes a novel Field

More information

Announcements. Midterm 2 next Thursday, 6-7:30pm, 277 Cory Review session on Tuesday, 6-7:30pm, 277 Cory Homework 8 due next Tuesday Labs: project

Announcements. Midterm 2 next Thursday, 6-7:30pm, 277 Cory Review session on Tuesday, 6-7:30pm, 277 Cory Homework 8 due next Tuesday Labs: project - Fall 2002 Lecture 20 Synthesis Sequential Logic Announcements Midterm 2 next Thursday, 6-7:30pm, 277 Cory Review session on Tuesday, 6-7:30pm, 277 Cory Homework 8 due next Tuesday Labs: project» Teams

More information

4DM4 Lab. #1 A: Introduction to VHDL and FPGAs B: An Unbuffered Crossbar Switch (posted Thursday, Sept 19, 2013)

4DM4 Lab. #1 A: Introduction to VHDL and FPGAs B: An Unbuffered Crossbar Switch (posted Thursday, Sept 19, 2013) 1 4DM4 Lab. #1 A: Introduction to VHDL and FPGAs B: An Unbuffered Crossbar Switch (posted Thursday, Sept 19, 2013) Lab #1: ITB Room 157, Thurs. and Fridays, 2:30-5:20, EOW Demos to TA: Thurs, Fri, Sept.

More information

Variation Aware Routing for Three-Dimensional FPGAs

Variation Aware Routing for Three-Dimensional FPGAs Variation Aware Routing for Three-Dimensional FPGAs Chen Dong, Scott Chilstedt, and Deming Chen Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign {cdong3, chilste1,

More information

Logic Synthesis. Logic Synthesis. Gate-Level Optimization. Logic Synthesis Flow. Logic Synthesis. = Translation+ Optimization+ Mapping

Logic Synthesis. Logic Synthesis. Gate-Level Optimization. Logic Synthesis Flow. Logic Synthesis. = Translation+ Optimization+ Mapping Logic Synthesis Logic Synthesis = Translation+ Optimization+ Mapping Logic Synthesis 2 Gate-Level Optimization Logic Synthesis Flow 3 4 Design Compiler Procedure Logic Synthesis Input/Output 5 6 Design

More information

Routing Path Reuse Maximization for Efficient NV-FPGA Reconfiguration

Routing Path Reuse Maximization for Efficient NV-FPGA Reconfiguration Routing Path Reuse Maximization for Efficient NV-FPGA Reconfiguration Yuan Xue, Patrick ronin, hengmo Yang and Jingtong Hu 01/27/2016 Outline Introduction NV-FPGA benefits and challenges Routing optimization

More information

Multi-Gigahertz Parallel FFTs for FPGA and ASIC Implementation

Multi-Gigahertz Parallel FFTs for FPGA and ASIC Implementation Multi-Gigahertz Parallel FFTs for FPGA and ASIC Implementation Doug Johnson, Applications Consultant Chris Eddington, Technical Marketing Synopsys 2013 1 Synopsys, Inc. 700 E. Middlefield Road Mountain

More information

DYNAMICALLY SHIFTED SCRUBBING FOR FAST FPGA REPAIR. Leonardo P. Santos, Gabriel L. Nazar and Luigi Carro

DYNAMICALLY SHIFTED SCRUBBING FOR FAST FPGA REPAIR. Leonardo P. Santos, Gabriel L. Nazar and Luigi Carro DYNAMICALLY SHIFTED SCRUBBING FOR FAST FPGA REPAIR Leonardo P. Santos, Gabriel L. Nazar and Luigi Carro Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre, RS - Brazil

More information

An introduction to CoCentric

An introduction to CoCentric A Hand-Out 1 An introduction to CoCentric Las Palmas de G. C., Spain Jun, 27 th, 2002 Agenda 2 System-level SoC design What is SystemC? CoCentric System Studio SystemC based designs verification CoCentric

More information

ECE 636. Reconfigurable Computing. Lecture 2. Field Programmable Gate Arrays I

ECE 636. Reconfigurable Computing. Lecture 2. Field Programmable Gate Arrays I ECE 636 Reconfigurable Computing Lecture 2 Field Programmable Gate Arrays I Overview Anti-fuse and EEPROM-based devices Contemporary SRAM devices - Wiring - Embedded New trends - Single-driver wiring -

More information

Toward More Efficient Annealing-Based Placement for Heterogeneous FPGAs. Yingxuan Liu

Toward More Efficient Annealing-Based Placement for Heterogeneous FPGAs. Yingxuan Liu Toward More Efficient Annealing-Based Placement for Heterogeneous FPGAs by Yingxuan Liu A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department

More information

Architecture-Aware Packing and CAD Infrastructure for Field-Programmable Gate Arrays. Jason Luu

Architecture-Aware Packing and CAD Infrastructure for Field-Programmable Gate Arrays. Jason Luu Architecture-Aware Packing and CAD Infrastructure for Field-Programmable Gate Arrays by Jason Luu A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate

More information

Digital Systems Laboratory

Digital Systems Laboratory 2012 Fall CSE140L Digital Systems Laboratory by Dr. Choon Kim CSE Department UCSD 1 Welcome to CSE140L! 2 3-way Light Controller, 2-1 MUX, Majority Detector, 7- seg Display, Binary-to- Decimal converter.

More information

EECS150 - Digital Design Lecture 5 - Verilog Logic Synthesis

EECS150 - Digital Design Lecture 5 - Verilog Logic Synthesis EECS150 - Digital Design Lecture 5 - Verilog Logic Synthesis Jan 31, 2012 John Wawrzynek Spring 2012 EECS150 - Lec05-verilog_synth Page 1 Outline Quick review of essentials of state elements Finite State

More information

Fast FPGA Routing Approach Using Stochestic Architecture

Fast FPGA Routing Approach Using Stochestic Architecture . Fast FPGA Routing Approach Using Stochestic Architecture MITESH GURJAR 1, NAYAN PATEL 2 1 M.E. Student, VLSI and Embedded System Design, GTU PG School, Ahmedabad, Gujarat, India. 2 Professor, Sabar Institute

More information