Contents Part I Basic Concepts The Nature of Hardware and Software Data Flow Modeling and Transformation

Size: px
Start display at page:

Download "Contents Part I Basic Concepts The Nature of Hardware and Software Data Flow Modeling and Transformation"

Transcription

1 Contents Part I Basic Concepts 1 The Nature of Hardware and Software Introducing Hardware/Software Codesign Hardware Software Hardware and Software Defining Hardware/Software Codesign The Quest for Energy Efficiency Performance Energy Efficiency The Driving Factors in Hardware/Software Codesign The Hardware-Software Codesign Space The Platform Design Space Application Mapping The Dualism of Hardware Design and Software Design Modeling Abstraction Level Concurrency and Parallelism Summary Further Reading Problems Data Flow Modeling and Transformation Introducing Data Flow Graphs Tokens, Actors, and Queues Firing Rates, Firing Rules, and Schedules Synchronous Data Flow (SDF) Graphs SDF Graphs are Determinate Analyzing Synchronous Data Flow Graphs Deriving Periodic Admissible Sequential Schedules Example: Deriving a PASS for the PAM-4 System xv

2 xvi Contents 2.3 Control Flow Modeling and the Limitations of Data Flow Models Emulating Control Flow with SDF Semantics Extending SDF Semantics Adding Time and Resources Real-Time Constraints and Input/Output Sample Rate Data Flow Resource Model Limits on Throughput Transformations Multirate Expansion Retiming Pipelining Unfolding Data Flow Modeling Summary Further Reading Problems Data Flow Implementation in Software and Hardware Software Implementation of Data Flow Converting Queues and Actors into Software Software Implementation with a Dynamic Scheduler Example: Four-Point Fast Fourier Transform as an SDF System Sequential Targets with Static Schedule Hardware Implementation of Data Flow Single-Rate SDF Graphs into Hardware Pipelining Hardware/Software Implementation of Data Flow Summary Further Reading Problems Analysis of Control Flow and Data Flow Data and Control Edges of a C Program Implementing Data and Control Edges Construction of the Control Flow Graph Construction of the Data Flow Graph Application: Translating C to Hardware Designing the Datapath Designing the Controller Single-Assignment Programs Summary Further Reading Problems

3 Contents xvii Part II The Design Space of Custom Architectures 5 Finite State Machine with Datapath Cycle-Based Bit-Parallel Hardware Wires and Registers Precision and Sign Hardware Mapping of Expressions Hardware Modules Finite State Machines Finite State Machines with Datapath Modeling The FSMD Model As Two Stacked FSM An FSMD Is Not Unique Implementation FSMD Design Example: A Median Processor Design Specification: Calculating the Median Mapping the Median in Hardware Sequentializing the Data Input Fully Sequentialized Computation Proper FSMD Language Mapping for FSMD by Example GCD in GEZEL GCD in Verilog GCD in VHDL GCD in SystemC Summary Further Reading Problems Microprogrammed Architectures Limitations of Finite State Machines State Explosion Exception Handling Runtime Flexibility Microprogrammed Control Micro-instruction Encoding Jump Field Command Field The Micro-programmed Datapath Datapath Architecture Writing Micro-programs Implementing a Micro-programmed Machine Micro-instruction Word Definition Micro-program Interpreters

4 xviii Contents 6.7 Micro-program Pipelining Micro-instruction Register Datapath Condition-Code Register Pipelined Next-Address Logic Microprogramming with Microcontrollers System Architecture Example: Bresenham Line Drawing Summary Further Reading Problems General-Purpose Embedded Cores Processors The Toolchain of a Typical Micro-processor From C to Assembly Instructions The RISC Pipeline Control Hazards Data Hazards Structural Hazards Program Organization Data Types Variables in the Memory Hierarchy Function Calls Program Layout Compiler Tools Examining Size Examining Sections Examining Assembly Code Low-Level Program Analysis Processor Simulation Instruction-Set Simulation Analysis Based on Execution of Object Code Simulation at Low Abstraction Level Summary Further Reading Problems Systemon Chip The System-on-Chip Concept The Cast of Players SoC Interfaces for Custom Hardware Four Design Principles in SoC Architecture Heterogeneous and Distributed Data Processing Heterogeneous and Distributed Communications Heterogeneous and Distributed Storage Hierarchical Control

5 Contents xix 8.3 Example: Portable Multimedia System SoC Modeling in GEZEL An SoC with a StrongARM Core Ping-Pong Buffer with an UART on the AVR ATMega Summary Further Reading Problems Part III Hardware/Software Interfaces 9 Principles of Hardware/Software Communication Connecting Hardware and Software Synchronization Schemes Synchronization Concepts Semaphore One-Way and Two-Way Handshake Blocking and Non-blocking Data-Transfer Communication-Constrained Versus Computation-Constrained Tight and Loose Coupling Summary Further Reading Problems On-Chip Busses On-Chip Bus Systems A Few Existing On-Chip Bus Standards Elements in a Shared Bus Elements in a Point-to-Point Bus Physical Implementation of On-Chip Busses Bus Naming Convention Bus Timing Diagram Definition of the Generic Bus Bus Transfers Simple Read and Write Transfers Transfer Sizing and Endianess Improved Bus Transfers Multi-master Bus Systems Bus Priority Bus Locking Bus Topologies Bus Switches Network On Chip Summary

6 xx Contents 10.6 Further Reading Problems Microprocessor Interfaces Memory-Mapped Interfaces The Memory-Mapped Register Mailboxes First-In First-Out Queues Slave and Master Handshakes Shared Memory GEZEL Modeling of Memory-Mapped Interfaces Coprocessor Interfaces The Fast Simplex Link The LEON-3 Floating Point Coprocessor Interface Custom-Instruction Interfaces ASIP Design Flow Example: Endianness Byte-Ordering Processor Example: The Nios-II Custom-Instruction Interface Finding Good ASIP Instructions Summary Further Reading Problems Hardware Interfaces The Coprocessor Hardware Interface Functions of the Coprocessor Hardware Interface Layout of the Coprocessor Hardware Interface Data Design Flexible Addressing Mechanisms Multiplexing and Masking Control Design Hierarchical Control Control of Internal Pipelining Programmer s Model = Control Design + Data Design Address Map Instruction Set Summary Further Reading Problems Part IV Applications 13 Trivium Crypto-Coprocessor The Trivium Stream Cipher Algorithm Stream Ciphers Trivium

7 Contents xxi Hardware Mapping of Trivium A Hardware Testbench for Trivium Trivium for 8-bit Platforms Overall Design of the 8051 Coprocessor Hardware Platform of the 8051 Coprocessor Software Driver for Trivium for 32-bit Platforms Hardware Platform Using Memory-Mapped Interfaces Software Driver Using Memory-Mapped Interfaces Hardware Platform Using a Custom-Instruction Interface Software Driver for a Custom-Instruction Interface Summary Further Reading Problems AES Co-processor AES Encryption and Decryption Memory-Mapped AES Encryption Coprocessor Hardware Interface Operation Programmer s Model Software Driver Design Hardware Interface Design System Performance Evaluation AES Encryption/Decryption with Custom Instructions AES T-box Reference Implementation AES T-box Custom Instruction Design AES T-box Custom Instruction in GEZEL AES T-box Software Integration and Performance Summary Further Reading Problems CORDIC Co-processor The Coordinate Rotation Digital Computer Algorithm The Algorithm Reference Implementation in C A Hardware Coprocessor for CORDIC A CORDIC Kernel in Hardware A Hardware Interface for Fast-Simplex-Link Coprocessors An FPGA Prototype of the CORDIC Coprocessor Handling Large Amounts of Rotations Summary

8 xxii Contents 15.6 Further Reading Problems A Hands-on Experiments in GEZEL A.1 Overview of the GEZEL Tools A.2 Installing the GEZEL Tools A.2.1 Installation on a Ubuntu System A.2.2 Installation of Cross-Compiler Tools A.2.3 Compiling GEZEL from Source Code on a 32-bit System A.2.4 Compiling GEZEL from Source Code on a 64-bit System A.3 Running the Examples A.3.1 Examples from FSMD Chapter A.3.2 Examples from Microprogrammed Architectures Chapter A.3.3 Examples from System on Chip Chapter A.3.4 Examples from Microprocessor Interfaces Chapter A.3.5 Examples from Trivium Chapter A.3.6 Examples from AES Chapter A.3.7 Examples from CORDIC Chapter References Index

9

A Practical Introduction to Hardware/Software Codesign

A Practical Introduction to Hardware/Software Codesign A Practical Introduction to Hardware/Software Codesign Patrick R. Schaumont A Practical Introduction to Hardware/Software Codesign 123 Dr. Patrick R. Schaumont Virginia Tech Bradley Dept. Electrical &

More information

A Practical Introduction to Hardware/Software Codesign

A Practical Introduction to Hardware/Software Codesign A Practical Introduction to Hardware/Software Codesign Patrick R. Schaumont A Practical Introduction to Hardware/Software Codesign Second Edition 123 Patrick R. Schaumont Bradley Department of Electrical

More information

EE 459/500 HDL Based Digital Design with Programmable Logic

EE 459/500 HDL Based Digital Design with Programmable Logic EE 459/500 HDL Based Digital Design with Programmable Logic Lecture 17 From special-purpose FSMD to general-purpose microcontroller: Xilinx s PicoBlaze 1 Overview From FSMD to Microcontroller PicoBlaze

More information

2 MARKS Q&A 1 KNREDDY UNIT-I

2 MARKS Q&A 1 KNREDDY UNIT-I 2 MARKS Q&A 1 KNREDDY UNIT-I 1. What is bus; list the different types of buses with its function. A group of lines that serves as a connecting path for several devices is called a bus; TYPES: ADDRESS BUS,

More information

RTL HARDWARE DESIGN USING VHDL. Coding for Efficiency, Portability, and Scalability. PONG P. CHU Cleveland State University

RTL HARDWARE DESIGN USING VHDL. Coding for Efficiency, Portability, and Scalability. PONG P. CHU Cleveland State University ~ ~~ ~ ~~ ~ RTL HARDWARE DESIGN USING VHDL Coding for Efficiency, Portability, and Scalability PONG P. CHU Cleveland State University A JOHN WlLEY & SONS, INC., PUBLICATION This Page Intentionally Left

More information

Contents 1 Introduction 2 Functional Verification: Challenges and Solutions 3 SystemVerilog Paradigm 4 UVM (Universal Verification Methodology)

Contents 1 Introduction 2 Functional Verification: Challenges and Solutions 3 SystemVerilog Paradigm 4 UVM (Universal Verification Methodology) 1 Introduction............................................... 1 1.1 Functional Design Verification: Current State of Affair......... 2 1.2 Where Are the Bugs?.................................... 3 2 Functional

More information

ECE332, Week 2, Lecture 3. September 5, 2007

ECE332, Week 2, Lecture 3. September 5, 2007 ECE332, Week 2, Lecture 3 September 5, 2007 1 Topics Introduction to embedded system Design metrics Definitions of general-purpose, single-purpose, and application-specific processors Introduction to Nios

More information

ECE332, Week 2, Lecture 3

ECE332, Week 2, Lecture 3 ECE332, Week 2, Lecture 3 September 5, 2007 1 Topics Introduction to embedded system Design metrics Definitions of general-purpose, single-purpose, and application-specific processors Introduction to Nios

More information

Hardware/Software Co-design

Hardware/Software Co-design Hardware/Software Co-design Zebo Peng, Department of Computer and Information Science (IDA) Linköping University Course page: http://www.ida.liu.se/~petel/codesign/ 1 of 52 Lecture 1/2: Outline : an Introduction

More information

Unit 2: High-Level Synthesis

Unit 2: High-Level Synthesis Course contents Unit 2: High-Level Synthesis Hardware modeling Data flow Scheduling/allocation/assignment Reading Chapter 11 Unit 2 1 High-Level Synthesis (HLS) Hardware-description language (HDL) synthesis

More information

EMBEDDED SOPC DESIGN WITH NIOS II PROCESSOR AND VHDL EXAMPLES

EMBEDDED SOPC DESIGN WITH NIOS II PROCESSOR AND VHDL EXAMPLES EMBEDDED SOPC DESIGN WITH NIOS II PROCESSOR AND VHDL EXAMPLES Pong P. Chu Cleveland State University A JOHN WILEY & SONS, INC., PUBLICATION PREFACE An SoC (system on a chip) integrates a processor, memory

More information

FP&A Simulation. A Complete Step-by-Step Guide. Ray Salemi

FP&A Simulation. A Complete Step-by-Step Guide. Ray Salemi FP&A Simulation A Complete Step-by-Step Guide Ray Salemi Contents Acknowledgments vii Foreword ix Preface xi The Boiled Frog 1 A Boiled Story 3 Root Cause Analysis 4 The "Verification Complete" Milestone

More information

Hardware/software codesign for stream ciphers

Hardware/software codesign for stream ciphers Hardware/software codesign for stream ciphers Patrick Schaumont 1 and Ingrid Verbauwhede 2 1 ECE Department, Virginia Polytechnic Institute and State University, USA, schaum@vt.edu 2 ESAT/COSIC, Katholieke

More information

A Tutorial Introduction 1

A Tutorial Introduction 1 Preface From the Old to the New Acknowledgments xv xvii xxi 1 Verilog A Tutorial Introduction 1 Getting Started A Structural Description Simulating the binarytoeseg Driver Creating Ports For the Module

More information

EE382V: System-on-a-Chip (SoC) Design

EE382V: System-on-a-Chip (SoC) Design EE382V: System-on-a-Chip (SoC) Design Lecture 10 Task Partitioning Sources: Prof. Margarida Jacome, UT Austin Prof. Lothar Thiele, ETH Zürich Andreas Gerstlauer Electrical and Computer Engineering University

More information

Computer Organization and Design, 5th Edition: The Hardware/Software Interface

Computer Organization and Design, 5th Edition: The Hardware/Software Interface Computer Organization and Design, 5th Edition: The Hardware/Software Interface 1 Computer Abstractions and Technology 1.1 Introduction 1.2 Eight Great Ideas in Computer Architecture 1.3 Below Your Program

More information

Embedded Systems. 7. System Components

Embedded Systems. 7. System Components Embedded Systems 7. System Components Lothar Thiele 7-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic

More information

Computer organization and architecture UNIT-I 2 MARKS

Computer organization and architecture UNIT-I 2 MARKS Computer organization and architecture UNIT-I 1. What are the functional units? 2. what is meant by input unit? 3. What is meant by memory unit? 4. What are the operations in ALU? 5. What is meant by output

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

The SOCks Design Platform. Johannes Grad

The SOCks Design Platform. Johannes Grad The SOCks Design Platform Johannes Grad System-on-Chip (SoC) Design Combines all elements of a computer onto a single chip Microprocessor Memory Address- and Databus Periphery Application specific logic

More information

Codesign Framework. Parts of this lecture are borrowed from lectures of Johan Lilius of TUCS and ASV/LL of UC Berkeley available in their web.

Codesign Framework. Parts of this lecture are borrowed from lectures of Johan Lilius of TUCS and ASV/LL of UC Berkeley available in their web. Codesign Framework Parts of this lecture are borrowed from lectures of Johan Lilius of TUCS and ASV/LL of UC Berkeley available in their web. Embedded Processor Types General Purpose Expensive, requires

More information

ESE532: System-on-a-Chip Architecture. Today. Programmable SoC. Message. Process. Reminder

ESE532: System-on-a-Chip Architecture. Today. Programmable SoC. Message. Process. Reminder ESE532: System-on-a-Chip Architecture Day 5: September 18, 2017 Dataflow Process Model Today Dataflow Process Model Motivation Issues Abstraction Basic Approach Dataflow variants Motivations/demands for

More information

SPECC: SPECIFICATION LANGUAGE AND METHODOLOGY

SPECC: SPECIFICATION LANGUAGE AND METHODOLOGY SPECC: SPECIFICATION LANGUAGE AND METHODOLOGY SPECC: SPECIFICATION LANGUAGE AND METHODOLOGY Daniel D. Gajski Jianwen Zhu Rainer Dömer Andreas Gerstlauer Shuqing Zhao University of California, Irvine SPRINGER

More information

ECE 448 Lecture 15. Overview of Embedded SoC Systems

ECE 448 Lecture 15. Overview of Embedded SoC Systems ECE 448 Lecture 15 Overview of Embedded SoC Systems ECE 448 FPGA and ASIC Design with VHDL George Mason University Required Reading P. Chu, FPGA Prototyping by VHDL Examples Chapter 8, Overview of Embedded

More information

Hardware Software Codesign of Embedded Systems

Hardware Software Codesign of Embedded Systems Hardware Software Codesign of Embedded Systems Rabi Mahapatra Texas A&M University Today s topics Course Organization Introduction to HS-CODES Codesign Motivation Some Issues on Codesign of Embedded System

More information

The Verilog Hardware Description Language

The Verilog Hardware Description Language Donald Thomas Philip Moorby The Verilog Hardware Description Language Fifth Edition 4y Spri nnger Preface From the Old to the New Acknowledgments xv xvii xxi 1 Verilog A Tutorial Introduction Getting Started

More information

Digital VLSI Design with Verilog

Digital VLSI Design with Verilog John Williams Digital VLSI Design with Verilog A Textbook from Silicon Valley Technical Institute Foreword by Don Thomas Sprin ger Contents Introduction xix 1 Course Description xix 2 Using this Book xx

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Introduction to Embedded Systems Outline Embedded systems overview What is embedded system Characteristics Elements of embedded system Trends in embedded system Design cycle 2 Computing Systems Most of

More information

Preface... (vii) CHAPTER 1 INTRODUCTION TO COMPUTERS

Preface... (vii) CHAPTER 1 INTRODUCTION TO COMPUTERS Contents Preface... (vii) CHAPTER 1 INTRODUCTION TO COMPUTERS 1.1. INTRODUCTION TO COMPUTERS... 1 1.2. HISTORY OF C & C++... 3 1.3. DESIGN, DEVELOPMENT AND EXECUTION OF A PROGRAM... 3 1.4 TESTING OF PROGRAMS...

More information

SoC Design for the New Millennium Daniel D. Gajski

SoC Design for the New Millennium Daniel D. Gajski SoC Design for the New Millennium Daniel D. Gajski Center for Embedded Computer Systems University of California, Irvine www.cecs.uci.edu/~gajski Outline System gap Design flow Model algebra System environment

More information

Interfacing a High Speed Crypto Accelerator to an Embedded CPU

Interfacing a High Speed Crypto Accelerator to an Embedded CPU Interfacing a High Speed Crypto Accelerator to an Embedded CPU Alireza Hodjat ahodjat @ee.ucla.edu Electrical Engineering Department University of California, Los Angeles Ingrid Verbauwhede ingrid @ee.ucla.edu

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY,VIRUDHUNAGAR

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY,VIRUDHUNAGAR Year/sem: 02/04 Academic Year: 2014-2015 (even) UNIT II THE 8086 SYSTEM BUS STRUCTURE PART A 1. What are the three groups of signals in 8086? The 8086 signals are categorized in three groups. They are:

More information

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I UNIT-I 1. List and explain the functional units of a computer with a neat diagram 2. Explain the computer levels of programming languages 3. a) Explain about instruction formats b) Evaluate the arithmetic

More information

ECE4530 Fall 2015: The Codesign Challenge I Am Seeing Circles. Application: Bresenham Circle Drawing

ECE4530 Fall 2015: The Codesign Challenge I Am Seeing Circles. Application: Bresenham Circle Drawing ECE4530 Fall 2015: The Codesign Challenge I Am Seeing Circles Assignment posted on Thursday 11 November 8AM Solutions due on Thursday 3 December 8AM The Codesign Challenge is the final assignment in ECE

More information

SpecC Methodology for High-Level Modeling

SpecC Methodology for High-Level Modeling EDP 2002 9 th IEEE/DATC Electronic Design Processes Workshop SpecC Methodology for High-Level Modeling Rainer Dömer Daniel D. Gajski Andreas Gerstlauer Center for Embedded Computer Systems Universitiy

More information

EEL 4783: Hardware/Software Co-design with FPGAs

EEL 4783: Hardware/Software Co-design with FPGAs EEL 4783: Hardware/Software Co-design with FPGAs Lecture 5: Digital Camera: Software Implementation* Prof. Mingjie Lin * Some slides based on ISU CPrE 588 1 Design Determine system s architecture Processors

More information

EEL 5722C Field-Programmable Gate Array Design

EEL 5722C Field-Programmable Gate Array Design EEL 5722C Field-Programmable Gate Array Design Lecture 19: Hardware-Software Co-Simulation* Prof. Mingjie Lin * Rabi Mahapatra, CpSc489 1 How to cosimulate? How to simulate hardware components of a mixed

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT-I

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT-I SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : CO (16MC802) Year & Sem: I-MCA & I-Sem Course & Branch: MCA Regulation:

More information

SECTION A. (i) The Boolean function in sum of products form where K-map is given below (figure) is:

SECTION A. (i) The Boolean function in sum of products form where K-map is given below (figure) is: SECTION A 1. Fill in the blanks: (i) The Boolean function in sum of products form where K-map is given below (figure) is: C B 0 1 0 1 0 1 A A (ii) Consider a 3-bit error detection and 1-bit error correction

More information

System On Chip: Design & Modelling (SOC/DAM) 1 R: Verilog RTL Design with examples.

System On Chip: Design & Modelling (SOC/DAM) 1 R: Verilog RTL Design with examples. System On Chip: Design & Modelling (SOC/DAM) Exercises Here is the first set of exercises. These are intended to cover subject groups 1-4 of the SOC/DAM syllabus (R, SC, SD, ESL). These questions are styled

More information

С and the Programming for Multitasking. Thomas W. Schultz. Purdue University West Lafayette, Indiana

С and the Programming for Multitasking. Thomas W. Schultz. Purdue University West Lafayette, Indiana С and the 8051 Programming for Multitasking Thomas W. Schultz Purdue University West Lafayette, Indiana PTR Prentice Hall Englewood Cliffs, New Jersey 07632 Preface Introduction Chapter 1 WHY THE 8051?

More information

Higher Level Programming Abstractions for FPGAs using OpenCL

Higher Level Programming Abstractions for FPGAs using OpenCL Higher Level Programming Abstractions for FPGAs using OpenCL Desh Singh Supervising Principal Engineer Altera Corporation Toronto Technology Center ! Technology scaling favors programmability CPUs."#/0$*12'$-*

More information

Chapter 4. Chapter 4 Objectives. MARIE: An Introduction to a Simple Computer

Chapter 4. Chapter 4 Objectives. MARIE: An Introduction to a Simple Computer Chapter 4 MARIE: An Introduction to a Simple Computer Chapter 4 Objectives Learn the components common to every modern computer system. Be able to explain how each component contributes to program execution.

More information

Chapter 4. MARIE: An Introduction to a Simple Computer

Chapter 4. MARIE: An Introduction to a Simple Computer Chapter 4 MARIE: An Introduction to a Simple Computer Chapter 4 Objectives Learn the components common to every modern computer system. Be able to explain how each component contributes to program execution.

More information

Cosimulation II. How to cosimulate?

Cosimulation II. How to cosimulate? Cosimulation II Cosimulation Approaches Mahapatra-Texas A&M-Fall 00 1 How to cosimulate? How to simulate hardware components of a mixed hardware-software system within a unified environment? This includes

More information

CONTACT: ,

CONTACT: , S.N0 Project Title Year of publication of IEEE base paper 1 Design of a high security Sha-3 keccak algorithm 2012 2 Error correcting unordered codes for asynchronous communication 2012 3 Low power multipliers

More information

PD215 Mechatronics. Week 3/4 Interfacing Hardware and Communication Systems

PD215 Mechatronics. Week 3/4 Interfacing Hardware and Communication Systems PD215 Mechatronics Week 3/4 Interfacing Hardware and Communication Systems Interfacing with the physical world A compute device (microprocessor) in mechatronic system needs to accept input information

More information

BASIC INTERFACING CONCEPTS

BASIC INTERFACING CONCEPTS Contents i SYLLABUS UNIT - I 8085 ARCHITECTURE Introduction to Microprocessors and Microcontrollers, 8085 Processor Architecture, Internal Operations, Instructions and Timings, Programming the 8085-Introduction

More information

Cosimulation II. Cosimulation Approaches

Cosimulation II. Cosimulation Approaches Cosimulation II Cosimulation Approaches How to cosimulate? How to simulate hardware components of a mixed hardware-software system within a unified environment? This includes simulation of the hardware

More information

Computer Organization and Design THE HARDWARE/SOFTWARE INTERFACE

Computer Organization and Design THE HARDWARE/SOFTWARE INTERFACE T H I R D E D I T I O N R E V I S E D Computer Organization and Design THE HARDWARE/SOFTWARE INTERFACE Contents v Contents Preface C H A P T E R S Computer Abstractions and Technology 2 1.1 Introduction

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within up to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the

More information

Embedded Computation

Embedded Computation Embedded Computation What is an Embedded Processor? Any device that includes a programmable computer, but is not itself a general-purpose computer [W. Wolf, 2000]. Commonly found in cell phones, automobiles,

More information

Embedded System Design

Embedded System Design Modeling, Synthesis, Verification Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, Gunar Schirner 7/8/2009 Modeling Abstract view of a design Representation of reality in each design step Apply analysis,

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 3 Fundamentals in Computer Architecture Computer Architecture Part 3 page 1 of 55 Prof. Dr. Uwe Brinkschulte,

More information

Introduction to Electronic Design Automation. Model of Computation. Model of Computation. Model of Computation

Introduction to Electronic Design Automation. Model of Computation. Model of Computation. Model of Computation Introduction to Electronic Design Automation Model of Computation Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Spring 03 Model of Computation In system design,

More information

MARIE: An Introduction to a Simple Computer

MARIE: An Introduction to a Simple Computer MARIE: An Introduction to a Simple Computer 4.2 CPU Basics The computer s CPU fetches, decodes, and executes program instructions. The two principal parts of the CPU are the datapath and the control unit.

More information

MICROPROCESSOR Architecture, Programming and Interfacing SUNIL MATHUR. Assistant Professor Maharaja Agrasen Institute of Technology Delhi

MICROPROCESSOR Architecture, Programming and Interfacing SUNIL MATHUR. Assistant Professor Maharaja Agrasen Institute of Technology Delhi MICROPROCESSOR 8086 Architecture, Programming and Interfacing SUNIL MATHUR Assistant Professor Maharaja Agrasen Institute of Technology Delhi New Delhi-110001 2011 MICROPROCESSOR 8086: Architecture, Programming

More information

Chapter 4. Chapter 4 Objectives

Chapter 4. Chapter 4 Objectives Chapter 4 MARIE: An Introduction to a Simple Computer Chapter 4 Objectives Learn the components common to every modern computer system. Be able to explain how each component contributes to program execution.

More information

Overview of Computer Organization. Chapter 1 S. Dandamudi

Overview of Computer Organization. Chapter 1 S. Dandamudi Overview of Computer Organization Chapter 1 S. Dandamudi Outline Introduction Basic Terminology and Notation Views of computer systems User s view Programmer s view Advantages of high-level languages Why

More information

Chapter 1 The Nature of Hardware and Software

Chapter 1 The Nature of Hardware and Software Chapter 1 The Nature of Hardware and Software 1.1 Introducing Hardware/Software Codesign Hardware/software codesign is a broad term to capture many different things in electronic system design. We start

More information

Energy and Performance Evaluation of an FPGA-Based SoC Platform with AES and PRESENT Coprocessors

Energy and Performance Evaluation of an FPGA-Based SoC Platform with AES and PRESENT Coprocessors Energy and Performance Evaluation of an FPGA-Based SoC Platform with AES and PRESENT Coprocessors Xu Guo, Zhimin Chen, and Patrick Schaumont Virginia Tech, Blacksburg VA 24061, USA {xuguo,chenzm,schaum}@vt.edu

More information

ECE 551 System on Chip Design

ECE 551 System on Chip Design ECE 551 System on Chip Design Introducing Bus Communications Garrett S. Rose Fall 2018 Emerging Applications Requirements Data Flow vs. Processing µp µp Mem Bus DRAMC Core 2 Core N Main Bus µp Core 1 SoCs

More information

Design and Implementation of a FPGA-based Pipelined Microcontroller

Design and Implementation of a FPGA-based Pipelined Microcontroller Design and Implementation of a FPGA-based Pipelined Microcontroller Rainer Bermbach, Martin Kupfer University of Applied Sciences Braunschweig / Wolfenbüttel Germany Embedded World 2009, Nürnberg, 03.03.09

More information

Overview of Computer Organization. Outline

Overview of Computer Organization. Outline Overview of Computer Organization Chapter 1 S. Dandamudi Outline Introduction Basic Terminology and Notation Views of computer systems User s view Programmer s view Advantages of high-level languages Why

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE Page 1 1. Which register store the address of next instruction to be executed? A) PC B) AC C) SP D) NONE 2. How many bits are required to address the 128 words of memory? A) 7 B) 8 C) 9 D) NONE 3. is the

More information

Multimedia Decoder Using the Nios II Processor

Multimedia Decoder Using the Nios II Processor Multimedia Decoder Using the Nios II Processor Third Prize Multimedia Decoder Using the Nios II Processor Institution: Participants: Instructor: Indian Institute of Science Mythri Alle, Naresh K. V., Svatantra

More information

COPYRIGHTED MATERIAL. Contents. Part I: C# Fundamentals 1. Chapter 1: The.NET Framework 3. Chapter 2: Getting Started with Visual Studio

COPYRIGHTED MATERIAL. Contents. Part I: C# Fundamentals 1. Chapter 1: The.NET Framework 3. Chapter 2: Getting Started with Visual Studio Introduction XXV Part I: C# Fundamentals 1 Chapter 1: The.NET Framework 3 What s the.net Framework? 3 Common Language Runtime 3.NET Framework Class Library 4 Assemblies and the Microsoft Intermediate Language

More information

EC EMBEDDED AND REAL TIME SYSTEMS

EC EMBEDDED AND REAL TIME SYSTEMS EC6703 - EMBEDDED AND REAL TIME SYSTEMS Unit I -I INTRODUCTION TO EMBEDDED COMPUTING Part-A (2 Marks) 1. What is an embedded system? An embedded system employs a combination of hardware & software (a computational

More information

Energy Estimation Based on Hierarchical Bus Models for Power-Aware Smart Cards

Energy Estimation Based on Hierarchical Bus Models for Power-Aware Smart Cards Energy Estimation Based on Hierarchical Bus Models for Power-Aware Smart Cards U. Neffe, K. Rothbart, Ch. Steger, R. Weiss Graz University of Technology Inffeldgasse 16/1 8010 Graz, AUSTRIA {neffe, rothbart,

More information

System Level Design Methods for Secure Embedded Systems

System Level Design Methods for Secure Embedded Systems System Level Design Methods for Secure Embedded Systems Patrick Schaumont Center for Embedded Systems in Critical Applications Secure Embedded Systems Mobile Biometrics Mobile Authentication Access Control

More information

Embedded System Design and Modeling EE382V, Fall 2008

Embedded System Design and Modeling EE382V, Fall 2008 Embedded System Design and Modeling EE382V, Fall 2008 Lecture Notes 3 The SpecC System-Level Design Language Dates: Sep 9&11, 2008 Scribe: Mahesh Prabhu Languages: Any language would have characters, words

More information

System-On-Chip Design with the Leon CPU The SOCKS Hardware/Software Environment

System-On-Chip Design with the Leon CPU The SOCKS Hardware/Software Environment System-On-Chip Design with the Leon CPU The SOCKS Hardware/Software Environment Introduction Digital systems typically contain both, software programmable components, as well as application specific logic.

More information

FPGA for Software Engineers

FPGA for Software Engineers FPGA for Software Engineers Course Description This course closes the gap between hardware and software engineers by providing the software engineer all the necessary FPGA concepts and terms. The course

More information

QUESTION BANK UNIT-I. 4. With a neat diagram explain Von Neumann computer architecture

QUESTION BANK UNIT-I. 4. With a neat diagram explain Von Neumann computer architecture UNIT-I 1. Write the basic functional units of computer? (Nov/Dec 2014) 2. What is a bus? What are the different buses in a CPU? 3. Define multiprogramming? 4.List the basic functional units of a computer?

More information

CHAPTER - 2 : DESIGN OF ARITHMETIC CIRCUITS

CHAPTER - 2 : DESIGN OF ARITHMETIC CIRCUITS Contents i SYLLABUS osmania university UNIT - I CHAPTER - 1 : BASIC VERILOG HDL Introduction to HDLs, Overview of Digital Design With Verilog HDL, Basic Concepts, Data Types, System Tasks and Compiler

More information

HW/SW Co-design. Design of Embedded Systems Jaap Hofstede Version 3, September 1999

HW/SW Co-design. Design of Embedded Systems Jaap Hofstede Version 3, September 1999 HW/SW Co-design Design of Embedded Systems Jaap Hofstede Version 3, September 1999 Embedded system Embedded Systems is a computer system (combination of hardware and software) is part of a larger system

More information

MARIE: An Introduction to a Simple Computer

MARIE: An Introduction to a Simple Computer MARIE: An Introduction to a Simple Computer Outline Learn the components common to every modern computer system. Be able to explain how each component contributes to program execution. Understand a simple

More information

The S6000 Family of Processors

The S6000 Family of Processors The S6000 Family of Processors Today s Design Challenges The advent of software configurable processors In recent years, the widespread adoption of digital technologies has revolutionized the way in which

More information

MutekH embedded operating system. January 10, 2013

MutekH embedded operating system. January 10, 2013 MutekH embedded operating system January 10, 2013 Table of Contents Table of Contents History... 2 Native heterogeneity support... 3 MutekH kernel overview... 6 MutekH configuration... 17 MutekH embedded

More information

System-on-Chip. 4l1 Springer. Embedded Software Design and Programming of Multiprocessor. Simulink and SystemC. Case Studies

System-on-Chip. 4l1 Springer. Embedded Software Design and Programming of Multiprocessor. Simulink and SystemC. Case Studies Katalin Popovici Frederic Rousseau Ahmed A. Jerraya Marilyn Wolf Embedded Software Design and Programming of Multiprocessor System-on-Chip Simulink and SystemC Case Studies 4l1 Springer Contents 1 Embedded

More information

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers.

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers. Set No. 1 IV B.Tech I Semester Supplementary Examinations, March - 2017 COMPUTER ARCHITECTURE & ORGANIZATION (Common to Electronics & Communication Engineering and Electronics & Time: 3 hours Max. Marks:

More information

R07. IV B.Tech. II Semester Supplementary Examinations, July, 2011

R07. IV B.Tech. II Semester Supplementary Examinations, July, 2011 www..com www..com Set No. 1 DIGITAL DESIGN THROUGH VERILOG (Common to Electronics & Communication Engineering, Bio-Medical Engineering and Electronics & Computer Engineering) 1. a) What is Verilog HDL?

More information

EC 6504 MICROPROCESSOR AND MICROCONTROLLER

EC 6504 MICROPROCESSOR AND MICROCONTROLLER DEPARTMENTOFELECTRONICS&COMMUNICATIONENGINEERING EC 6504 MICROPROCESSOR AND MICROCONTROLLER UNIT I THE 8086 MICROPROCESSOR PARTA 1. What is microprocessor? What is the difference between a MP and CPU?

More information

ESE532: System-on-a-Chip Architecture. Today. Process. Message FIFO. Thread. Dataflow Process Model Motivation Issues Abstraction Recommended Approach

ESE532: System-on-a-Chip Architecture. Today. Process. Message FIFO. Thread. Dataflow Process Model Motivation Issues Abstraction Recommended Approach ESE53: System-on-a-Chip Architecture Day 5: January 30, 07 Dataflow Process Model Today Dataflow Process Model Motivation Issues Abstraction Recommended Approach Message Parallelism can be natural Discipline

More information

EE4380 Microprocessor Design Project

EE4380 Microprocessor Design Project EE4380 Microprocessor Design Project Fall 2002 Class 1 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Introduction What is a Microcontroller? Microcontroller

More information

I 3 I 2. ! Language of logic design " Logic optimization, state, timing, CAD tools

I 3 I 2. ! Language of logic design  Logic optimization, state, timing, CAD tools Course Wrap-up Let s Try the Priority Encoder One More Time = =! Priority Encoder Revisited! What (We Hope) You Learned I 3 O 3 I j O j! Design Methodology! I 2 O 2 I O I O Zero Oj Ij Ij CS 5 - Spring

More information

AES1. Ultra-Compact Advanced Encryption Standard Core AES1. General Description. Base Core Features. Symbol. Applications

AES1. Ultra-Compact Advanced Encryption Standard Core AES1. General Description. Base Core Features. Symbol. Applications General Description The AES core implements Rijndael encoding and decoding in compliance with the NIST Advanced Encryption Standard. Basic core is very small (less than 3,000 gates). Enhanced versions

More information

Chapter 2: Data Manipulation

Chapter 2: Data Manipulation Chapter 2 Data Manipulation Computer Science An Overview Tenth Edition by J. Glenn Brookshear Presentation files modified by Farn Wang Chapter 2 Data Manipulation 2.1 Computer Architecture 2.2 Machine

More information

Xtensa. Andrew Mihal 290A Fall 2002

Xtensa. Andrew Mihal 290A Fall 2002 Xtensa Andrew Mihal 290A Fall 2002 1 Outline Introduction Single processor Xtensa system architecture Exporting a programming model for single processor Multiple processor system architecture Exporting

More information

Hardware/Software Codesign

Hardware/Software Codesign Hardware/Software Codesign SS 2016 Prof. Dr. Christian Plessl High-Performance IT Systems group University of Paderborn Version 2.2.0 2016-04-08 how to design a "digital TV set top box" Motivating Example

More information

EC 6504 Microprocessor and Microcontroller. Unit II System Bus Structure

EC 6504 Microprocessor and Microcontroller. Unit II System Bus Structure EC 6504 Microprocessor and Microcontroller Unit II 8086 System Bus Structure Syllabus: 8086 Signals Basic Configurations System bus timing System Design using 8086 IO Programming Introduction to multiprogramming

More information

Hardware Design. MicroBlaze 7.1. This material exempt per Department of Commerce license exception TSU Xilinx, Inc. All Rights Reserved

Hardware Design. MicroBlaze 7.1. This material exempt per Department of Commerce license exception TSU Xilinx, Inc. All Rights Reserved Hardware Design MicroBlaze 7.1 This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able to: List the MicroBlaze 7.1 Features List

More information

FPGA based embedded processor

FPGA based embedded processor MOTIVATION FPGA based embedded processor With rising gate densities of FPGA devices, many FPGA vendors now offer a processor that either exists in silicon as a hard IP or can be incorporated within the

More information

IPSec Implementation Project using FPGA and Microcontroller

IPSec Implementation Project using FPGA and Microcontroller 1 IPSec Implementation Project using FPGA and Microcontroller Guy Gogniat, Wayne Burleson, Mike O'Malley, and Lilian Bossuet Abstract This paper describes a project that has been performed within the University

More information

CONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii)

CONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CONTENTS Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CHAPTER 1: NUMBER SYSTEM 1.1 Digital Electronics... 1 1.1.1 Introduction... 1 1.1.2 Advantages of Digital Systems...

More information

UNIT II SYSTEM BUS STRUCTURE 1. Differentiate between minimum and maximum mode 2. Give any four pin definitions for the minimum mode. 3. What are the pins that are used to indicate the type of transfer

More information

3-D Accelerator on Chip

3-D Accelerator on Chip 3-D Accelerator on Chip Third Prize 3-D Accelerator on Chip Institution: Participants: Instructor: Donga & Pusan University Young-Hee Won, Jin-Sung Park, Woo-Sung Moon Sam-Hak Jin Design Introduction Recently,

More information

Applying the Benefits of Network on a Chip Architecture to FPGA System Design

Applying the Benefits of Network on a Chip Architecture to FPGA System Design white paper Intel FPGA Applying the Benefits of on a Chip Architecture to FPGA System Design Authors Kent Orthner Senior Manager, Software and IP Intel Corporation Table of Contents Abstract...1 Introduction...1

More information

Embedded Systems. 8. Hardware Components. Lothar Thiele. Computer Engineering and Networks Laboratory

Embedded Systems. 8. Hardware Components. Lothar Thiele. Computer Engineering and Networks Laboratory Embedded Systems 8. Hardware Components Lothar Thiele Computer Engineering and Networks Laboratory Do you Remember? 8 2 8 3 High Level Physical View 8 4 High Level Physical View 8 5 Implementation Alternatives

More information

Hardware-Software Co-design for Heterogeneous Multiprocessor Sensor Nodes

Hardware-Software Co-design for Heterogeneous Multiprocessor Sensor Nodes Hardware-Software Co-design for Heterogeneous Multiprocessor Sensor Nodes Jingyao Zhang, Srikrishna Iyer, Xiangwei Zheng, Patrick Schaumont, and Yaling Yang Department of Electrical and Computer Engineering

More information