Microelettronica. J. M. Rabaey, "Digital integrated circuits: a design perspective" EE141 Microelettronica

Size: px
Start display at page:

Download "Microelettronica. J. M. Rabaey, "Digital integrated circuits: a design perspective" EE141 Microelettronica"

Transcription

1 Microelettronica J. M. Rabaey, "Digital integrated circuits: a design perspective"

2 Introduction Why is designing digital ICs different today than it was before? Will it change in future?

3 The First Computer The Babbage Difference Engine (1832) 25,000 parts cost: 17,470

4 ENIAC - The first electronic computer (1946)

5 The Transistor Revolution First transistor Bell Labs, 1948

6 The First Integrated Circuits Bipolar logic 1960 s ECL 3-input Gate Motorola 1966

7 Intel 4004 Micro-Processor transistors 1 MHz operation

8 Intel Pentium (IV) microprocessor M transistors 1.7 GHz clock-rate

9 Moore s Law In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months. He made a prediction that semiconductor technology will double its effectiveness every 18 months

10 Moore s Law LOG 2 OF THE NUMBER OF COMPONENTS PER INTEGRATED FUNCTION Electronics, April 19, 1965.

11 Trends in logic IC Complexity

12 Trends in Memory Complexity

13 Transistors (MT) Moore s law in Microprocessors X growth in 1.96 years! P6 Pentium proc Year Transistors on Lead Microprocessors double every 2 years

14 Moore s Law (data from Intel)

15 Frequency (Mhz) Frequency Doubles every 2 years P6 Pentium proc Year Lead Microprocessors frequency doubles every 2 years

16 Die size (mm) Die Size Growth P6 Pentium proc ~7% growth per year ~2X growth in 10 years Year Die size grows by 14% to satisfy Moore s Law

17 Power (Watts) Power Dissipation 100 P6 Pentium proc Year Lead Microprocessors power continues to increase

18 Power (Watts) Power will be a major problem Pentium proc 18KW 5KW 1.5KW 500W Year Power delivery and dissipation will be prohibitive Courtesy, Intel

19 Power Density (W/cm2) Power density Hot Plate P6 Pentium proc Year Power density too high to keep junctions at low temp

20 Not Only Microprocessors Cell Phone Small Signal RF Power RF Units Digital Cellular Market (Phones Shipped) M 86M 162M 260M 435M Power Management Analog Baseband Digital Baseband (DSP + MCU) (data from Texas Instruments)

21 Why Scaling? Technology shrinks by 0.7/generation With every generation can integrate 2x more functions per chip; chip cost does not increase significantly Cost of a function decreases by 2x But How to design chips with more and more functions? Design engineering population does not double every two years Hence, a need for more efficient design methods Exploit different levels of abstraction

22 Design Abstraction Levels SYSTEM MODULE + GATE CIRCUIT S n+ G DEVICE n+ D

23 Design Metrics How to evaluate performance of a digital circuit (gate, block, )? Cost Reliability Scalability Speed (delay, operating frequency) Power dissipation Energy to perform a function

24 Cost of Integrated Circuits NRE (non-recurrent engineering) costs design time and effort, mask generation one-time cost factor Recurrent costs silicon processing, packaging, test proportional to volume proportional to chip area

25 NRE Cost is Increasing

26 Cost per Transistor cost: -per-transistor Fabrication capital cost per transistor (Moore s law)

27 Die Cost Single die Wafer Going up to 12 (30cm)

28 Yield Dies No. of good chips per wafer Y 100% Totalnumber of chips per wafer Die cost per wafer Wafer cost Dies per wafer Die yield wafer diameter/2 die area 2 wafer diameter 2 die area

29 Defects die yield 1 defects per unit area die area is approximately 3 die cost f 4 (die area)

30 Some Examples (1994) Chip Metal layers Line width Wafer cost Def./ cm 2 Area mm 2 Dies/ wafer Yield Die cost 386DX $ % $4 486 DX $ % $12 Power PC $ % $53 HP PA $ % $73 DEC Alpha $ % $149 Super Sparc $ % $272 Pentium $ % $417

31 Reliability Noise in Digital Integrated Circuits i(t) v(t) V DD Inductive coupling Capacitive coupling Power and ground noise

EE586 VLSI Design. Partha Pande School of EECS Washington State University

EE586 VLSI Design. Partha Pande School of EECS Washington State University EE586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 1 (Introduction) Why is designing digital ICs different today than it was before? Will it change in

More information

CAD for VLSI. Debdeep Mukhopadhyay IIT Madras

CAD for VLSI. Debdeep Mukhopadhyay IIT Madras CAD for VLSI Debdeep Mukhopadhyay IIT Madras Tentative Syllabus Overall perspective of VLSI Design MOS switch and CMOS, MOS based logic design, the CMOS logic styles, Pass Transistors Introduction to Verilog

More information

EE141- Spring 2007 Introduction to Digital Integrated Circuits

EE141- Spring 2007 Introduction to Digital Integrated Circuits - Spring 2007 Introduction to Digital Integrated Circuits Tu-Th 5pm-6:30pm 150 GSPP 1 What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

More information

What is this class all about?

What is this class all about? -Fall 2004 Digital Integrated Circuits Instructor: Borivoje Nikolić TuTh 3:30-5 247 Cory EECS141 1 What is this class all about? Introduction to digital integrated circuits. CMOS devices and manufacturing

More information

EE141- Spring 2004 Introduction to Digital Integrated Circuits. What is this class about?

EE141- Spring 2004 Introduction to Digital Integrated Circuits. What is this class about? - Spring 2004 Introduction to Digital Integrated Circuits Tu-Th am-2:30pm 203 McLaughlin What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

More information

EE141- Spring 2002 Introduction to Digital Integrated Circuits. What is this class about?

EE141- Spring 2002 Introduction to Digital Integrated Circuits. What is this class about? - Spring 2002 Introduction to Digital Integrated Circuits Tu-Th 9:30-am 203 McLaughlin What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

More information

What is this class all about?

What is this class all about? EE141-Fall 2012 Digital Integrated Circuits Instructor: Elad Alon TuTh 11-12:30pm 247 Cory 1 What is this class all about? Introduction to digital integrated circuit design engineering Will describe models

More information

What is this class all about?

What is this class all about? EE141-Fall 2007 Digital Integrated Circuits Instructor: Elad Alon TuTh 3:30-5pm 155 Donner 1 1 What is this class all about? Introduction to digital integrated circuit design engineering Will describe

More information

Lecture #1. Teach you how to make sure your circuit works Do you want your transistor to be the one that screws up a 1 billion transistor chip?

Lecture #1. Teach you how to make sure your circuit works Do you want your transistor to be the one that screws up a 1 billion transistor chip? Instructor: Jan Rabaey EECS141 1 Introduction to digital integrated circuit design engineering Will describe models and key concepts needed to be a good digital IC designer Models allow us to reason about

More information

ECE 637 Integrated VLSI Circuits. Introduction. Introduction EE141

ECE 637 Integrated VLSI Circuits. Introduction. Introduction EE141 ECE 637 Integrated VLSI Circuits Introduction EE141 1 Introduction Course Details Instructor Mohab Anis; manis@vlsi.uwaterloo.ca Text Digital Integrated Circuits, Jan Rabaey, Prentice Hall, 2 nd edition

More information

Jin-Fu Li. Department of Electrical Engineering. Jhongli, Taiwan

Jin-Fu Li. Department of Electrical Engineering. Jhongli, Taiwan EEA001 VLSI Design Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jhongli, Taiwan Contents Syllabus Introduction to CMOS Circuits MOS Transistor

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 CPE/EE 427, CPE 527 VLSI Design I L0 Department of Electrical and Computer Engineering University of Alabama in Huntsville What is this course all about? Introduction to digital integrated circuits. CMOS

More information

Elettronica T moduli I e II

Elettronica T moduli I e II Elettronica T moduli I e II Docenti: Massimo Lanzoni, Igor Loi Massimo.lanzoni@unibo.it igor.loi@unibo.it A.A. 2015/2016 Scheduling MOD 1 (Prof. Loi) Weeks 39,40,41,42, 43,44» MOS transistors» Digital

More information

ECE484 VLSI Digital Circuits Fall Lecture 01: Introduction

ECE484 VLSI Digital Circuits Fall Lecture 01: Introduction ECE484 VLSI Digital Circuits Fall 2017 Lecture 01: Introduction Adapted from slides provided by Mary Jane Irwin. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] CSE477 L01 Introduction.1

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated Circuits EE141 Fall 2005 Tu & Th 11-12:30 203 McLaughlin What is This Class About? Introduction to Digital Integrated Circuits Introduction: Issues in digital design CMOS devices and

More information

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 1: Introduction to VLSI Technology Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Course Objectives

More information

EE241 - Spring 2004 Advanced Digital Integrated Circuits

EE241 - Spring 2004 Advanced Digital Integrated Circuits EE24 - Spring 2004 Advanced Digital Integrated Circuits Borivoje Nikolić Lecture 2 Impact of Scaling Class Material Last lecture Class scope, organization Today s lecture Impact of scaling 2 Major Roadblocks.

More information

INEL-6080 VLSI Systems Design

INEL-6080 VLSI Systems Design INEL-6080 VLSI Systems Design ooooooo Prof. Manuel Jiménez Lecture 1 Introduction Computational Devices The idea of developing computing devices is certainly not new A few chronological examples show the

More information

Introduction. Summary. Why computer architecture? Technology trends Cost issues

Introduction. Summary. Why computer architecture? Technology trends Cost issues Introduction 1 Summary Why computer architecture? Technology trends Cost issues 2 1 Computer architecture? Computer Architecture refers to the attributes of a system visible to a programmer (that have

More information

CMPEN 411 VLSI Digital Circuits. Lecture 01: Introduction

CMPEN 411 VLSI Digital Circuits. Lecture 01: Introduction CMPEN 411 VLSI Digital Circuits Kyusun Choi Lecture 01: Introduction CMPEN 411 Course Website link at: http://www.cse.psu.edu/~kyusun/teach/teach.html [Adapted from Rabaey s Digital Integrated Circuits,

More information

ECE 261: Full Custom VLSI Design

ECE 261: Full Custom VLSI Design ECE 261: Full Custom VLSI Design Prof. James Morizio Dept. Electrical and Computer Engineering Hudson Hall Ph: 201-7759 E-mail: jmorizio@ee.duke.edu URL: http://www.ee.duke.edu/~jmorizio Course URL: http://www.ee.duke.edu/~jmorizio/ece261/261.html

More information

EE3032 Introduction to VLSI Design

EE3032 Introduction to VLSI Design EE3032 Introduction to VLSI Design Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jhongli, Taiwan Contents Syllabus Introduction to CMOS

More information

CMPEN 411. Spring Lecture 01: Introduction

CMPEN 411. Spring Lecture 01: Introduction Kyusun Choi CMPEN 411 VLSI Digital Circuits Spring 2009 Lecture 01: Introduction Course Website: http://www.cse.psu.edu/~kyusun/class/cmpen411/09s/index.html [Adapted from Rabaey s Digital Integrated Circuits,

More information

EE5780 Advanced VLSI CAD

EE5780 Advanced VLSI CAD EE5780 Advanced VLSI CAD Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 513 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee5780fall2013.html

More information

Introduction to ICs and Transistor Fundamentals

Introduction to ICs and Transistor Fundamentals Introduction to ICs and Transistor Fundamentals A Brief History 1958: First integrated circuit Flip-flop using two transistors Built by Jack Kilby at Texas Instruments 2003 Intel Pentium 4 mprocessor (55

More information

VLSI Design Automation. Maurizio Palesi

VLSI Design Automation. Maurizio Palesi VLSI Design Automation 1 Outline Technology trends VLSI Design flow (an overview) 2 Outline Technology trends VLSI Design flow (an overview) 3 IC Products Processors CPU, DSP, Controllers Memory chips

More information

EITF35: Introduction to Structured VLSI Design

EITF35: Introduction to Structured VLSI Design EITF35: Introduction to Structured VLSI Design Part 1.1.2: Introduction (Digital VLSI Systems) Liang Liu liang.liu@eit.lth.se 1 Outline Why Digital? History & Roadmap Device Technology & Platforms System

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Practical Information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Practical Information EE24 - Spring 2000 Advanced Digital Integrated Circuits Tu-Th 2:00 3:30pm 203 McLaughlin Practical Information Instructor: Borivoje Nikolic 570 Cory Hall, 3-9297, bora@eecs.berkeley.edu Office hours: TuTh

More information

ECE 486/586. Computer Architecture. Lecture # 2

ECE 486/586. Computer Architecture. Lecture # 2 ECE 486/586 Computer Architecture Lecture # 2 Spring 2015 Portland State University Recap of Last Lecture Old view of computer architecture: Instruction Set Architecture (ISA) design Real computer architecture:

More information

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends EE4 - Spring 008 Advanced Digital Integrated Circuits Lecture : Scaling Trends Announcements No office hour next Monday Extra office hours Tuesday and Thursday -3pm CMOS Scaling Rules Voltage, V / α tox/α

More information

VLSI Design Automation

VLSI Design Automation VLSI Design Automation IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing Programmable PLA, FPGA Embedded systems Used in cars,

More information

VLSI Design Automation

VLSI Design Automation VLSI Design Automation IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing Programmable PLA, FPGA Embedded systems Used in cars,

More information

VLSI Design Automation. Calcolatori Elettronici Ing. Informatica

VLSI Design Automation. Calcolatori Elettronici Ing. Informatica VLSI Design Automation 1 Outline Technology trends VLSI Design flow (an overview) 2 IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing

More information

Using ASIC circuits. What is ASIC. ASIC examples ASIC types and selection ASIC costs ASIC purchasing Trends in IC technologies

Using ASIC circuits. What is ASIC. ASIC examples ASIC types and selection ASIC costs ASIC purchasing Trends in IC technologies Using ASIC circuits What is this machine? ASIC examples ASIC types and selection ASIC ASIC purchasing Trends in IC technologies 9.3.2004 Turo Piila 1 9.3.2004 Turo Piila 2 What is ASIC Floorplan and layout

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Digital Integrated Circuits A Design Perspective Jan M. Rabaey Outline (approximate) Introduction and Motivation The VLSI Design Process Details of the MOS Transistor Device Fabrication Design Rules CMOS

More information

Introduction 1. GENERAL TRENDS. 1. The technology scale down DEEP SUBMICRON CMOS DESIGN

Introduction 1. GENERAL TRENDS. 1. The technology scale down DEEP SUBMICRON CMOS DESIGN 1 Introduction The evolution of integrated circuit (IC) fabrication techniques is a unique fact in the history of modern industry. The improvements in terms of speed, density and cost have kept constant

More information

ENIAC - background. ENIAC - details. Structure of von Nuemann machine. von Neumann/Turing Computer Architecture

ENIAC - background. ENIAC - details. Structure of von Nuemann machine. von Neumann/Turing Computer Architecture 168 420 Computer Architecture Chapter 2 Computer Evolution and Performance ENIAC - background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania Trajectory tables

More information

ELCT 503: Semiconductors. Fall Lecture 01: Introduction

ELCT 503: Semiconductors. Fall Lecture 01: Introduction ELCT503 Semiconductors Fall 2014 Lecture 01: Introduction Dr. Hassan Mostafa د. حسن مصطفى hmostafa@aucegypt.edu Course Outline Course objectives This course is basically about the major microelectronics

More information

Advanced Computer Architecture (CS620)

Advanced Computer Architecture (CS620) Advanced Computer Architecture (CS620) Background: Good understanding of computer organization (eg.cs220), basic computer architecture (eg.cs221) and knowledge of probability, statistics and modeling (eg.cs433).

More information

Evolution of the Computer

Evolution of the Computer Evolution of the Computer Janaka Harambearachchi (Engineer/Systems Development) Zeroth Generation- Mechanical 1. Blaise Pascal -1642 Mechanical calculator only perform + - 2. Von Leibiniz -1672 Mechanical

More information

Il pensiero parallelo: Una storia di innovazione aziendale

Il pensiero parallelo: Una storia di innovazione aziendale Il pensiero parallelo: Una storia di innovazione aziendale Maria Teresa Gatti Scienzazienda Trento, 8 Maggio 2006 Overview ST is one of the largest Worldwide Semiconductors provider, with products ranging

More information

CS/EE 6810: Computer Architecture

CS/EE 6810: Computer Architecture CS/EE 6810: Computer Architecture Class format: Most lectures on YouTube *BEFORE* class Use class time for discussions, clarifications, problem-solving, assignments 1 Introduction Background: CS 3810 or

More information

Chapter 2. Perkembangan Komputer

Chapter 2. Perkembangan Komputer Chapter 2 Perkembangan Komputer 1 ENIAC - background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania Trajectory tables for weapons Started 1943 Finished 1946

More information

E40M. MOS Transistors, CMOS Logic Circuits, and Cheap, Powerful Computers. M. Horowitz, J. Plummer, R. Howe 1

E40M. MOS Transistors, CMOS Logic Circuits, and Cheap, Powerful Computers. M. Horowitz, J. Plummer, R. Howe 1 E40M MOS Transistors, CMOS Logic Circuits, and Cheap, Powerful Computers M. Horowitz, J. Plummer, R. Howe 1 Reading Chapter 4 in the reader For more details look at A&L 5.1 Digital Signals (goes in much

More information

Computer & Microprocessor Architecture HCA103

Computer & Microprocessor Architecture HCA103 Computer & Microprocessor Architecture HCA103 Computer Evolution and Performance UTM-RHH Slide Set 2 1 ENIAC - Background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania

More information

More Course Information

More Course Information More Course Information Labs and lectures are both important Labs: cover more on hands-on design/tool/flow issues Lectures: important in terms of basic concepts and fundamentals Do well in labs Do well

More information

TABLE OF CONTENTS III. Section 1. Executive Summary

TABLE OF CONTENTS III. Section 1. Executive Summary Section 1. Executive Summary... 1-1 Section 2. Global IC Industry Outlook and Cycles... 2-1 IC Insights' Forecast Methodology... 2-1 Overview... 2-1 Worldwide GDP... 2-1 Electronic System Sales... 2-2

More information

Fundamentals of Computer Design

Fundamentals of Computer Design CS359: Computer Architecture Fundamentals of Computer Design Yanyan Shen Department of Computer Science and Engineering 1 Defining Computer Architecture Agenda Introduction Classes of Computers 1.3 Defining

More information

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş Evolution of Computers & Microprocessors Dr. Cahit Karakuş Evolution of Computers First generation (1939-1954) - vacuum tube IBM 650, 1954 Evolution of Computers Second generation (1954-1959) - transistor

More information

CS Computer Architecture Spring Lecture 01: Introduction

CS Computer Architecture Spring Lecture 01: Introduction CS 35101 Computer Architecture Spring 2008 Lecture 01: Introduction Created by Shannon Steinfadt Indicates slide was adapted from :Kevin Schaffer*, Mary Jane Irwinº, and from Computer Organization and

More information

Design and Technology Trends

Design and Technology Trends Lecture 1 Design and Technology Trends R. Saleh Dept. of ECE University of British Columbia res@ece.ubc.ca 1 Recently Designed Chips Itanium chip (Intel), 2B tx, 700mm 2, 8 layer 65nm CMOS (4 processors)

More information

EITF20: Computer Architecture Part1.1.1: Introduction

EITF20: Computer Architecture Part1.1.1: Introduction EITF20: Computer Architecture Part1.1.1: Introduction Liang Liu liang.liu@eit.lth.se 1 Course Factor Computer Architecture (7.5HP) http://www.eit.lth.se/kurs/eitf20 EIT s Course Service Desk (studerandeexpedition)

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Vijay Nagarajan and Prof. Nigel Topham! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

ECE 2162 Intro & Trends. Jun Yang Fall 2009

ECE 2162 Intro & Trends. Jun Yang Fall 2009 ECE 2162 Intro & Trends Jun Yang Fall 2009 Prerequisites CoE/ECE 0142: Computer Organization; or CoE/CS 1541: Introduction to Computer Architecture I will assume you have detailed knowledge of Pipelining

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 2 Computer Evolution and Performance

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 2 Computer Evolution and Performance William Stallings Computer Organization and Architecture 8 th Edition Chapter 2 Computer Evolution and Performance Analytical Engine ENIAC - background Electronic Numerical Integrator And Computer Eckert

More information

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends EE24 - Spring 2008 Advanced Digital Integrated Circuits Lecture 2: Scaling Trends Announcements No office hour next Monday Extra office hours Tuesday and Thursday 2-3pm 2 CMOS Scaling Rules Voltage, V

More information

Integrated circuits and fabrication

Integrated circuits and fabrication Integrated circuits and fabrication Motivation So far we have discussed about the various devices that are the heartbeat of core electronics. This modules aims at giving an overview of how these solid

More information

Moore s s Law, 40 years and Counting

Moore s s Law, 40 years and Counting Moore s s Law, 40 years and Counting Future Directions of Silicon and Packaging Bill Holt General Manager Technology and Manufacturing Group Intel Corporation InterPACK 05 2005 Heat Transfer Conference

More information

Lab. Course Goals. Topics. What is VLSI design? What is an integrated circuit? VLSI Design Cycle. VLSI Design Automation

Lab. Course Goals. Topics. What is VLSI design? What is an integrated circuit? VLSI Design Cycle. VLSI Design Automation Course Goals Lab Understand key components in VLSI designs Become familiar with design tools (Cadence) Understand design flows Understand behavioral, structural, and physical specifications Be able to

More information

EE380K: Computing In Transition

EE380K: Computing In Transition EE380K: Computing In Transition Nick Tredennick, Technology Analyst Gilder Publishing bozo@computer.org Semiconductor World Market 2 Where Are Semiconductors Headed? Semiconductors Integrated Circuits

More information

2011 Signal Processing CoDR: Technology Roadmap W. Turner SPDO. 14 th April 2011

2011 Signal Processing CoDR: Technology Roadmap W. Turner SPDO. 14 th April 2011 2011 Signal Processing CoDR: Technology Roadmap W. Turner SPDO 14 th April 2011 Technology Roadmap Objectives: Identify known potential technologies applicable to the SKA Provide traceable attributes of

More information

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah PERFORMANCE METRICS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Sept. 5 th : Homework 1 release (due on Sept.

More information

Computer Architecture s Changing Definition

Computer Architecture s Changing Definition Computer Architecture s Changing Definition 1950s Computer Architecture Computer Arithmetic 1960s Operating system support, especially memory management 1970s to mid 1980s Computer Architecture Instruction

More information

3D systems-on-chip. A clever partitioning of circuits to improve area, cost, power and performance. The 3D technology landscape

3D systems-on-chip. A clever partitioning of circuits to improve area, cost, power and performance. The 3D technology landscape Edition April 2017 Semiconductor technology & processing 3D systems-on-chip A clever partitioning of circuits to improve area, cost, power and performance. In recent years, the technology of 3D integration

More information

Multi-Core Microprocessor Chips: Motivation & Challenges

Multi-Core Microprocessor Chips: Motivation & Challenges Multi-Core Microprocessor Chips: Motivation & Challenges Dileep Bhandarkar, Ph. D. Architect at Large DEG Architecture & Planning Digital Enterprise Group Intel Corporation October 2005 Copyright 2005

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from David Culler, UC Berkeley CS252, Spr 2002

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from David Culler, UC Berkeley CS252, Spr 2002 Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from David Culler, UC Berkeley CS252, Spr 2002 course slides, 2002 UC Berkeley Some material adapted

More information

Computer Organization CS 206T

Computer Organization CS 206T Computer Organization CS 206T Topics Introduction Historical Background Structure & Function System Interconnection 2 1. Introduction Why study computer organization and architecture? Design better programs,

More information

Concurrency & Parallelism, 10 mi

Concurrency & Parallelism, 10 mi The Beauty and Joy of Computing Lecture #7 Concurrency Instructor : Sean Morris Quest (first exam) in 5 days!! In this room! Concurrency & Parallelism, 10 mi up Intra-computer Today s lecture Multiple

More information

Lecture 2: Performance

Lecture 2: Performance Lecture 2: Performance Today s topics: Technology wrap-up Performance trends and equations Reminders: YouTube videos, canvas, and class webpage: http://www.cs.utah.edu/~rajeev/cs3810/ 1 Important Trends

More information

Moore s Law: Alive and Well. Mark Bohr Intel Senior Fellow

Moore s Law: Alive and Well. Mark Bohr Intel Senior Fellow Moore s Law: Alive and Well Mark Bohr Intel Senior Fellow Intel Scaling Trend 10 10000 1 1000 Micron 0.1 100 nm 0.01 22 nm 14 nm 10 nm 10 0.001 1 1970 1980 1990 2000 2010 2020 2030 Intel Scaling Trend

More information

CS 3410: Computer System Organization and Programming

CS 3410: Computer System Organization and Programming CS 3410: Computer System Organization and Programming Anne Bracy Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy,

More information

Problem 2 If the cost of a 12 inch wafer (actually 300mm) is $3500, what is the cost/die for the circuit in Problem 1.

Problem 2 If the cost of a 12 inch wafer (actually 300mm) is $3500, what is the cost/die for the circuit in Problem 1. EE 330 Homework 1 Fall 2016 Due Friday Aug 26 Problem 1 Assume a simple circuit requires 1,000 MOS transistors on a die and that all transistors are minimum sized. If the transistors are fabricated in

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #8 : Concurrency UC Berkeley Teaching Assistant Yaniv Rabbit Assaf Friendship Paradox On average, your friends are more popular than you. The average Facebook user

More information

Performance of Computers. EE365: Introduction to Digital Computer Design. So What? Ubiquity of Computers

Performance of Computers. EE365: Introduction to Digital Computer Design. So What? Ubiquity of Computers EE365: Introduction to Digital Computer Design Instructor: T.N. Vijaykumar T.A.: Tim Mattox Spring 1998 Purdue University Performance of Computers What do these two intervals have in common? 1776-1997

More information

CIT 668: System Architecture

CIT 668: System Architecture CIT 668: System Architecture Computer Systems Architecture I 1. System Components 2. Processor 3. Memory 4. Storage 5. Network 6. Operating System Topics Images courtesy of Majd F. Sakr or from Wikipedia

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION Rapid advances in integrated circuit technology have made it possible to fabricate digital circuits with large number of devices on a single chip. The advantages of integrated circuits

More information

Computer Architecture = CS/ECE 552: Introduction to Computer Architecture. 552 In Context. Why Study Computer Architecture?

Computer Architecture = CS/ECE 552: Introduction to Computer Architecture. 552 In Context. Why Study Computer Architecture? CS/ECE 552: Introduction to Computer Architecture Instructor: Mark D. Hill T.A.: Brandon Schwartz Section 2 Fall 2000 University of Wisconsin-Madison Lecture notes originally created by Mark D. Hill Updated

More information

CMPSCI 201: Architecture and Assembly Language

CMPSCI 201: Architecture and Assembly Language CMPSCI 201: Architecture and Assembly Language Deepak Ganesan Computer Science Department 1-1 Course Administration Instructor: Deepak Ganesan (dganesan@cs.umass.edu) 250 CS Building Office Hrs: T 10:45-12:15,

More information

Gigascale Integration Design Challenges & Opportunities. Shekhar Borkar Circuit Research, Intel Labs October 24, 2004

Gigascale Integration Design Challenges & Opportunities. Shekhar Borkar Circuit Research, Intel Labs October 24, 2004 Gigascale Integration Design Challenges & Opportunities Shekhar Borkar Circuit Research, Intel Labs October 24, 2004 Outline CMOS technology challenges Technology, circuit and μarchitecture solutions Integration

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh (thanks to Prof. Nigel Topham) General Information Instructor

More information

Power dissipation! The VLSI Interconnect Challenge. Interconnect is the crux of the problem. Interconnect is the crux of the problem.

Power dissipation! The VLSI Interconnect Challenge. Interconnect is the crux of the problem. Interconnect is the crux of the problem. The VLSI Interconnect Challenge Avinoam Kolodny Electrical Engineering Department Technion Israel Institute of Technology VLSI Challenges System complexity Performance Tolerance to digital noise and faults

More information

CSE 141: Computer Architecture. Professor: Michael Taylor. UCSD Department of Computer Science & Engineering

CSE 141: Computer Architecture. Professor: Michael Taylor. UCSD Department of Computer Science & Engineering CSE 141: Computer 0 Architecture Professor: Michael Taylor RF UCSD Department of Computer Science & Engineering Computer Architecture from 10,000 feet foo(int x) {.. } Class of application Physics Computer

More information

Advanced Computer Architecture Week 1: Introduction. ECE 154B Dmitri Strukov

Advanced Computer Architecture Week 1: Introduction. ECE 154B Dmitri Strukov Advanced Computer Architecture Week 1: Introduction ECE 154B Dmitri Strukov 1 Outline Course information Trends (in technology, cost, performance) and issues 2 Course organization Class website (old),

More information

What is This Course About? CS 356 Unit 0. Today's Digital Environment. Why is System Knowledge Important?

What is This Course About? CS 356 Unit 0. Today's Digital Environment. Why is System Knowledge Important? 0.1 What is This Course About? 0.2 CS 356 Unit 0 Class Introduction Basic Hardware Organization Introduction to Computer Systems a.k.a. Computer Organization or Architecture Filling in the "systems" details

More information

Mobile Processors. Jose R. Ortiz Ubarri

Mobile Processors. Jose R. Ortiz Ubarri Mobile Processors Jose R. Ortiz Ubarri Electrical and Computer Engineering Department University of Puerto Rico, Mayagüez Campus Mayagüez, Puerto Rico 00681 5000 Jose.Ortiz@hpcf.upr.edu Introduction While

More information

C Program Adventures. From C code to motion

C Program Adventures. From C code to motion C Program Adventures From C code to motion ECE 100 Prof. Erdal Oruklu From C code to motion C Code Motion x=5; if (x!=y) { z=0; } else { z=1; } 1 Compilation of C code Virtual machine program Program download

More information

Fundamentals of Quantitative Design and Analysis

Fundamentals of Quantitative Design and Analysis Fundamentals of Quantitative Design and Analysis Dr. Jiang Li Adapted from the slides provided by the authors Computer Technology Performance improvements: Improvements in semiconductor technology Feature

More information

EE115C Spring 2013 Digital Electronic Circuits. Mon & Wed 8:00-9:50am BH 5249

EE115C Spring 2013 Digital Electronic Circuits. Mon & Wed 8:00-9:50am BH 5249 EE115C Spring 2013 Digital Electronic Circuits Mon & Wed 8:00-9:50am BH 5249 Topics Covered: Introduction to Digital ICs Current equations and parasitic effects of MOS devices Technology and layout of

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

Reduction of Current Leakage in VLSI Systems

Reduction of Current Leakage in VLSI Systems IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 3, Ver. I (May.-Jun. 2017), PP 15-22 www.iosrjournals.org Reduction of Current

More information

ECE 747 Digital Signal Processing Architecture. DSP Implementation Architectures

ECE 747 Digital Signal Processing Architecture. DSP Implementation Architectures ECE 747 Digital Signal Processing Architecture DSP Implementation Architectures Spring 2006 W. Rhett Davis NC State University W. Rhett Davis NC State University ECE 406 Spring 2006 Slide 1 My Goal Challenge

More information

Miniaturization process technology

Miniaturization process technology Miniaturization process technology 1 st lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 The First Computer The Babbage Difference Engine (1832) 2,500 parts 6 years to build Cost: 17,470 2

More information

Computers: Inside and Out

Computers: Inside and Out Computers: Inside and Out Computer Components To store binary information the most basic components of a computer must exist in two states State # 1 = 1 State # 2 = 0 1 Transistors Computers use transistors

More information

Design Metrics. A couple of especially important metrics: Time to market Total cost (NRE + unit cost) Performance (speed latency and throughput)

Design Metrics. A couple of especially important metrics: Time to market Total cost (NRE + unit cost) Performance (speed latency and throughput) Design Metrics A couple of especially important metrics: Time to market Total cost (NRE + unit cost) Performance (speed latency and throughput) 1 Design Metrics A couple of especially important metrics:

More information

FPGA Based Digital Design Using Verilog HDL

FPGA Based Digital Design Using Verilog HDL FPGA Based Digital Design Using Course Designed by: IRFAN FAISAL MIR ( Verilog / FPGA Designer ) irfanfaisalmir@yahoo.com * Organized by Electronics Division Integrated Circuits Uses for digital IC technology

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

Overview of Today s Lecture: Cost & Price, Performance { 1+ Administrative Matters Finish Lecture1 Cost and Price Add/Drop - See me after class

Overview of Today s Lecture: Cost & Price, Performance { 1+ Administrative Matters Finish Lecture1 Cost and Price Add/Drop - See me after class Overview of Today s Lecture: Cost & Price, Performance EE176-SJSU Computer Architecture and Organization Lecture 2 Administrative Matters Finish Lecture1 Cost and Price Add/Drop - See me after class EE176

More information

ECE 154A. Architecture. Dmitri Strukov

ECE 154A. Architecture. Dmitri Strukov ECE 154A Introduction to Computer Architecture Dmitri Strukov Lecture 1 Outline Admin What this class is about? Prerequisites ii Simple computer Performance Historical trends Economics 2 Admin Office Hours:

More information

Lecture 1: CS/ECE 3810 Introduction

Lecture 1: CS/ECE 3810 Introduction Lecture 1: CS/ECE 3810 Introduction Today s topics: Why computer organization is important Logistics Modern trends 1 Why Computer Organization 2 Image credits: uber, extremetech, anandtech Why Computer

More information