OO software systems are systems of interacting objects.

Size: px
Start display at page:

Download "OO software systems are systems of interacting objects."

Transcription

1 OO software systems are systems of interacting objects. Objects have Objects properties: these are things that objects know e.g. what you had for breakfast behaviors: these are things objects do e.g. being able to reply to the question What did you have for breakfast?

2 CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Tuesday 10:00 AM 12:00 PM * Wednesday 4:00 PM 5:00 PM Friday 11:00 AM 12:00 PM OR request appointment via * Tuesday adjustments: 11:00 AM 1:00 PM on 10/11, 11/1 and 12/6

3 Dr. Carl Alphonce Sapphire project Dr. Bina Ramamurthy

4 ANNOUNCEMENTS Dr. Carl Alphonce

5 Robotics Club

6 Dr. Carl Alphonce Class today ROADMAP Announcements (Robotics BBQ, Sapphire project) Instruction decoding Fetch/Decode/Execute cycle Low-level and high-level languages Coming up Expressions and objects

7 Dr. Carl Alphonce Please turn off and put away electronics: PROFESSIONALISM cell phones pagers laptops tablets etc.

8 REVIEW Dr. Carl Alphonce

9 AND gate inputs are on left output is on right 0 or 1 For which input values is output 1? For which input values is output 0?

10 Truth table for AND Input 1 Input 2 Output

11 OR gate inputs are on left output is on right For which input values is output 1? For which input values is output 0?

12 Truth table for OR Input 1 Input 2 Output

13 NOT gate input is on left output is on right For which input value is output 1? For which input value is output 0?

14 Truth table for NOT Input Output

15 MEMORY Dr. Carl Alphonce

16 Flip-flop (a bit of memory!) R (reset) S (set) remembered value

17 Computer Organization Memory (RAM) Processor (CPU) R1 R2... R16 PC IR ALU

18 MOVING ON Dr. Carl Alphonce

19 Dr. Carl Alphonce INSTRUCTION DECODING

20 Example: Digital Equipment Corp PDP 11 Encoding instructions photo credit: by Dave Fischer

21 Encoding instructions (PDP 11)

22 Encoding instructions (PDP 11) a sequence of 0s and 1s bit groupings

23 Encoding instructions (PDP 11) a sequence of 0s and 1s bit groupings OpCode Arg1 Arg2 general pattern

24 Encoding instructions (PDP 11) a sequence of 0s and 1s bit groupings OpCode Arg1 Arg2 general pattern ADD Reg1 Reg2 specific instruction

25 ADD OP CODE R1 R2 Instruction decoding Circuitry to decode rest of instruction and carry it out ( execute the instruction) This wire will carry a 1 only if the op code of the instruction is 0110.

26 Instruction decoding OP CODE R1 R2 t t t t t t t t t t t t t t t t This wire will carry a 1 only if the op code of the instruction is This wire will carry a 1 only if the op code of the instruction is This wire will carry a 1 only if the op code of the instruction is 1110.

27 Controlling information flow Data from a register Data to ALU

28 Dr. Carl Alphonce FETCH DECODE EXECUTE cycle

29 Fetch-Decode-Execute cycle Fetch an instruction (& update PC) Decode instruction Execute instruction Execute Fetch (load instruction into IR from location in PC) Decode Update PC

30 Language levels 1940s HARDWARE

31 1940s Language levels MACHINE LANGUAGE ( ) HARDWARE

32 1940s Language levels ASSEMBLY LANGUAGE (ADD R1 R2) MACHINE LANGUAGE ( ) HARDWARE

33 1940s Language levels ASSEMBLY LANGUAGE (ADD R1 R2) MACHINE LANGUAGE ( ) ASSEMBLY HARDWARE

34 1950s Language levels HIGH LEVEL LANGUAGE (e.g. Java) x + y ASSEMBLY LANGUAGE (ADD R1 R2) MACHINE LANGUAGE ( ) ASSEMBLY HARDWARE

35 1950s Language levels HIGH LEVEL LANGUAGES x + y ASSEMBLY LANGUAGE (ADD R1 R2) MACHINE LANGUAGE ( ) COMPILATION ASSEMBLY HARDWARE

36 Language levels HIGH LEVEL LANGUAGES x + y ASSEMBLY LANGUAGE (ADD R1 R2) MACHINE LANGUAGE ( ) }LOW LEVEL LANGUAGES HARDWARE

37 High level languages Java We can write, z = x + y instead of something like this, MOV (R3) R1 MOV (R4) R2 ADD R1 R2 MOV R2 (R5) Others: C#, Erlang, Python, ML, Prolog, Lisp, etc.

38 Dr. Carl Alphonce NOTE Differences between book s & lecture s presentation of code

39 Dr. Carl Alphonce I pointed out that the text s early code examples are quite involved. We will discuss the details in lecture over the next several days. The following slides give a sense of the order in which we will have our discussion. DO NOT PANIC if you do not yet understand the book s code examples at this point we don t expect you to.

40 Dr. Carl Alphonce [zybook] Figure 2.1.1: Using objects public class AttendanceExample { } public static void main(string[] args) { } PeopleCounter attendeecounter = new PeopleCounter(); attendeecounter.incrementcount(); attendeecounter.incrementcount(); attendeecounter.incrementcount(); System.out.print("Attendee count: "); attendeecounter.printcount(); return; This is a code example from chapter 2 of the zybook.

41 Dr. Carl Alphonce public class AttendanceExample { public static void main(string[] args) { PeopleCounter attendeecounter = new PeopleCounter(); attendeecounter.incrementcount(); attendeecounter.incrementcount(); attendeecounter.incrementcount(); Expression } } System.out.print("Attendee count: "); attendeecounter.printcount(); return; We will start by discussing this bit of code: an expression.

42 Dr. Carl Alphonce public class AttendanceExample { public static void main(string[] args) { PeopleCounter attendeecounter = new PeopleCounter(); attendeecounter.incrementcount(); Variable declaration } } attendeecounter.incrementcount(); attendeecounter.incrementcount(); System.out.print("Attendee count: "); attendeecounter.printcount(); return; Next we will discuss variable declarations.

43 Dr. Carl Alphonce public class AttendanceExample { public static void main(string[] args) { PeopleCounter attendeecounter = new PeopleCounter(); Assignment statement } } attendeecounter.incrementcount(); attendeecounter.incrementcount(); attendeecounter.incrementcount(); System.out.print("Attendee count: "); attendeecounter.printcount(); return; And then assignment statements.

44 Dr. Carl Alphonce public class AttendanceExample { public static void main(string[] args) { PeopleCounter attendeecounter = new PeopleCounter(); attendeecounter.incrementcount(); attendeecounter.incrementcount(); attendeecounter.incrementcount(); Method call } } System.out.print("Attendee count: "); attendeecounter.printcount(); return; Method calls will also be discussed, in their various forms.

45 Dr. Carl Alphonce public class AttendanceExample { public static void main(string[] args) { PeopleCounter attendeecounter = new PeopleCounter(); attendeecounter.incrementcount(); attendeecounter.incrementcount(); Method definition } } attendeecounter.incrementcount(); System.out.print("Attendee count: "); attendeecounter.printcount(); return; As well as method definitions.

46 Dr. Carl Alphonce public class AttendanceExample { public static void main(string[] args) { PeopleCounter attendeecounter = new PeopleCounter(); attendeecounter.incrementcount(); attendeecounter.incrementcount(); Class definition } } attendeecounter.incrementcount(); System.out.print("Attendee count: "); attendeecounter.printcount(); return; And eventually class definitions.

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours:

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours: CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Tuesday 10:00 AM 12:00 PM * Wednesday 4:00 PM 5:00 PM Friday 11:00 AM 12:00 PM OR

More information

CSE115 / CSE503 Introduction to Computer Science I. Dr. Carl Alphonce 343 Davis Hall Office hours:

CSE115 / CSE503 Introduction to Computer Science I. Dr. Carl Alphonce 343 Davis Hall Office hours: CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Thursday 12:00 PM 2:00 PM Friday 8:30 AM 10:30 AM OR request appointment via e-mail

More information

CSE115 / CSE503 Introduction to Computer Science I. Dr. Carl Alphonce 343 Davis Hall Office hours:

CSE115 / CSE503 Introduction to Computer Science I. Dr. Carl Alphonce 343 Davis Hall Office hours: CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Thursday 12:00 PM 2:00 PM Friday 8:30 AM 10:30 AM OR request appointment via e-mail

More information

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours:

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours: CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Tuesday 10:00 AM 12:00 PM * Wednesday 4:00 PM 5:00 PM Friday 11:00 AM 12:00 PM OR

More information

CSE115 / CSE503 Introduction to Computer Science I. Dr. Carl Alphonce 343 Davis Hall Office hours:

CSE115 / CSE503 Introduction to Computer Science I. Dr. Carl Alphonce 343 Davis Hall Office hours: CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Thursday 12:00 PM 2:00 PM Friday 8:30 AM 10:30 AM OR request appointment via e-mail

More information

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours:

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours: CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Tuesday 10:00 AM 12:00 PM * Wednesday 4:00 PM 5:00 PM Friday 11:00 AM 12:00 PM OR

More information

CSE115 / CSE503 Introduction to Computer Science I. Dr. Carl Alphonce 343 Davis Hall Office hours:

CSE115 / CSE503 Introduction to Computer Science I. Dr. Carl Alphonce 343 Davis Hall Office hours: CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Thursday 12:00 PM 2:00 PM Friday 8:30 AM 10:30 AM OR request appointment via e-mail

More information

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours:

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours: CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Tuesday 10:00 AM 12:00 PM * Wednesday 4:00 PM 5:00 PM Friday 11:00 AM 12:00 PM OR

More information

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours:

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours: CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Tuesday 10:00 AM 12:00 PM * Wednesday 4:00 PM 5:00 PM Friday 11:00 AM 12:00 PM OR

More information

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours:

CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall Office hours: CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Tuesday 10:00 AM 12:00 PM * Wednesday 4:00 PM 5:00 PM Friday 11:00 AM 12:00 PM OR

More information

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall CSE443 Compilers Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall Announcements Weekly team meetings with me: - Doodle poll link in Piazza Wednesday (4/4) will be a workshop Wednesday - Post questions

More information

CSE 141L Computer Architecture Lab Fall Lecture 3

CSE 141L Computer Architecture Lab Fall Lecture 3 CSE 141L Computer Architecture Lab Fall 2005 Lecture 3 Pramod V. Argade November 1, 2005 Fall 2005 CSE 141L Course Schedule Lecture # Date Day Lecture Topic Lab Due 1 9/27 Tuesday No Class 2 10/4 Tuesday

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing Announcements and Outline Check webct grades, make sure everything is there and is correct Pick up graded d homework at

More information

Machine Architecture. or what s in the box? Lectures 2 & 3. Prof Leslie Smith. ITNP23 - Autumn 2014 Lectures 2&3, Slide 1

Machine Architecture. or what s in the box? Lectures 2 & 3. Prof Leslie Smith. ITNP23 - Autumn 2014 Lectures 2&3, Slide 1 Machine Architecture Prof Leslie Smith or what s in the box? Lectures 2 & 3 ITNP23 - Autumn 2014 Lectures 2&3, Slide 1 Basic Machine Architecture In these lectures we aim to: understand the basic architecture

More information

CS 150 Introduction to Computer Science 1. August 31, 2009

CS 150 Introduction to Computer Science 1. August 31, 2009 CS 150 Introduction to Computer Science 1 Professor: Douglas J. Ryan August 31, 2009 CS150 Introduction to Computer Science 1 8/30/09 Douglas J. Ryan http://zeus.cs.pacificu.edu/ryand ryandj@pacificu.edu

More information

CSE 115 / 503 INTRODUCTION TO COMPUTER SCIENCE I. Dr. Carl Alphonce Dr. Jesse Hartloff

CSE 115 / 503 INTRODUCTION TO COMPUTER SCIENCE I. Dr. Carl Alphonce Dr. Jesse Hartloff CSE 115 / 503 INTRODUCTION TO COMPUTER SCIENCE I Dr. Carl Alphonce Dr. Jesse Hartloff 1 10/16/17 Announcements Snapshot of TopHat and Friday Activity grades added to AutoLab gradebook Some changes coming

More information

CPSC 121: Models of Computation

CPSC 121: Models of Computation Instructor: Bob Woodham woodham@cs.ubc.ca Department of Computer Science University of British Columbia Lecture Notes 2009/2010, Section 203 Menu March 22, 2010 Topics: A Simple Computer High-level design

More information

von Neumann Architecture Basic Computer System Early Computers Microprocessor Reading Assignment An Introduction to Computer Architecture

von Neumann Architecture Basic Computer System Early Computers Microprocessor Reading Assignment An Introduction to Computer Architecture Reading Assignment EEL 4744C: Microprocessor Applications Lecture 1 Part 1 An Introduction to Computer Architecture Microcontrollers and Microcomputers: Chapter 1, Appendix A, Chapter 2 Software and Hardware

More information

Basic Computer System. von Neumann Architecture. Reading Assignment. An Introduction to Computer Architecture. EEL 4744C: Microprocessor Applications

Basic Computer System. von Neumann Architecture. Reading Assignment. An Introduction to Computer Architecture. EEL 4744C: Microprocessor Applications Reading Assignment EEL 4744C: Microprocessor Applications Lecture 1 Part 1 An Introduction to Computer Architecture Microcontrollers and Microcomputers: Chapter 1, Appendix A, Chapter 2 Software and Hardware

More information

Today. An Animated Introduction to Programming. Prerequisites. Computer programming

Today. An Animated Introduction to Programming. Prerequisites. Computer programming Today 1 2 3 4 Computer programming What is this course about? We re making several assumptions about you as a student. In particular, we assume that you have: Never taken a programming course before. Have

More information

1. Fundamental Concepts

1. Fundamental Concepts 1. Fundamental Concepts 1.1 What is a computer? A computer is a data processing machine which is operated automatically under the control of a list of instructions (called a program) stored in its main

More information

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall CSE443 Compilers Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall http://www.cse.buffalo.edu/faculty/alphonce/sp17/cse443/index.php https://piazza.com/class/iybn4ndqa1s3ei Announcements Grading survey

More information

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall CSE443 Compilers Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall http://www.cse.buffalo.edu/faculty/alphonce/sp17/cse443/index.php https://piazza.com/class/iybn4ndqa1s3ei Announcements Be sure to

More information

Levels in Processor Design

Levels in Processor Design Levels in Processor Design Circuit design Keywords: transistors, wires etc.results in gates, flip-flops etc. Logical design Putting gates (AND, NAND, ) and flip-flops together to build basic blocks such

More information

Computer Architecture 2/26/01 Lecture #

Computer Architecture 2/26/01 Lecture # Computer Architecture 2/26/01 Lecture #9 16.070 On a previous lecture, we discussed the software development process and in particular, the development of a software architecture Recall the output of the

More information

CSC 015: FUNDAMENTALS OF COMPUTER SCIENCE I

CSC 015: FUNDAMENTALS OF COMPUTER SCIENCE I CSC 015: FUNDAMENTALS OF COMPUTER SCIENCE I Lecture 1: Class Introduction DR. BO TANG ASSISTANT PROFESSOR HOFSTRA UNIVERSITY 1 9/7/16 CSC15 - Python OUTLINE What is Computer Science? What is this Class

More information

Computer Architecture: Part III. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University

Computer Architecture: Part III. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Computer Architecture: Part III First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Outline Decoders Multiplexers Registers Shift Registers Binary Counters Memory

More information

CS101 Lecture 25: The Machinery of Computation: Computer Architecture. John Magee 29 July 2013 Some material copyright Jones and Bartlett

CS101 Lecture 25: The Machinery of Computation: Computer Architecture. John Magee 29 July 2013 Some material copyright Jones and Bartlett CS101 Lecture 25: The Machinery of Computation: Computer Architecture John Magee 29 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? Can we relate this

More information

The due date for submitting this assignment has passed. 1) Which of the following statements regarding a microcomputer, a

The due date for submitting this assignment has passed. 1) Which of the following statements regarding a microcomputer, a and Microcontrollers - - Unit 3... X reviewer2@nptel.iitm.ac.in Courses» and Microcontrollers Unit 3 - Week 2 Announcements Course Ask a Question Progress Mentor Course outline How to access the portal

More information

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall CSE443 Compilers Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall http://www.cse.buffalo.edu/faculty/alphonce/sp17/cse443/index.php https://piazza.com/class/iybn4ndqa1s3ei Phases of a compiler Target

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit

More information

Finite State Machines (FSMs) and RAMs and CPUs. COS 116, Spring 2011 Sanjeev Arora

Finite State Machines (FSMs) and RAMs and CPUs. COS 116, Spring 2011 Sanjeev Arora Finite State Machines (FSMs) and RAMs and CPUs COS 116, Spring 2011 Sanjeev Arora Recap Combinational logic circuits: no cycles, hence no memory Sequential circuits: cycles allowed; can have memory as

More information

Lecture 11: Control Unit and Instruction Encoding

Lecture 11: Control Unit and Instruction Encoding CSCI25 Computer Organization Lecture : Control Unit and Instruction Encoding Ming-Chang YANG mcyang@cse.cuhk.edu.hk Reading: Chap. 7.4~7.5 (5 th Ed.) Recall: Components of a Processor Register file: a

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications EE 3170 Microcontroller Applications Lecture 4 : Processors, Computers, and Controllers - 1.2 (reading assignment), 1.3-1.5 Based on slides for ECE3170 by Profs. Kieckhafer, Davis, Tan, and Cischke Outline

More information

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall CSE443 Compilers Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall Phases of a compiler Target machine code generation Figure 1.6, page 5 of text B1 i = 1 B2 j = 1 B3 t1 = 10 * i t2 = t1 + j t3 = 8

More information

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall CSE443 Compilers Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall http://www.cse.buffalo.edu/faculty/alphonce/sp17/cse443/index.php https://piazza.com/class/iybn4ndqa1s3ei Phases of a compiler Target

More information

CS 150 Introduction to Computer Science 1

CS 150 Introduction to Computer Science 1 CS 150 Introduction to Computer Science 1 Professor: Chadd Williams CS150 Introduction to Computer Science 1 Chadd Williams http://zeus.cs.pacificu.edu/chadd chadd@pacificu.edu Office 202 Strain Office

More information

Topic 1: Introduction

Topic 1: Introduction Topic 1: Introduction COS 320 Compiling Techniques Princeton University Spring 2015 Prof. David August 1 The Usual Suspects Me: Prof. David August, 221 CS Building august@, 258-2085 Office Hours: Tu/Th

More information

Microprogramming is a technique to implement the control system of a CPU using a control store to hold the microoperations.

Microprogramming is a technique to implement the control system of a CPU using a control store to hold the microoperations. CS 320 Ch. 21 Microprogrammed Control Microprogramming is a technique to implement the control system of a CPU using a control store to hold the microoperations. Microprogramming was invented by Maurice

More information

CISC Processor Design

CISC Processor Design CISC Processor Design Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 3 SE-273: Processor Design Processor Architecture Processor Architecture CISC RISC Jan 21, 2008

More information

CS150 Introduction to Computer Science 1. What is CS150? Who Are We? CS150 is a programming course You will learn

CS150 Introduction to Computer Science 1. What is CS150? Who Are We? CS150 is a programming course You will learn CS 150 Introduction to Computer Science 1 Professor: Shereen Khoja shereen@pacificu.edu 1 What is CS150? CS150 is a programming course You will learn o The mechanics of writing programs in C++ o How to

More information

16.1. Unit 16. Computer Organization Design of a Simple Processor

16.1. Unit 16. Computer Organization Design of a Simple Processor 6. Unit 6 Computer Organization Design of a Simple Processor HW SW 6.2 You Can Do That Cloud & Distributed Computing (CyberPhysical, Databases, Data Mining,etc.) Applications (AI, Robotics, Graphics, Mobile)

More information

Tutorials. Tutorial every Friday at 11:30 AM in Toldo 204 * discuss the next lab assignment

Tutorials. Tutorial every Friday at 11:30 AM in Toldo 204 * discuss the next lab assignment 60-212 subir@cs.uwindsor.ca Phone # 253-3000 Ext. 2999 web site for course www.cs.uwindsor.ca/60-212 Dr. Subir Bandyopadhayay Website has detailed rules and regulations All assignments and labs will be

More information

Cost of Your Programs

Cost of Your Programs Department of Computer Science and Engineering Chinese University of Hong Kong In the class, we have defined the RAM computation model. In turn, this allowed us to define rigorously algorithms and their

More information

Chapter 3 : Control Unit

Chapter 3 : Control Unit 3.1 Control Memory Chapter 3 Control Unit The function of the control unit in a digital computer is to initiate sequences of microoperations. When the control signals are generated by hardware using conventional

More information

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control,

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control, UNIT - 7 Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Microprogrammed Control Page 178 UNIT - 7 BASIC PROCESSING

More information

From Algorithms to Architecture....a lightning introduction to computer architecture

From Algorithms to Architecture....a lightning introduction to computer architecture From Algorithms to Architecture...a lightning introduction to computer architecture Implementing Algorithms Now have a methodology for going from problem to program Next develop a mental model of a device

More information

COMP-202: Foundations of Programming. Lecture 2: Java basics and our first Java program! Jackie Cheung, Winter 2015

COMP-202: Foundations of Programming. Lecture 2: Java basics and our first Java program! Jackie Cheung, Winter 2015 COMP-202: Foundations of Programming Lecture 2: Java basics and our first Java program! Jackie Cheung, Winter 2015 Assignment Due Date Assignment 1 is now due on Tuesday, Jan 20 th, 11:59pm. Quiz 1 is

More information

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 COSC 243 Computer Architecture 1 COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 Overview Last Lecture Flip flops This Lecture Computers Next Lecture Instruction sets and addressing

More information

COMP3221: Microprocessors and. Embedded Systems

COMP3221: Microprocessors and. Embedded Systems Embedded Systems Lecture 1: Introduction http://www.cse.unsw.edu.au/~cs3221 Lecturer: Hui Wu Session 1, 2005 1 COMP 3221 Administration (1/2) Lecturer: Hui Wu: huiw@cse.unsw.edu.au Office: K17-501D Consultation:

More information

Materials: 1. Projectable Version of Diagrams 2. MIPS Simulation 3. Code for Lab 5 - part 1 to demonstrate using microprogramming

Materials: 1. Projectable Version of Diagrams 2. MIPS Simulation 3. Code for Lab 5 - part 1 to demonstrate using microprogramming CS311 Lecture: CPU Control: Hardwired control and Microprogrammed Control Last revised October 18, 2007 Objectives: 1. To explain the concept of a control word 2. To show how control words can be generated

More information

Announcements. 1. Forms to return today after class:

Announcements. 1. Forms to return today after class: Announcements Handouts (3) to pick up 1. Forms to return today after class: Pretest (take during class later) Laptop information form (fill out during class later) Academic honesty form (must sign) 2.

More information

Computers in Engineering COMP 208. Computer Structure. Computer Architecture. Computer Structure Michael A. Hawker

Computers in Engineering COMP 208. Computer Structure. Computer Architecture. Computer Structure Michael A. Hawker Computers in Engineering COMP 208 Computer Structure Michael A. Hawker Computer Structure We will briefly look at the structure of a modern computer That will help us understand some of the concepts that

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Datapath for a Simplified Processor James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Introduction

More information

CPSC 213. Introduction to Computer Systems. Introduction. Unit 0

CPSC 213. Introduction to Computer Systems. Introduction. Unit 0 CPSC 213 Introduction to Computer Systems Unit Introduction 1 Overview of the course Hardware context of a single executing program hardware context is CPU and Main Memory develop CPU architecture to implement

More information

Computer Logic II CCE 2010

Computer Logic II CCE 2010 Computer Logic II CCE 2010 Dr. Owen Casha Computer Logic II 1 The Processing Unit Computer Logic II 2 The Processing Unit In its simplest form, a computer has one unit that executes program instructions.

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #22 CPU Design: Pipelining to Improve Performance II 2007-8-1 Scott Beamer, Instructor CS61C L22 CPU Design : Pipelining to Improve Performance

More information

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall CSE443 Compilers Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall Phases of a compiler Syntactic structure Figure 1.6, page 5 of text Recap Lexical analysis: LEX/FLEX (regex -> lexer) Syntactic analysis:

More information

Micro-programmed Control Ch 15

Micro-programmed Control Ch 15 Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to modify Lots of

More information

Welcome to Computer Organization and Design Logic

Welcome to Computer Organization and Design Logic Welcome to Computer Organization and Design Logic CS 64: Computer Organization and Design Logic Lecture #1 Fall 2018 Ziad Matni, Ph.D. Dept. of Computer Science, UCSB A Word About Registration for CS64

More information

Machine Instructions vs. Micro-instructions. Micro-programmed Control Ch 15. Machine Instructions vs. Micro-instructions (2) Hardwired Control (4)

Machine Instructions vs. Micro-instructions. Micro-programmed Control Ch 15. Machine Instructions vs. Micro-instructions (2) Hardwired Control (4) Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Machine Instructions vs. Micro-instructions Memory execution unit CPU control memory

More information

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Prof. Gurindar Sohi TAs: Junaid Khalid and Pradip Vallathol Midterm Examination 2 In Class (50 minutes) Friday, October

More information

Micro-programmed Control Ch 15

Micro-programmed Control Ch 15 Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to modify Lots of

More information

Systems Architecture I

Systems Architecture I Systems Architecture I Topics Review of Digital Circuits and Logic Design Review of Sequential Logic Circuits Compilers, Assemblers, Linkers & Loaders Notes Courtesy of Jeremy R. Johnson Lec 2 Systems

More information

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Computer Organization and Levels of Abstraction Announcements Today: PS 7 Lab 8: Sound Lab tonight bring machines and headphones! PA 7 Tomorrow: Lab 9 Friday: PS8 Today (Short) Floating point review Boolean

More information

ECS15, Lecture 10. Goals of this course 2/8/13. Mini-Review & Topic 3.2 Software. Today s agenda

ECS15, Lecture 10. Goals of this course 2/8/13. Mini-Review & Topic 3.2 Software. Today s agenda Today s agenda ECS15, Lecture 10 Mini-Review & Topic 3.2 Software Review the lectures. Sample midterm to be posted late today/tonight. Extra credit (1pt) turn in Monday 9:30am Finish up details on Topic

More information

Exam 2. cs3102: Theory of Computation. Class 20: Busy Beavers

Exam 2. cs3102: Theory of Computation. Class 20: Busy Beavers cs3102: Theory of Computation Office hours: I am not able to hold my Thursday morning office hours this week. I will have office hours Thursday 11am-1pm instead. Class 20: usy eavers Spring 2010 University

More information

BASIC COMPUTATION. public static void main(string [] args) Fundamentals of Computer Science I

BASIC COMPUTATION. public static void main(string [] args) Fundamentals of Computer Science I BASIC COMPUTATION x public static void main(string [] args) Fundamentals of Computer Science I Outline Using Eclipse Data Types Variables Primitive and Class Data Types Expressions Declaration Assignment

More information

CS510 Operating System Foundations. Jonathan Walpole

CS510 Operating System Foundations. Jonathan Walpole CS510 Operating System Foundations Jonathan Walpole Course Overview Who am I? Jonathan Walpole Professor at PSU since 2004, OGI 1989 2004 Research Interests: Operating System Design, Parallel and Distributed

More information

} Evaluate the following expressions: 1. int x = 5 / 2 + 2; 2. int x = / 2; 3. int x = 5 / ; 4. double x = 5 / 2.

} Evaluate the following expressions: 1. int x = 5 / 2 + 2; 2. int x = / 2; 3. int x = 5 / ; 4. double x = 5 / 2. Class #10: Understanding Primitives and Assignments Software Design I (CS 120): M. Allen, 19 Sep. 18 Java Arithmetic } Evaluate the following expressions: 1. int x = 5 / 2 + 2; 2. int x = 2 + 5 / 2; 3.

More information

Memory Supplement for Section 3.6 of the textbook

Memory Supplement for Section 3.6 of the textbook The most basic -bit memory is the SR-latch with consists of two cross-coupled NOR gates. R Recall the NOR gate truth table: A S B (A + B) The S stands for Set to remember, and the R for Reset to remember.

More information

ECE369. Chapter 5 ECE369

ECE369. Chapter 5 ECE369 Chapter 5 1 State Elements Unclocked vs. Clocked Clocks used in synchronous logic Clocks are needed in sequential logic to decide when an element that contains state should be updated. State element 1

More information

COSC 122 Computer Fluency. Computer Organization. Dr. Ramon Lawrence University of British Columbia Okanagan

COSC 122 Computer Fluency. Computer Organization. Dr. Ramon Lawrence University of British Columbia Okanagan COSC 122 Computer Fluency Computer Organization Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Key Points 1) The standard computer (von Neumann) architecture consists

More information

Extra-credit QUIZ Pipelining -due next time-

Extra-credit QUIZ Pipelining -due next time- QUIZ Pipelining A computer pipeline has 4 processors, as shown above. Each processor takes 15 ms to execute, and each instruction must go sequentially through all 4 processors. A program has 10 instructions.

More information

Parallel logic circuits

Parallel logic circuits Computer Mathematics Week 9 Parallel logic circuits College of Information cience and Engineering Ritsumeikan University last week the mathematics of logic circuits the foundation of all digital design

More information

Introduction to the course and basic programming concepts

Introduction to the course and basic programming concepts Introduction to the course and basic programming concepts Lecture 1 of TDA 540 Object-Oriented Programming Jesper Cockx Fall 2018 Chalmers University of Technology Gothenburg University About the course

More information

TDT4255 Computer Design. Lecture 4. Magnus Jahre. TDT4255 Computer Design

TDT4255 Computer Design. Lecture 4. Magnus Jahre. TDT4255 Computer Design 1 TDT4255 Computer Design Lecture 4 Magnus Jahre 2 Outline Chapter 4.1 to 4.4 A Multi-cycle Processor Appendix D 3 Chapter 4 The Processor Acknowledgement: Slides are adapted from Morgan Kaufmann companion

More information

Changing an Object s Properties

Changing an Object s Properties Go ahead and PULL Lecture Materials & Sign-in on PollEv Right Click Lecture > Team > Pull Poll Everywhere: pollev.com/comp110 Lecture 4 Changing an Object s Properties Fall 2016 Announcements Review Session

More information

There are four registers involved in the fetch cycle: MAR, MBR, PC, and IR.

There are four registers involved in the fetch cycle: MAR, MBR, PC, and IR. CS 320 Ch. 20 The Control Unit Instructions are broken down into fetch, indirect, execute, and interrupt cycles. Each of these cycles, in turn, can be broken down into microoperations where a microoperation

More information

Comp 104: Operating Systems Concepts

Comp 104: Operating Systems Concepts Comp 104: Operating Systems Concepts Prof. Paul E. Dunne. Department of Computer Science, University of Liverpool. Comp 104: Operating Systems Concepts Introduction 1 2 Today Admin and module info Introduction

More information

CS 100: Gates and Drawing and Turtles

CS 100: Gates and Drawing and Turtles CS 100: Gates and Drawing and Turtles Chris Kauffman Week 3-1 Logistics HW 2 due Thursday at 11:59pm Code.org plus a few additional exercises HW 3 Python programming Make sure you have access to a computer

More information

Introduction. Lecture 1 MIT 12043, Fundamentals of Programming By: S. Sabraz Nawaz

Introduction. Lecture 1 MIT 12043, Fundamentals of Programming By: S. Sabraz Nawaz Introduction Lecture 1 MIT 12043, Fundamentals of Programming By: Programming Languages There are hundreds of programming languages. Very broadly these languages are categorized as o Low Level Languages

More information

EPC6055 Digital Integrated Circuits EXAM 1 Fall Semester 2013

EPC6055 Digital Integrated Circuits EXAM 1 Fall Semester 2013 EPC6055 Digital Integrated Circuits EXAM 1 Fall Semester 2013 Print Here Student ID Signature This is a closed book exam. The exam is to be completed in one-hundred ten (110) minutes. Don t use scratch

More information

Module 5 - CPU Design

Module 5 - CPU Design Module 5 - CPU Design Lecture 1 - Introduction to CPU The operation or task that must perform by CPU is: Fetch Instruction: The CPU reads an instruction from memory. Interpret Instruction: The instruction

More information

CHAPTER 1 Introduction to Computers and Java

CHAPTER 1 Introduction to Computers and Java CHAPTER 1 Introduction to Computers and Java Copyright 2016 Pearson Education, Inc., Hoboken NJ Chapter Topics Chapter 1 discusses the following main topics: Why Program? Computer Systems: Hardware and

More information

ENGG3380: Computer Organization and Design Lab5: Microprogrammed Control

ENGG3380: Computer Organization and Design Lab5: Microprogrammed Control ENGG330: Computer Organization and Design Lab5: Microprogrammed Control School of Engineering, University of Guelph Winter 201 1 Objectives: The objectives of this lab are to: Start Date: Week #5 201 Due

More information

Materials: 1. Projectable Version of Diagrams 2. MIPS Simulation 3. Code for Lab 5 - part 1 to demonstrate using microprogramming

Materials: 1. Projectable Version of Diagrams 2. MIPS Simulation 3. Code for Lab 5 - part 1 to demonstrate using microprogramming CPS311 Lecture: CPU Control: Hardwired control and Microprogrammed Control Last revised October 23, 2015 Objectives: 1. To explain the concept of a control word 2. To show how control words can be generated

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text About the course : In this digital world, embedded systems are more

More information

CSE A215 Assembly Language Programming for Engineers

CSE A215 Assembly Language Programming for Engineers CSE A215 Assembly Language Programming for Engineers Lecture 4 & 5 Logic Design Review (Chapter 3 And Appendices C&D in COD CDROM) September 20, 2012 Sam Siewert ALU Quick Review Conceptual ALU Operation

More information

Von Neumann Architecture

Von Neumann Architecture Von Neumann Architecture Assist lecturer Donya A. Khalid Lecture 2 2/29/27 Computer Organization Introduction In 945, just after the World War, Jon Von Neumann proposed to build a more flexible computer.

More information

Micro-programmed Control Ch 17

Micro-programmed Control Ch 17 Micro-programmed Control Ch 17 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics Course Summary 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 25 CPU Design: Designing a Single-cycle CPU Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia T-Mobile s Wi-Fi / Cell phone

More information

Hardwired Control (4) Micro-programmed Control Ch 17. Micro-programmed Control (3) Machine Instructions vs. Micro-instructions

Hardwired Control (4) Micro-programmed Control Ch 17. Micro-programmed Control (3) Machine Instructions vs. Micro-instructions Micro-programmed Control Ch 17 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics Course Summary Hardwired Control (4) Complex Fast Difficult to design Difficult to modify

More information

EEL 4744C: Microprocessor Applications. Lecture 7. Part 1. Interrupt. Dr. Tao Li 1

EEL 4744C: Microprocessor Applications. Lecture 7. Part 1. Interrupt. Dr. Tao Li 1 EEL 4744C: Microprocessor Applications Lecture 7 Part 1 Interrupt Dr. Tao Li 1 M&M: Chapter 8 Or Reading Assignment Software and Hardware Engineering (new version): Chapter 12 Dr. Tao Li 2 Interrupt An

More information

Reading Assignment. Interrupt. Interrupt. Interrupt. EEL 4744C: Microprocessor Applications. Lecture 7. Part 1

Reading Assignment. Interrupt. Interrupt. Interrupt. EEL 4744C: Microprocessor Applications. Lecture 7. Part 1 Reading Assignment EEL 4744C: Microprocessor Applications Lecture 7 M&M: Chapter 8 Or Software and Hardware Engineering (new version): Chapter 12 Part 1 Interrupt Dr. Tao Li 1 Dr. Tao Li 2 Interrupt An

More information

ECE 2300 Digital Logic & Computer Organization. More Verilog Finite State Machines

ECE 2300 Digital Logic & Computer Organization. More Verilog Finite State Machines ECE 2300 Digital Logic & Computer Organization Spring 2018 More Verilog Finite Machines Lecture 8: 1 Prelim 1, Thursday 3/1, 1:25pm, 75 mins Arrive early by 1:20pm Review sessions Announcements Monday

More information

Control Hazards - branching causes problems since the pipeline can be filled with the wrong instructions.

Control Hazards - branching causes problems since the pipeline can be filled with the wrong instructions. Control Hazards - branching causes problems since the pipeline can be filled with the wrong instructions Stage Instruction Fetch Instruction Decode Execution / Effective addr Memory access Write-back Abbreviation

More information

ASSIGNMENT ECE514 (COMPUTER ORGANIZATION) ASSIGNMENT NO. 3

ASSIGNMENT ECE514 (COMPUTER ORGANIZATION) ASSIGNMENT NO. 3 ASSIGNMENT ECE514 (COMPUTER ORGANIZATION) ASSIGNMENT NO. 3 This is an individual assignment for ECE514. It carries a mark of 10%. The rubric of marks is given in Appendix 3. This assignment is about designing

More information

A Review of Chapter 5 and. CSc 2010 Spring 2012 Instructor: Qian Hu

A Review of Chapter 5 and. CSc 2010 Spring 2012 Instructor: Qian Hu A Review of Chapter 5 and Chapter 6 Chapter 5 Computer Systems Organization Von Neumann Architecture 4 Components Memory Input/output ALU Control Unit Two major features Stored program concept Sequential

More information

CSE306 Software Quality in Practice. Dr. Carl Alphonce 343 Davis Hall

CSE306 Software Quality in Practice. Dr. Carl Alphonce 343 Davis Hall CSE306 Software Quality in Practice Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall Recall the rules 1. Understand the requirements 2. Make it fail 3. Simplify the test case 4. Read the right error

More information