EE141- Spring 2002 Introduction to Digital Integrated Circuits. What is this class about?

Size: px
Start display at page:

Download "EE141- Spring 2002 Introduction to Digital Integrated Circuits. What is this class about?"

Transcription

1 - Spring 2002 Introduction to Digital Integrated Circuits Tu-Th 9:30-am 203 McLaughlin What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology. CMOS inverters and gates. Propagation delay, noise margins, and power dissipation. Sequential circuits. Arithmetic, interconnect, and memories. Programmable logic arrays. Design methodologies. What will you learn?» Understanding, designing, and optimizing digital circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability 2

2 Digital Integrated Circuits Introduction: Issues in digital design The CMOS inverter Combinational logic structures Sequential logic gates; timing Arithmetic building blocks Interconnect: R, L and C Memories and array structures Design methods 3 Interludium: Administrativia Instructor Jan M. Rabaey jan@eecs.berkeley.edu Office hours: 5 Cory Tu -3pm 4 2

3 The TA s and Reader Dejan Markovic Discussion + lab dejan@bwrc.eecs.berkeley.edu Office Hours: TBD Huifang Qin Discussion + lab huifangq@bwrc.eecs.berkeley.edu Office Hours: TBD Nuntachai Poobuapheun Reader nuntachp@eecs.berkeley.edu 5 The Web-Site The sole source of information Class and lecture notes Assignments and solutions Lab and project information Exams Many other goodies Save a tree! 6 3

4 Class Admission Class is overenrolled» Class room only seats » But videotaped» Also webcasted ( Admission priorities» Graduating seniors» First-year grads» Juniors, other grads» Concurrent enrollment Make sure your name is on the class roll! 7 Discussions and Labs Discussion sessions» We 9-am, 293 Cory» We 2-3pm, 247 Cory» Pick any of the two (the are covering the same material)» One of them will be moved to another time slot (in 203 McLaughlin) Labs (353 Cory)» Mo 9-2am» Tu 2-5pm» Th 2:30-3:30pm» Pick the one that fits you the best (pending availability) and STICK TO IT! 8 4

5 Class Organization Assignments A couple of design projects ( term project) Labs: 6 software, hardware 2midterms,final» Midterm : Tu, February 25, 6:30-8:00pm» Midterm 2: Tu, April 5, 6:30-8:00pm» Final: Tu. May 20, 8-am 9 Grading Policy Homeworks: % Labs: % Projects: 20% Midterms: 30% Final: 30% 5

6 Class Material Textbook: Digital Integrated Circuits A Design Perspective, 2 nd Edition, by J. Rabaey, A. Chandrakasan, and B. Nikolic Lab Reader: Available on the web page! Selected material will be made available from Copy Central Check web page for the availability of tools Software MicroMagic» Schematic editor: Sue» Layout editor: Max» Online documentation and tutorials HSPICE and IRSIM for simulation 2 6

7 Getting Started Assignment : Getting SPICE to work see web-page NO discussion sessions or labs this week. First discussion sessions in Week 2 First Software Lab in Week 3 3 Introduction Why is designing digital ICs different today than it was before? Will it change in future? 4 7

8 The First Computer The Babbage Difference Engine (832) 25,000 parts cost: 7,470 5 ENIAC - The first electronic computer (946) 6 8

9 The Transistor Revolution First transistor Bell Labs, The First Integrated Circuits Bipolar logic 960 s ECL 3-input Gate Motorola

10 Intel 4004 Micro-Processor 9 Evolution in Transistor Count 20

11 Intel Pentium (II) microprocessor 2 Moore s Law In 965, Gordon Moore noted that the number of transistors on a chip doubled every 8 to 24 months. He made a prediction that semiconductor technology will double its effectiveness every 8 months 22

12 Moore s Law LOG 2 OF THE NUMBER OF COMPONENTS PER INTEGRATED FUNCTION Electronics, April 9, Evolution in Complexity 24 2

13 Transistor Counts,000,000 K Billion Transistors 0,000,000,000 0 Pentium III Pentium II Pentium Pro i486 Pentium i Source: Intel Projected 25 Moore s law in Microprocessors Transistors (MT) X growth in.96 years! P6 Pentium proc Transistors 0.0 on Lead Microprocessors double every 2 years S. Borkar Year 26 3

14 Moore s Law - Logic Density 00 Logic Transistors/mm 2 Logic Density i860 Pentium II (R) 486 Pentium Pro (R) Pentium (R) 2x trend.5µ.0µ 0.8µ 0.6µ Source: Intel 0.35µ 0.25µ 0.8µ 0.3µ Shrinks and compactions meet density goals New micro-architectures drop density 27 DieSizeGrowth 0 Die size (mm) P6 486 Pentium proc ~7% growth per year ~2X growth in years Year Die size grows by 4% to satisfy Moore s Law S. Borkar 28 4

15 Frequency Frequency (Mhz) Doubles every 2 years P6 Pentium proc S. Borkar Year Lead Microprocessors frequency doubles every 2 years 29 Processor Frequency Trend,000 Intel IBM Power PC DEC Gate delays/clock Processor freq scales by 2X per generation 0 Mhz, S 264A A Pentium(R) 264 II 266 MPC Pentium Pro 60, 603 (R) Pentium(R) Frequency doubles each generation Number of gates/clock reduce by 25% Gate Delays/ Clock V.De, S. Borkar ISLPED

16 Power 0 Power (Watts) P6 Pentium proc Year S. Borkar Lead Microprocessors power continues to increase 3 0 Processor Power Max Power (Watts) 486 Pentium II (R) Pentium Pro (R) Pentium(R) 486 Pentium(R) MMX µ µ 0.8µ 0.6µ 0.35µ 0.25µ 0.8µ 0.3µ Lead processor power increases every generation Compactions provide higher performance at lower power? Source: Intel 32 6

17 Power will be a problem Power (Watts) Pentium proc 5KW 8KW.5KW 500W Year Power delivery and dissipation will be prohibitive S. Borkar 33 Power density will increase Power Density (W/cm2) Rocket Nozzle Nuclear Reactor 8086 Hot Plate P6 Pentium proc Year S. Borkar Power density too high to keep junctions at low temp 34 7

18 Power delivery challenges Icc (amp), L(di/dt)/Vdd P Pentium proc Year.E+07.E+06.E+05.E+04.E+03.E+02.E+0.E+00.E-0.E-02.E-03.E P6 Pentium proc Year S. Borkar High supply currents at low voltage: Challenges: IR drop and L(di/dt) noise 35 Not Only Microprocessors Cell Phone Small Signal RF Power RF Digital Cellular Market (Phones Shipped) Units 48M 86M 62M 260M 435M Power Management Analog Baseband Digital Baseband (DSP + MCU) (data from Texas Instruments) 36 8

19 Productivity Trends,000,000,000,000,000,000 Complexity Logic Transistor per Chip (M) 0,000 0,000, Logic Tr./Chip Tr./Staff Month. x x x x x x x x 58%/Yr. compounded Complexity growth rate 2%/Yr. compound Productivity growth rate 0,000,000,000,000,000,000 0,000,000, Productivity (K) Trans./Staff - Mo Source: Sematech Complexity outpaces design productivity 37 Challenges in Digital Design DSM Microscopic Problems Ultra-high speed design Interconnect Noise, Crosstalk Reliability, Manufacturability Power Dissipation Clock distribution. Everything Looks a Little Different? /DSM Macroscopic Issues Time-to-Market Millions of Gates High-Level Abstractions Reuse & IP: Portability Predictability etc. and There s a Lot of Them! 38 9

20 Design Abstraction Levels SYSTEM + MODULE GATE CIRCUIT S n+ G DEVICE D n+ 39 Why Scaling? Technology shrinks by 0.7/generation With every generation can integrate 2x more functions per chip; chip cost does not increase significantly Cost of a function decreases by 2x How to design chips with more and more functions? Design engineering population does not double every two years Need to understand different levels of abstraction 40 20

21 Next Class Introduces basic metrics for design of integrated circuits how to measure delay, power, etc. Brief intro to IC manufacturing and design 4 2

EE141- Spring 2004 Introduction to Digital Integrated Circuits. What is this class about?

EE141- Spring 2004 Introduction to Digital Integrated Circuits. What is this class about? - Spring 2004 Introduction to Digital Integrated Circuits Tu-Th am-2:30pm 203 McLaughlin What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

More information

EE141- Spring 2007 Introduction to Digital Integrated Circuits

EE141- Spring 2007 Introduction to Digital Integrated Circuits - Spring 2007 Introduction to Digital Integrated Circuits Tu-Th 5pm-6:30pm 150 GSPP 1 What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated Circuits EE141 Fall 2005 Tu & Th 11-12:30 203 McLaughlin What is This Class About? Introduction to Digital Integrated Circuits Introduction: Issues in digital design CMOS devices and

More information

What is this class all about?

What is this class all about? -Fall 2004 Digital Integrated Circuits Instructor: Borivoje Nikolić TuTh 3:30-5 247 Cory EECS141 1 What is this class all about? Introduction to digital integrated circuits. CMOS devices and manufacturing

More information

Lecture #1. Teach you how to make sure your circuit works Do you want your transistor to be the one that screws up a 1 billion transistor chip?

Lecture #1. Teach you how to make sure your circuit works Do you want your transistor to be the one that screws up a 1 billion transistor chip? Instructor: Jan Rabaey EECS141 1 Introduction to digital integrated circuit design engineering Will describe models and key concepts needed to be a good digital IC designer Models allow us to reason about

More information

What is this class all about?

What is this class all about? EE141-Fall 2012 Digital Integrated Circuits Instructor: Elad Alon TuTh 11-12:30pm 247 Cory 1 What is this class all about? Introduction to digital integrated circuit design engineering Will describe models

More information

What is this class all about?

What is this class all about? EE141-Fall 2007 Digital Integrated Circuits Instructor: Elad Alon TuTh 3:30-5pm 155 Donner 1 1 What is this class all about? Introduction to digital integrated circuit design engineering Will describe

More information

EE586 VLSI Design. Partha Pande School of EECS Washington State University

EE586 VLSI Design. Partha Pande School of EECS Washington State University EE586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 1 (Introduction) Why is designing digital ICs different today than it was before? Will it change in

More information

CAD for VLSI. Debdeep Mukhopadhyay IIT Madras

CAD for VLSI. Debdeep Mukhopadhyay IIT Madras CAD for VLSI Debdeep Mukhopadhyay IIT Madras Tentative Syllabus Overall perspective of VLSI Design MOS switch and CMOS, MOS based logic design, the CMOS logic styles, Pass Transistors Introduction to Verilog

More information

Microelettronica. J. M. Rabaey, "Digital integrated circuits: a design perspective" EE141 Microelettronica

Microelettronica. J. M. Rabaey, Digital integrated circuits: a design perspective EE141 Microelettronica Microelettronica J. M. Rabaey, "Digital integrated circuits: a design perspective" Introduction Why is designing digital ICs different today than it was before? Will it change in future? The First Computer

More information

EE241 - Spring 2004 Advanced Digital Integrated Circuits

EE241 - Spring 2004 Advanced Digital Integrated Circuits EE24 - Spring 2004 Advanced Digital Integrated Circuits Borivoje Nikolić Lecture 2 Impact of Scaling Class Material Last lecture Class scope, organization Today s lecture Impact of scaling 2 Major Roadblocks.

More information

ECE 637 Integrated VLSI Circuits. Introduction. Introduction EE141

ECE 637 Integrated VLSI Circuits. Introduction. Introduction EE141 ECE 637 Integrated VLSI Circuits Introduction EE141 1 Introduction Course Details Instructor Mohab Anis; manis@vlsi.uwaterloo.ca Text Digital Integrated Circuits, Jan Rabaey, Prentice Hall, 2 nd edition

More information

Jin-Fu Li. Department of Electrical Engineering. Jhongli, Taiwan

Jin-Fu Li. Department of Electrical Engineering. Jhongli, Taiwan EEA001 VLSI Design Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jhongli, Taiwan Contents Syllabus Introduction to CMOS Circuits MOS Transistor

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Practical Information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Practical Information EE24 - Spring 2000 Advanced Digital Integrated Circuits Tu-Th 2:00 3:30pm 203 McLaughlin Practical Information Instructor: Borivoje Nikolic 570 Cory Hall, 3-9297, bora@eecs.berkeley.edu Office hours: TuTh

More information

Elettronica T moduli I e II

Elettronica T moduli I e II Elettronica T moduli I e II Docenti: Massimo Lanzoni, Igor Loi Massimo.lanzoni@unibo.it igor.loi@unibo.it A.A. 2015/2016 Scheduling MOD 1 (Prof. Loi) Weeks 39,40,41,42, 43,44» MOS transistors» Digital

More information

ECE484 VLSI Digital Circuits Fall Lecture 01: Introduction

ECE484 VLSI Digital Circuits Fall Lecture 01: Introduction ECE484 VLSI Digital Circuits Fall 2017 Lecture 01: Introduction Adapted from slides provided by Mary Jane Irwin. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] CSE477 L01 Introduction.1

More information

CMPEN 411 VLSI Digital Circuits. Lecture 01: Introduction

CMPEN 411 VLSI Digital Circuits. Lecture 01: Introduction CMPEN 411 VLSI Digital Circuits Kyusun Choi Lecture 01: Introduction CMPEN 411 Course Website link at: http://www.cse.psu.edu/~kyusun/teach/teach.html [Adapted from Rabaey s Digital Integrated Circuits,

More information

CMPEN 411. Spring Lecture 01: Introduction

CMPEN 411. Spring Lecture 01: Introduction Kyusun Choi CMPEN 411 VLSI Digital Circuits Spring 2009 Lecture 01: Introduction Course Website: http://www.cse.psu.edu/~kyusun/class/cmpen411/09s/index.html [Adapted from Rabaey s Digital Integrated Circuits,

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 CPE/EE 427, CPE 527 VLSI Design I L0 Department of Electrical and Computer Engineering University of Alabama in Huntsville What is this course all about? Introduction to digital integrated circuits. CMOS

More information

INEL-6080 VLSI Systems Design

INEL-6080 VLSI Systems Design INEL-6080 VLSI Systems Design ooooooo Prof. Manuel Jiménez Lecture 1 Introduction Computational Devices The idea of developing computing devices is certainly not new A few chronological examples show the

More information

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends EE4 - Spring 008 Advanced Digital Integrated Circuits Lecture : Scaling Trends Announcements No office hour next Monday Extra office hours Tuesday and Thursday -3pm CMOS Scaling Rules Voltage, V / α tox/α

More information

EE3032 Introduction to VLSI Design

EE3032 Introduction to VLSI Design EE3032 Introduction to VLSI Design Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jhongli, Taiwan Contents Syllabus Introduction to CMOS

More information

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 1: Introduction to VLSI Technology Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Course Objectives

More information

ECE 261: Full Custom VLSI Design

ECE 261: Full Custom VLSI Design ECE 261: Full Custom VLSI Design Prof. James Morizio Dept. Electrical and Computer Engineering Hudson Hall Ph: 201-7759 E-mail: jmorizio@ee.duke.edu URL: http://www.ee.duke.edu/~jmorizio Course URL: http://www.ee.duke.edu/~jmorizio/ece261/261.html

More information

More Course Information

More Course Information More Course Information Labs and lectures are both important Labs: cover more on hands-on design/tool/flow issues Lectures: important in terms of basic concepts and fundamentals Do well in labs Do well

More information

EITF35: Introduction to Structured VLSI Design

EITF35: Introduction to Structured VLSI Design EITF35: Introduction to Structured VLSI Design Part 1.1.2: Introduction (Digital VLSI Systems) Liang Liu liang.liu@eit.lth.se 1 Outline Why Digital? History & Roadmap Device Technology & Platforms System

More information

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends EE24 - Spring 2008 Advanced Digital Integrated Circuits Lecture 2: Scaling Trends Announcements No office hour next Monday Extra office hours Tuesday and Thursday 2-3pm 2 CMOS Scaling Rules Voltage, V

More information

EE5780 Advanced VLSI CAD

EE5780 Advanced VLSI CAD EE5780 Advanced VLSI CAD Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 513 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee5780fall2013.html

More information

VLSI Design Automation

VLSI Design Automation VLSI Design Automation IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing Programmable PLA, FPGA Embedded systems Used in cars,

More information

VLSI Design Automation. Maurizio Palesi

VLSI Design Automation. Maurizio Palesi VLSI Design Automation 1 Outline Technology trends VLSI Design flow (an overview) 2 Outline Technology trends VLSI Design flow (an overview) 3 IC Products Processors CPU, DSP, Controllers Memory chips

More information

VLSI Design Automation

VLSI Design Automation VLSI Design Automation IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing Programmable PLA, FPGA Embedded systems Used in cars,

More information

EE115C Spring 2013 Digital Electronic Circuits. Mon & Wed 8:00-9:50am BH 5249

EE115C Spring 2013 Digital Electronic Circuits. Mon & Wed 8:00-9:50am BH 5249 EE115C Spring 2013 Digital Electronic Circuits Mon & Wed 8:00-9:50am BH 5249 Topics Covered: Introduction to Digital ICs Current equations and parasitic effects of MOS devices Technology and layout of

More information

EITF20: Computer Architecture Part1.1.1: Introduction

EITF20: Computer Architecture Part1.1.1: Introduction EITF20: Computer Architecture Part1.1.1: Introduction Liang Liu liang.liu@eit.lth.se 1 Course Factor Computer Architecture (7.5HP) http://www.eit.lth.se/kurs/eitf20 EIT s Course Service Desk (studerandeexpedition)

More information

EE 434 ASIC & Digital Systems

EE 434 ASIC & Digital Systems EE 434 ASIC & Digital Systems Dae Hyun Kim EECS Washington State University Spring 2018 Course Website http://eecs.wsu.edu/~ee434 Themes Study how to design, analyze, and test a complex applicationspecific

More information

Announcements. Midterm 2 next Thursday, 6-7:30pm, 277 Cory Review session on Tuesday, 6-7:30pm, 277 Cory Homework 8 due next Tuesday Labs: project

Announcements. Midterm 2 next Thursday, 6-7:30pm, 277 Cory Review session on Tuesday, 6-7:30pm, 277 Cory Homework 8 due next Tuesday Labs: project - Fall 2002 Lecture 20 Synthesis Sequential Logic Announcements Midterm 2 next Thursday, 6-7:30pm, 277 Cory Review session on Tuesday, 6-7:30pm, 277 Cory Homework 8 due next Tuesday Labs: project» Teams

More information

Introduction to ICs and Transistor Fundamentals

Introduction to ICs and Transistor Fundamentals Introduction to ICs and Transistor Fundamentals A Brief History 1958: First integrated circuit Flip-flop using two transistors Built by Jack Kilby at Texas Instruments 2003 Intel Pentium 4 mprocessor (55

More information

VLSI Design Automation. Calcolatori Elettronici Ing. Informatica

VLSI Design Automation. Calcolatori Elettronici Ing. Informatica VLSI Design Automation 1 Outline Technology trends VLSI Design flow (an overview) 2 IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing

More information

Columbia Univerity Department of Electrical Engineering Fall, 2004

Columbia Univerity Department of Electrical Engineering Fall, 2004 Columbia Univerity Department of Electrical Engineering Fall, 2004 Course: EE E4321. VLSI Circuits. Instructor: Ken Shepard E-mail: shepard@ee.columbia.edu Office: 1019 CEPSR Office hours: MW 4:00-5:00

More information

ELCT 503: Semiconductors. Fall Lecture 01: Introduction

ELCT 503: Semiconductors. Fall Lecture 01: Introduction ELCT503 Semiconductors Fall 2014 Lecture 01: Introduction Dr. Hassan Mostafa د. حسن مصطفى hmostafa@aucegypt.edu Course Outline Course objectives This course is basically about the major microelectronics

More information

CSE 141: Computer Architecture. Professor: Michael Taylor. UCSD Department of Computer Science & Engineering

CSE 141: Computer Architecture. Professor: Michael Taylor. UCSD Department of Computer Science & Engineering CSE 141: Computer 0 Architecture Professor: Michael Taylor RF UCSD Department of Computer Science & Engineering Computer Architecture from 10,000 feet foo(int x) {.. } Class of application Physics Computer

More information

Introduction. Summary. Why computer architecture? Technology trends Cost issues

Introduction. Summary. Why computer architecture? Technology trends Cost issues Introduction 1 Summary Why computer architecture? Technology trends Cost issues 2 1 Computer architecture? Computer Architecture refers to the attributes of a system visible to a programmer (that have

More information

Concurrency & Parallelism, 10 mi

Concurrency & Parallelism, 10 mi The Beauty and Joy of Computing Lecture #7 Concurrency Instructor : Sean Morris Quest (first exam) in 5 days!! In this room! Concurrency & Parallelism, 10 mi up Intra-computer Today s lecture Multiple

More information

CS61C Machine Structures. Lecture 1 Introduction. 8/25/2003 Brian Harvey. John Wawrzynek (Warznek) www-inst.eecs.berkeley.

CS61C Machine Structures. Lecture 1 Introduction. 8/25/2003 Brian Harvey. John Wawrzynek (Warznek) www-inst.eecs.berkeley. CS61C Machine Structures Lecture 1 Introduction 8/25/2003 Brian Harvey (www.cs.berkeley.edu/~bh) John Wawrzynek (Warznek) (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L01 Introduction

More information

ENIAC - background. ENIAC - details. Structure of von Nuemann machine. von Neumann/Turing Computer Architecture

ENIAC - background. ENIAC - details. Structure of von Nuemann machine. von Neumann/Turing Computer Architecture 168 420 Computer Architecture Chapter 2 Computer Evolution and Performance ENIAC - background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania Trajectory tables

More information

Design of VLSI Circuits and Systems

Design of VLSI Circuits and Systems EE M216A Fall 2010 Design of VLSI ircuits and Systems Prof. Dejan Marković University of alifornia, Los Angeles, USA Email: ee216a@gmail.com ourse Description This course focuses on advanced concepts of

More information

CS61C Machine Structures. Lecture 1 Introduction. 8/27/2006 John Wawrzynek (Warzneck)

CS61C Machine Structures. Lecture 1 Introduction. 8/27/2006 John Wawrzynek (Warzneck) CS61C Machine Structures Lecture 1 Introduction 8/27/2006 John Wawrzynek (Warzneck) (http://www.cs.berkeley.edu/~johnw/) http://www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L01 Introduction (1) What are Machine

More information

FPGA BASED SYSTEM DESIGN. Dr. Tayab Din Memon Lecture 1 & 2

FPGA BASED SYSTEM DESIGN. Dr. Tayab Din Memon Lecture 1 & 2 FPGA BASED SYSTEM DESIGN Dr. Tayab Din Memon tayabuddin.memon@faculty.muet.edu.pk Lecture 1 & 2 Books Recommended Books: Text Book: FPGA Based System Design by Wayne Wolf Verilog HDL by Samir Palnitkar.

More information

EECS 244 Computer-Aided Design of Integrated Circuits and Systems

EECS 244 Computer-Aided Design of Integrated Circuits and Systems EECS 244 Computer-Aided Design of Integrated Circuits and Systems Professor A. Richard Newton Room 566 Cory Hall 642-2967, rnewton@ic.eecs Office Hours: Tu. Th. 3:30-4:30pm Fall 1997 Administrative Details

More information

CSC 447: Parallel Programming for Multi- Core and Cluster Systems. Lectures TTh, 11:00-12:15 from January 16, 2018 until 25, 2018 Prerequisites

CSC 447: Parallel Programming for Multi- Core and Cluster Systems. Lectures TTh, 11:00-12:15 from January 16, 2018 until 25, 2018 Prerequisites CSC 447: Parallel Programming for Multi- Core and Cluster Systems Introduction and A dministrivia Haidar M. Harmanani Spring 2018 Course Introduction Lectures TTh, 11:00-12:15 from January 16, 2018 until

More information

Design Methodologies

Design Methodologies Design Methodologies 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 Complexity Productivity (K) Trans./Staff - Mo. Productivity Trends Logic Transistor per Chip (M) 10,000 0.1

More information

Power dissipation! The VLSI Interconnect Challenge. Interconnect is the crux of the problem. Interconnect is the crux of the problem.

Power dissipation! The VLSI Interconnect Challenge. Interconnect is the crux of the problem. Interconnect is the crux of the problem. The VLSI Interconnect Challenge Avinoam Kolodny Electrical Engineering Department Technion Israel Institute of Technology VLSI Challenges System complexity Performance Tolerance to digital noise and faults

More information

Lab. Course Goals. Topics. What is VLSI design? What is an integrated circuit? VLSI Design Cycle. VLSI Design Automation

Lab. Course Goals. Topics. What is VLSI design? What is an integrated circuit? VLSI Design Cycle. VLSI Design Automation Course Goals Lab Understand key components in VLSI designs Become familiar with design tools (Cadence) Understand design flows Understand behavioral, structural, and physical specifications Be able to

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Vijay Nagarajan and Prof. Nigel Topham! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

Computer & Microprocessor Architecture HCA103

Computer & Microprocessor Architecture HCA103 Computer & Microprocessor Architecture HCA103 Computer Evolution and Performance UTM-RHH Slide Set 2 1 ENIAC - Background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #8 : Concurrency UC Berkeley Teaching Assistant Yaniv Rabbit Assaf Friendship Paradox On average, your friends are more popular than you. The average Facebook user

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Digital Integrated Circuits A Design Perspective Jan M. Rabaey Outline (approximate) Introduction and Motivation The VLSI Design Process Details of the MOS Transistor Device Fabrication Design Rules CMOS

More information

FPGA Based Digital Design Using Verilog HDL

FPGA Based Digital Design Using Verilog HDL FPGA Based Digital Design Using Course Designed by: IRFAN FAISAL MIR ( Verilog / FPGA Designer ) irfanfaisalmir@yahoo.com * Organized by Electronics Division Integrated Circuits Uses for digital IC technology

More information

CSCI 402: Computer Architectures. Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI Contents 1.7 - End of Chapter 1 Power wall The multicore era

More information

ECE 595Z Digital Systems Design Automation

ECE 595Z Digital Systems Design Automation ECE 595Z Digital Systems Design Automation Anand Raghunathan, raghunathan@purdue.edu How do you design chips with over 1 Billion transistors? Human designer capability grows far slower than Moore s law!

More information

Chapter 2. Perkembangan Komputer

Chapter 2. Perkembangan Komputer Chapter 2 Perkembangan Komputer 1 ENIAC - background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania Trajectory tables for weapons Started 1943 Finished 1946

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 18 Implementation Methods The Design Productivity Challenge Logic Transistors per Chip (K) 10,000,000.10m

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh (thanks to Prof. Nigel Topham) General Information Instructor

More information

Introduction 1. GENERAL TRENDS. 1. The technology scale down DEEP SUBMICRON CMOS DESIGN

Introduction 1. GENERAL TRENDS. 1. The technology scale down DEEP SUBMICRON CMOS DESIGN 1 Introduction The evolution of integrated circuit (IC) fabrication techniques is a unique fact in the history of modern industry. The improvements in terms of speed, density and cost have kept constant

More information

E 4.20 Introduction to Digital Integrated Circuit Design

E 4.20 Introduction to Digital Integrated Circuit Design E 4.20 Introduction to Digital Integrated Circuit Design Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@imperial.ac.uk

More information

ELCT 501: Digital System Design

ELCT 501: Digital System Design ELCT 501: Digital System Lecture 1: Introduction Dr. Mohamed Abd El Ghany, Mohamed.abdel-ghany@guc.edu.eg Administrative Rules Course components: Lecture: Thursday (fourth slot), 13:15-14:45 (H8) Office

More information

ECE 486/586. Computer Architecture. Lecture # 2

ECE 486/586. Computer Architecture. Lecture # 2 ECE 486/586 Computer Architecture Lecture # 2 Spring 2015 Portland State University Recap of Last Lecture Old view of computer architecture: Instruction Set Architecture (ISA) design Real computer architecture:

More information

CSC 447: Parallel Programming for Multi- Core and Cluster Systems

CSC 447: Parallel Programming for Multi- Core and Cluster Systems CSC 447: Parallel Programming for Multi- Core and Cluster Systems Why Parallel Computing? Haidar M. Harmanani Spring 2017 Definitions What is parallel? Webster: An arrangement or state that permits several

More information

Trend in microelectronics The design process and tasks Different design paradigms Basic terminology The test problems

Trend in microelectronics The design process and tasks Different design paradigms Basic terminology The test problems Electronics Systems Trend in microelectronics The design process and tasks Different design paradigms Basic terminology The test problems The Technological Trend # of trans. 100M 75M 50M Moore s Law (#

More information

EECS 312 Digital Integrated Circuits. Instructor s Name: Prof. Pinaki Mazumder. T,Th 3:00 4:30 pm. Overview

EECS 312 Digital Integrated Circuits. Instructor s Name: Prof. Pinaki Mazumder. T,Th 3:00 4:30 pm. Overview EECS 312 igital Integrated Circuits Instructor s Name: Prof. Pinaki Mazumder mazum@eecs.umich.edu T,Th 3:00 4:30 pm 1 Overview Logistics Go over syllabus & Course Overview igital ICs are omnipresent: Applications

More information

Microelectronics. Moore s Law. Initially, only a few gates or memory cells could be reliably manufactured and packaged together.

Microelectronics. Moore s Law. Initially, only a few gates or memory cells could be reliably manufactured and packaged together. Microelectronics Initially, only a few gates or memory cells could be reliably manufactured and packaged together. These early integrated circuits are referred to as small-scale integration (SSI). As time

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Boris Grot and Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh General Information Instructors: Boris

More information

DIGITAL DESIGN TECHNOLOGY & TECHNIQUES

DIGITAL DESIGN TECHNOLOGY & TECHNIQUES DIGITAL DESIGN TECHNOLOGY & TECHNIQUES CAD for ASIC Design 1 INTEGRATED CIRCUITS (IC) An integrated circuit (IC) consists complex electronic circuitries and their interconnections. William Shockley et

More information

Evolution of the Computer

Evolution of the Computer Evolution of the Computer Janaka Harambearachchi (Engineer/Systems Development) Zeroth Generation- Mechanical 1. Blaise Pascal -1642 Mechanical calculator only perform + - 2. Von Leibiniz -1672 Mechanical

More information

IT 252 Computer Organization and Architecture. Introduction. Chia-Chi Teng

IT 252 Computer Organization and Architecture. Introduction. Chia-Chi Teng IT 252 Computer Organization and Architecture Introduction Chia-Chi Teng What is computer architecture about? Computer architecture is the study of building computer systems. IT 252 is roughly split into

More information

VLSI Digital Signal Processing

VLSI Digital Signal Processing VLSI Digital Signal Processing EEC 28 Lecture Bevan M. Baas Tuesday, January 9, 28 Today Administrative items Syllabus and course overview My background Digital signal processing overview Read Programmable

More information

Miniaturization process technology

Miniaturization process technology Miniaturization process technology 1 st lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 The First Computer The Babbage Difference Engine (1832) 2,500 parts 6 years to build Cost: 17,470 2

More information

ECE 588/688 Advanced Computer Architecture II

ECE 588/688 Advanced Computer Architecture II ECE 588/688 Advanced Computer Architecture II Instructor: Alaa Alameldeen alaa@ece.pdx.edu Winter 2018 Portland State University Copyright by Alaa Alameldeen and Haitham Akkary 2018 1 When and Where? When:

More information

CS/EE 6810: Computer Architecture

CS/EE 6810: Computer Architecture CS/EE 6810: Computer Architecture Class format: Most lectures on YouTube *BEFORE* class Use class time for discussions, clarifications, problem-solving, assignments 1 Introduction Background: CS 3810 or

More information

EITF20: Computer Architecture Part1.1.1: Introduction

EITF20: Computer Architecture Part1.1.1: Introduction EITF20: Computer Architecture Part1.1.1: Introduction Liang Liu liang.liu@eit.lth.se 1 Course Factor Computer Architecture (7.5HP) http://www.eit.lth.se/kurs/eitf20 EIT s Course Service Desk (studerandeexpedition)

More information

Curtis Nelson. Walla Walla College. Introduction CMOS VLSI Design

Curtis Nelson. Walla Walla College. Introduction CMOS VLSI Design Curtis Nelson Walla Walla College Slide 1 Course organization History of the integrated circuit Trends in the semiconductor industry System design versus custom chip design Top down design Bottom-up implementation

More information

CIT 668: System Architecture

CIT 668: System Architecture CIT 668: System Architecture Computer Systems Architecture I 1. System Components 2. Processor 3. Memory 4. Storage 5. Network 6. Operating System Topics Images courtesy of Majd F. Sakr or from Wikipedia

More information

Il pensiero parallelo: Una storia di innovazione aziendale

Il pensiero parallelo: Una storia di innovazione aziendale Il pensiero parallelo: Una storia di innovazione aziendale Maria Teresa Gatti Scienzazienda Trento, 8 Maggio 2006 Overview ST is one of the largest Worldwide Semiconductors provider, with products ranging

More information

ECE 15B COMPUTER ORGANIZATION

ECE 15B COMPUTER ORGANIZATION ECE 15B COMPUTER ORGANIZATION What are Computing Systems? CMOS Camera (courtesy of Samsung Electronics Co., Ltd) Lecture 1 Introduction Dr. Rahul Singh UCLA Gonda Robotic Surgery Center da Vinci surgical

More information

ECE 154A. Architecture. Dmitri Strukov

ECE 154A. Architecture. Dmitri Strukov ECE 154A Introduction to Computer Architecture Dmitri Strukov Lecture 1 Outline Admin What this class is about? Prerequisites ii Simple computer Performance Historical trends Economics 2 Admin Office Hours:

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 2 Computer Evolution and Performance

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 2 Computer Evolution and Performance William Stallings Computer Organization and Architecture 8 th Edition Chapter 2 Computer Evolution and Performance Analytical Engine ENIAC - background Electronic Numerical Integrator And Computer Eckert

More information

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş Evolution of Computers & Microprocessors Dr. Cahit Karakuş Evolution of Computers First generation (1939-1954) - vacuum tube IBM 650, 1954 Evolution of Computers Second generation (1954-1959) - transistor

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

High-Performance System Design. Prof. Vojin G. Oklobdzija

High-Performance System Design. Prof. Vojin G. Oklobdzija High-Performance System Design Prof. Vojin G. Oklobdzija Overview of the course Requirements: Knowledge of CMOS digital circuits Basic knowledge of analog circuits Knowledge of Logic Design Textbook: High-Performance

More information

COMP 322 / ELEC 323: Fundamentals of Parallel Programming

COMP 322 / ELEC 323: Fundamentals of Parallel Programming COMP 322 / ELEC 323: Fundamentals of Parallel Programming Lecture 1: Task Creation & Termination (async, finish) Instructors: Vivek Sarkar, Mack Joyner Department of Computer Science, Rice University {vsarkar,

More information

Administration. Coursework. Prerequisites. CS 378: Programming for Performance. 4 or 5 programming projects

Administration. Coursework. Prerequisites. CS 378: Programming for Performance. 4 or 5 programming projects CS 378: Programming for Performance Administration Instructors: Keshav Pingali (Professor, CS department & ICES) 4.126 ACES Email: pingali@cs.utexas.edu TA: Hao Wu (Grad student, CS department) Email:

More information

CS430 - Computer Architecture William J. Taffe Fall 2002 using slides from. CS61C - Machine Structures Dave Patterson Fall 2000

CS430 - Computer Architecture William J. Taffe Fall 2002 using slides from. CS61C - Machine Structures Dave Patterson Fall 2000 CS430 - Computer Architecture William J. Taffe Fall 2002 using slides from CS61C - Machine Structures Dave Patterson Fall 2000 CS 430 Intro.1 WJ Taffe, Fall 2002 Overview Intro to Machine Structures Organization

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Guoping Qiu School of Computer Science The University of Nottingham http://www.cs.nott.ac.uk/~qiu 1 The World of Computers Computers are everywhere Cell phones Game consoles

More information

Design Metrics. A couple of especially important metrics: Time to market Total cost (NRE + unit cost) Performance (speed latency and throughput)

Design Metrics. A couple of especially important metrics: Time to market Total cost (NRE + unit cost) Performance (speed latency and throughput) Design Metrics A couple of especially important metrics: Time to market Total cost (NRE + unit cost) Performance (speed latency and throughput) 1 Design Metrics A couple of especially important metrics:

More information

COMP 322: Fundamentals of Parallel Programming

COMP 322: Fundamentals of Parallel Programming COMP 322: Fundamentals of Parallel Programming! Lecture 1: The What and Why of Parallel Programming; Task Creation & Termination (async, finish) Vivek Sarkar Department of Computer Science, Rice University

More information

CS 194 Parallel Programming. Why Program for Parallelism?

CS 194 Parallel Programming. Why Program for Parallelism? CS 194 Parallel Programming Why Program for Parallelism? Katherine Yelick yelick@cs.berkeley.edu http://www.cs.berkeley.edu/~yelick/cs194f07 8/29/2007 CS194 Lecure 1 What is Parallel Computing? Parallel

More information

EE382 Processor Design. Class Objectives

EE382 Processor Design. Class Objectives EE382 Processor Design Stanford University Winter Quarter 1998-1999 Instructor: Michael Flynn Teaching Assistant: Steve Chou Administrative Assistant: Susan Gere Lecture 1 - Introduction Slide 1 Class

More information

Computer Architecture Computer Architecture. Computer Architecture. What is Computer Architecture? Grading

Computer Architecture Computer Architecture. Computer Architecture. What is Computer Architecture? Grading 178 322 Computer Architecture Lecturer: Watis Leelapatra Office: 4301D Email: watis@kku.ac.th Course Webpage: http://gear.kku.ac.th/~watis/courses/178322/178322.html Computer Architecture Grading Midterm

More information

Hardware Modeling using Verilog Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Hardware Modeling using Verilog Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Hardware Modeling using Verilog Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture 01 Introduction Welcome to the course on Hardware

More information

ECE 3220 Digital Design with VHDL. Course Information. Lecture 1

ECE 3220 Digital Design with VHDL. Course Information. Lecture 1 ECE 3220 Digital Design with VHDL Course Information Lecture 1 Course Information Course #: ECE 3220 Course Name: Digital Design with VHDL Course Instructor: Dr. Vida Vakilian Email: vvakilian@csub.edu

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors:!

More information