Geometric Algorithms. Geometric Algorithms. Warning: Intuition May Mislead. Geometric Primitives

Size: px
Start display at page:

Download "Geometric Algorithms. Geometric Algorithms. Warning: Intuition May Mislead. Geometric Primitives"

Transcription

1 Geometri Algorithms Geometri Algorithms Convex hull Geometri primitives Closest pir of points Voronoi Applitions. Dt mining. VLSI design. Computer vision. Mthemtil models. Astronomil simultion. Geogrphi informtion systems. Computer grphis (movies, gmes, virtul relity. Models of physil world (mps, rhiteture, medil imging. Referene: Referene: Chpters 24-25, Algorithms in C, 2 nd Edition, Roert Sedgewik. History. Anient mthemtil foundtions. Most geometri lgorithms less thn 25 yers old. Prineton University COS 226 Algorithms nd Dt Strutures Spring 2004 Kevin Wyne 2 Geometri Primitives Wrning: Intuition My Misled Point: two numers (x, y. Line: two numers nd [x + y = 1] Line segment: four numers (x 1, y 1, (x 2, y 2. Polygon: sequene of points. ny line not through origin Wrning: intuition my e misleding. Humns hve sptil intuition in 2D nd 3D. Is given polygon onvex? Primitive opertions. Distne etween two points. Compre slopes of two lines. Given three points p 1, p 2, p 3, is p 1 -p 2 -p 3 ounterlokwise turn? Do two line segments interset? Is point inside polygon? Other geometri shpes. Tringle, retngle, irle, sphere,... 3D nd higher dimensions sometimes more omplited we think of this lgorithm sees this 3 4

2 Wrning: Intuition My Misled Wrning: Intuition My Misled Wrning: intuition my e misleding. Humns hve sptil intuition in 2D nd 3D. Intersetions mong set of retngles. Wrning: intuition my e misleding. Humns hve sptil intuition in 2D nd 3D. Computers do not. Neither hs good intuition in higher dimensions! we think of this lgorithm sees this 5 6 Convex Hull Pkge Wrp Convex hull. Shortest fene surrounding the points. Smllest (onvex polygon enlosing the points. Intersetion of hlfspes defined y point pirs. Pkge wrp. Strt with point with smllest y-oordinte. Rotte sweep line round urrent point in w diretion. First point hit is on the hull. Repet. onvex not onvex Prmeters. N = # points. M = # points on the hull. 7 8

3 Pkge Wrp How Mny Points on the Hull? Implementtion. Compute ngle etween urrent point nd ll remining points. Pik smllest ngle lrger thn urrent ngle. 2D nlog of seletion sort: (MN time. Prmeters. N = # points. M = # points on the hull. How mny points on hull? Worst se: N. Averge se: diffiult prolems in stohsti geometry. Uniform on irle: N. Uniform in onvex polygon with O(1 edges: log N. Uniform in dis: N 1/ Grhm Sn: Exmple Grhm Sn: Exmple Grhm sn. Choose point p with smllest y-oordinte. Sort points y polr ngle with p to get simple polygon. Consider points in order, nd disrd those tht use lokwise turn. Implementtion. Input: p[1], p[2],..., p[n] re points. Output: M nd rerrngement so tht p[1],..., p[m] is onvex hull. Given three points,, nd, is -- ounterlokwise turn? Totl ost: O( for sort nd O(N for rest. p // preproess so tht p[1] hs smllest y-oordinte // sort y ngle with p[1] points[0] = points[n]; // sentinel int M = 3; for (int i = 4; i <= N; i++ { while (Point.w(p[M], p[m-1], p[i] >= 0 { M--; // k up to inlude i on hull } M++; swp(points, M, i; // dd i to puttive hull } 11 12

4 Implementing CCW Implementing CCW CCW: Given three point,, nd, is -- ounterlokwise turn? Ide: ompre slopes. Diffiulty: degenery. CCW: Given three point,, nd, is -- ounterlokwise turn? Plys sme role s omprisons in sorting. Determinnt gives twie re of tringle. x x x y y y x y yx yx xy xy x y Yes No Yes ( slope??? (olliner??? (olliner??? (olliner If re > 0 then -- is ounterlokwise. If re < 0, then -- is lokwise. If re = 0, then -- re olliner. Lesson. Geometri primitives re triky to implement. Need to hndle ll degenerte ses. ( x, y > 0 ( x, y < 0 ( x, y ( x, y ( x, y ( x, y Quik Elimintion Convex Hull Algorithms Costs Summry Quik elimintion. Choose qudrilterl Q or retngle R with 4 points s orners. If point is inside, n eliminte. 4 CCW tests for qudrilterl 4 omprisons for retngle Three-phse lgorithm Pss through ll points to ompute R. Eliminte points inside R. Find onvex hull of remining points. Impt. Almost ll points re eliminted if points re rndom: O(N. Improve performne of ny onvex hull lgorithm. Q these points eliminted R Gurnteed symptoti ost to find M-point hull in N-point set. Algorithm Pkge Wrp Grhm Sn Quikhull Mergehull Sweep Line Quik Elimintion Best in Theory Running Time N M N * N log M * ssumes "resonle" point distriution 15 16

5 Closest Pir of Points Closest Pir of Points Given N points in the plne, find pir tht is losest together. For onreteness, we ssume Euliden distnes. Foundtion of then-fledgling field of omputtionl geometry. Grphis, omputer vision, geogrphi informtion systems, moleulr modeling, ir trffi ontrol. Algorithm. Divide: drw vertil line so tht roughly N / 2 points on eh side. Conquer: find losest pir in eh side reursively. Comine: find losest pir with one point in eh side. Return: est of 3 solutions. Brute fore solution. Chek ll pirs of points p nd q. (N 2 omprisons. 1-D version (points on line. O( esy Assumption. No two points hve sme x oordinte. 12 solely to mke presenttion lener Closest Pir of Points Closest Pir of Points Key step: find losest pir with one point in eh side. Extr informtion: losest pir entirely in one side hd distne. Oservtion: only need to onsider points within of line. Sort points in 2-strip y their y oordinte. Only hek distnes of those within 6 positions in sorted list! s[] = rry of points in the 2-strip, sorted y their y-oordinte. Ft: if i j 12, then the distne etween s[i] nd s[j] is t lest. No two points lie in sme /2 y /2 ox. Two points t lest 2 rows prt hve distne 2 / 2. Ft: still true if we reple 12 with 7. 2 rows i j / 2 / 2 / = min(12,

6 Closest Pir of Points Closest Pir of Points Closest pir lgorithm. Running time. Compute seprtion line x = x med suh tht hlf the points hve x oordinte less thn x med, nd hlf re greter. O( T( N 2T N /2 O ( N logn T( N O ( N log 2 N 1 = ClosestPir(left hlf 2 = ClosestPir(right hlf = min ( 1, 2 Delete ll points further thn from seprtion line. Sort remining points in strip y y oordinte. Sn in y order, nd ompute distne etween eh point nd next 6 neighors. If ny of these distnes is less thn, updte. Return. = ClosestPir (p 1, p 2,..., p N 2T(N / 2 O(N O( O(N Cn we hieve O(? Yes. Don't sort points in strip from srth eh time. Eh reursive ll should return two lists: ll points sorted y y oordinte, nd ll points sorted y x oordinte. Sorting is omplished y merging two lredy sorted lists. N /2 O ( N T( N O ( N log T ( N 2T N Nerest Neighor Voronoi Digrm / Dirihlet Tesseltion Input: N Euliden points. Nerest neighor prolem: given query point p, whih one of originl N points is losest to p? Input: N Euliden points. Voronoi region: set of ll points losest to given point. Voronoi digrm: plnr sudivision delineting Voronoi regions. Ft: Voronoi edges re perpendiulr isetor segments. Brute fore: O(N time per query. Gol: O( preproessing, O(log N per query. Quintessentil nerest neighor dt struture

7 Applitions of Voronoi Digrms Adding Point to Voronoi Digrm Anthropology. Identify influene of lns nd hiefdoms on geogrphi regions. Astronomy. Identify lusters of strs nd lusters of glxies. Biology, Eology, Forestry. Model nd nlyze plnt ompetition. Crtogrphy. Piee together stellite photogrphs into lrge "mosi" mps. Crystllogrphy. Study Wigner-Setiz regions of metlli sodium. Dt visuliztion. Nerest neighor interpoltion of 2D dt. Finite elements. Generting finite element meshes whih void smll ngles. Fluid dynmis. Vortex methods for invisid inompressile 2D fluid flow. Geology. Estimtion of ore reserves in deposit using info from ore holes. Geo-sientifi modeling. Reonstrut 3D geometri figures from points. Mrketing. Model mrket of US metro t individul retil store level. Metllurgy. Modeling "grin growth" in metl films. Physiology. Anlysis of pillry distriution in ross-setions of musle tissue. Typogrphy. Chrter reognition, eveled nd rved lettering. Zoology. Model nd nlyze the territories of nimls. Chllenge: ompute Voronoi. Bsis for inrementl lgorithms: region ontining point gives points to hek to ompute new Voronoi region oundries. How to represent the Voronoi digrm? Use multilist ssoiting eh point with its Voronoi neighors. Referenes: Rndomized Inrementl Voronoi Algorithm Disretized Voronoi Digrm Add points (in rndom order. Find region ontining point. use Voronoi itself Updte neighor regions, rete region for new point. Use grid pproh to nswer ner-neighor queries in onstnt time. Approh 1: provide pproximte nswer (to within grid size. Approh 2: keep list of points to hek in grid squres. Computtion not diffiult (move outwrd from points. Running time: O( on verge

8 Deluny Tringultion Some Geometri Algorithms Input: N Euliden points. Deluny tringultion: tringultion suh tht no point is inside irumirle of ny other tringle. Running time to solve 2D prolem with N points. Ft 1: Dul of Voronoi (onnet djent points in Voronoi digrm. Ft 2: No edges ross O(N edges. Ft 3: Mximizes the minimum ngle for ll tringulr elements. Ft 4: Boundry of Deluny tringultion is onvex hull. Ft 5: Closest pir of of Deluny grph is losest pir. Prolem onvex hull losest pir nerest neighor Brute Fore Cleverness N 2 N 2 N log N polygon tringultion N 2 furthest pir N 2 Deluny Voronoi 35 36

! Data mining. ! VLSI design. ! Computer vision. ! Mathematical models. ! Astronomical simulation. ! Geographic information systems.

! Data mining. ! VLSI design. ! Computer vision. ! Mathematical models. ! Astronomical simulation. ! Geographic information systems. Geometri Algorithms Geometri Algorithms Applitions.! Dt mining.! VLSI design.! Computer vision.! Mthemtil models.! Astronomil simultion.! Geogrphi informtion systems. irflow round n irrft wing! Computer

More information

Convex Hull Algorithms. Convex hull: basic facts

Convex Hull Algorithms. Convex hull: basic facts CG Leture D Conve Hull Algorithms Bsi fts Algorithms: Nïve, Gift wrpping, Grhm sn, Quik hull, Divide-nd-onquer Lower ound 3D Bsi fts Algorithms: Gift wrpping, Divide nd onquer, inrementl Conve hulls in

More information

CS 551 Computer Graphics. Hidden Surface Elimination. Z-Buffering. Basic idea: Hidden Surface Removal

CS 551 Computer Graphics. Hidden Surface Elimination. Z-Buffering. Basic idea: Hidden Surface Removal CS 55 Computer Grphis Hidden Surfe Removl Hidden Surfe Elimintion Ojet preision lgorithms: determine whih ojets re in front of others Uses the Pinter s lgorithm drw visile surfes from k (frthest) to front

More information

3D convex hulls. Convex Hull in 3D. convex polyhedron. convex polyhedron. The problem: Given a set P of points in 3D, compute their convex hull

3D convex hulls. Convex Hull in 3D. convex polyhedron. convex polyhedron. The problem: Given a set P of points in 3D, compute their convex hull Convex Hull in The rolem: Given set P of oints in, omute their onvex hull onvex hulls Comuttionl Geometry [si 3250] Lur Tom Bowoin College onvex olyheron 1 2 3 olygon olyheron onvex olyheron 4 5 6 Polyheron

More information

Width and Bounding Box of Imprecise Points

Width and Bounding Box of Imprecise Points Width nd Bounding Box of Impreise Points Vhideh Keikh Mrten Löffler Ali Mohdes Zhed Rhmti Astrt In this pper we study the following prolem: we re given set L = {l 1,..., l n } of prllel line segments,

More information

Computational geometry

Computational geometry Leture 23 Computtionl geometry Supplementl reding in CLRS: Chpter 33 exept 33.3 There re mny importnt prolems in whih the reltionships we wish to nlyze hve geometri struture. For exmple, omputtionl geometry

More information

Distance Computation between Non-convex Polyhedra at Short Range Based on Discrete Voronoi Regions

Distance Computation between Non-convex Polyhedra at Short Range Based on Discrete Voronoi Regions Distne Computtion etween Non-onvex Polyhedr t Short Rnge Bsed on Disrete Voronoi Regions Ktsuki Kwhi nd Hiroms Suzuki Deprtment of Preision Mhinery Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku,

More information

Line The set of points extending in two directions without end uniquely determined by two points. The set of points on a line between two points

Line The set of points extending in two directions without end uniquely determined by two points. The set of points on a line between two points Lines Line Line segment Perpendiulr Lines Prllel Lines Opposite Angles The set of points extending in two diretions without end uniquely determined by two points. The set of points on line between two

More information

Internet Routing. IP Packet Format. IP Fragmentation & Reassembly. Principles of Internet Routing. Computer Networks 9/29/2014.

Internet Routing. IP Packet Format. IP Fragmentation & Reassembly. Principles of Internet Routing. Computer Networks 9/29/2014. omputer Networks 9/29/2014 IP Pket Formt Internet Routing Ki Shen IP protool version numer heder length (words) for qulity of servie mx numer remining hops (deremented t eh router) upper lyer protool to

More information

Minimal Memory Abstractions

Minimal Memory Abstractions Miniml Memory Astrtions (As implemented for BioWre Corp ) Nthn Sturtevnt University of Alert GAMES Group Ferury, 7 Tlk Overview Prt I: Building Astrtions Minimizing memory requirements Performnes mesures

More information

s 1 t 4 s 2 4 t 2 a b r 2 r 8 r10 g 4

s 1 t 4 s 2 4 t 2 a b r 2 r 8 r10 g 4 k-pirs Non-Crossing Shortest Pths in Simple Polgon Evnthi Ppdopoulou Northwestern Universit, Evnston, Illinois 60208, USA Astrt. This pper presents n O(n + k) time lgorithm to ompute the set of k non-rossing

More information

Tight triangulations: a link between combinatorics and topology

Tight triangulations: a link between combinatorics and topology Tight tringultions: link between ombintoris nd topology Jonthn Spreer Melbourne, August 15, 2016 Topologil mnifolds (Geometri) Topology is study of mnifolds (surfes) up to ontinuous deformtion Complited

More information

Final Exam Review F 06 M 236 Be sure to look over all of your tests, as well as over the activities you did in the activity book

Final Exam Review F 06 M 236 Be sure to look over all of your tests, as well as over the activities you did in the activity book inl xm Review 06 M 236 e sure to loo over ll of your tests, s well s over the tivities you did in the tivity oo 1 1. ind the mesures of the numered ngles nd justify your wor. Line j is prllel to line.

More information

CMPUT101 Introduction to Computing - Summer 2002

CMPUT101 Introduction to Computing - Summer 2002 CMPUT Introdution to Computing - Summer 22 %XLOGLQJ&RPSXWHU&LUFXLWV Chpter 4.4 3XUSRVH We hve looked t so fr how to uild logi gtes from trnsistors. Next we will look t how to uild iruits from logi gtes,

More information

Lesson 4.4. Euler Circuits and Paths. Explore This

Lesson 4.4. Euler Circuits and Paths. Explore This Lesson 4.4 Euler Ciruits nd Pths Now tht you re fmilir with some of the onepts of grphs nd the wy grphs onvey onnetions nd reltionships, it s time to egin exploring how they n e used to model mny different

More information

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts. Introduction to Matroids and Applications. Srikumar Ramalingam

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts. Introduction to Matroids and Applications. Srikumar Ramalingam Cmrige, Msshusetts Introution to Mtrois n Applitions Srikumr Rmlingm MERL mm//yy Liner Alger (,0,0) (0,,0) Liner inepenene in vetors: v, v2,..., For ll non-trivil we hve s v s v n s, s2,..., s n 2v2...

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

Calculus Differentiation

Calculus Differentiation //007 Clulus Differentition Jeffrey Seguritn person in rowot miles from the nerest point on strit shoreline wishes to reh house 6 miles frther down the shore. The person n row t rte of mi/hr nd wlk t rte

More information

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chpter 9 Greey Tehnique Copyright 2007 Person Aison-Wesley. All rights reserve. Greey Tehnique Construts solution to n optimiztion prolem piee y piee through sequene of hoies tht re: fesile lolly optiml

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

CS 241 Week 4 Tutorial Solutions

CS 241 Week 4 Tutorial Solutions CS 4 Week 4 Tutoril Solutions Writing n Assemler, Prt & Regulr Lnguges Prt Winter 8 Assemling instrutions utomtilly. slt $d, $s, $t. Solution: $d, $s, nd $t ll fit in -it signed integers sine they re 5-it

More information

WORKSHOP 9 HEX MESH USING SWEEP VECTOR

WORKSHOP 9 HEX MESH USING SWEEP VECTOR WORKSHOP 9 HEX MESH USING SWEEP VECTOR WS9-1 WS9-2 Prolem Desription This exerise involves importing urve geometry from n IGES file. The urves re use to rete other urves. From the urves trimme surfes re

More information

Polygonal Approximation of Voronoi Diagrams of a Set of Triangles in Three Dimensions Marek Teichmann Seth Teller MIT Computer Graphics Group Abstract

Polygonal Approximation of Voronoi Diagrams of a Set of Triangles in Three Dimensions Marek Teichmann Seth Teller MIT Computer Graphics Group Abstract Polygonl Approximtion of Voronoi Digrms of Set of Tringles in Three Dimensions Mrek Teihmnn Seth Teller MIT Computer Grphis Group Astrt We desrie roust dptive mrhing tetrhedr type lgorithm for onstruting

More information

Greedy Algorithm. Algorithm Fall Semester

Greedy Algorithm. Algorithm Fall Semester Greey Algorithm Algorithm 0 Fll Semester Optimiztion prolems An optimiztion prolem is one in whih you wnt to fin, not just solution, ut the est solution A greey lgorithm sometimes works well for optimiztion

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Math 227 Problem Set V Solutions. f ds =

Math 227 Problem Set V Solutions. f ds = Mth 7 Problem Set V Solutions If is urve with prmetriztion r(t), t b, then we define the line integrl f ds b f ( r(t) ) dr dt (t) dt. Evlute the line integrl f(x,y,z)ds for () f(x,y,z) xosz, the urve with

More information

Inter-domain Routing

Inter-domain Routing COMP 631: NETWORKED & DISTRIBUTED SYSTEMS Inter-domin Routing Jsleen Kur Fll 2016 1 Internet-sle Routing: Approhes DV nd link-stte protools do not sle to glol Internet How to mke routing slle? Exploit

More information

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012 Fculty of Mthemtics Wterloo, Ontrio N2L 3G1 Grde 7/8 Mth Circles Geometric Arithmetic Octoer 31, 2012 Centre for Eduction in Mthemtics nd Computing Ancient Greece hs given irth to some of the most importnt

More information

V = set of vertices (vertex / node) E = set of edges (v, w) (v, w in V)

V = set of vertices (vertex / node) E = set of edges (v, w) (v, w in V) Definitions G = (V, E) V = set of verties (vertex / noe) E = set of eges (v, w) (v, w in V) (v, w) orere => irete grph (igrph) (v, w) non-orere => unirete grph igrph: w is jent to v if there is n ege from

More information

Outline. Motivation Background ARCH. Experiment Additional usages for Input-Depth. Regular Expression Matching DPI over Compressed HTTP

Outline. Motivation Background ARCH. Experiment Additional usages for Input-Depth. Regular Expression Matching DPI over Compressed HTTP ARCH This work ws supported y: The Europen Reserh Counil, The Isreli Centers of Reserh Exellene, The Neptune Consortium, nd Ntionl Siene Foundtion wrd CNS-119748 Outline Motivtion Bkground Regulr Expression

More information

Presentation Martin Randers

Presentation Martin Randers Presenttion Mrtin Rnders Outline Introduction Algorithms Implementtion nd experiments Memory consumption Summry Introduction Introduction Evolution of species cn e modelled in trees Trees consist of nodes

More information

UNCORRECTED SAMPLE PAGES. Angle relationships and properties of 6geometrical figures 1. Online resources. What you will learn

UNCORRECTED SAMPLE PAGES. Angle relationships and properties of 6geometrical figures 1. Online resources. What you will learn Online resoures uto-mrked hpter pre-test Video demonstrtions of ll worked exmples Intertive widgets Intertive wlkthroughs Downlodle HOTsheets ess to ll HOTmths ustrlin urriulum ourses ess to the HOTmths

More information

Lecture 7: Building 3D Models (Part 1) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Lecture 7: Building 3D Models (Part 1) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Grphics (CS 4731) Lecture 7: Building 3D Models (Prt 1) Prof Emmnuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Stndrd d Unit itvectors Define y i j 1,0,0 0,1,0 k i k 0,0,1

More information

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Mesh Simplification Overview.

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Mesh Simplification Overview. Mesh Simlifition Mesh Simlifition homs Funkhouser Prineton University CS 56, Fll 6 ringles : 41,855 7,97,9 1,939 8,385 4,766 Division, Viewoint, Cohen Mesh Simlifition Motivtion Intertive visuliztion Store

More information

Chapter44. Polygons and solids. Contents: A Polygons B Triangles C Quadrilaterals D Solids E Constructing solids

Chapter44. Polygons and solids. Contents: A Polygons B Triangles C Quadrilaterals D Solids E Constructing solids Chpter44 Polygons nd solids Contents: A Polygons B Tringles C Qudrilterls D Solids E Constructing solids 74 POLYGONS AND SOLIDS (Chpter 4) Opening prolem Things to think out: c Wht different shpes cn you

More information

Can Pythagoras Swim?

Can Pythagoras Swim? Overview Ativity ID: 8939 Mth Conepts Mterils Students will investigte reltionships etween sides of right tringles to understnd the Pythgoren theorem nd then use it to solve prolems. Students will simplify

More information

Doubts about how to use azimuth values from a Coordinate Object. Juan Antonio Breña Moral

Doubts about how to use azimuth values from a Coordinate Object. Juan Antonio Breña Moral Douts out how to use zimuth vlues from Coordinte Ojet Jun Antonio Breñ Morl # Definition An Azimuth is the ngle from referene vetor in referene plne to seond vetor in the sme plne, pointing towrd, (ut

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence Winter 2016 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl

More information

Pattern Matching. Pattern Matching. Pattern Matching. Review of Regular Expressions

Pattern Matching. Pattern Matching. Pattern Matching. Review of Regular Expressions Pttern Mthing Pttern Mthing Some of these leture slides hve een dpted from: lgorithms in C, Roert Sedgewik. Gol. Generlize string serhing to inompletely speified ptterns. pplitions. Test if string or its

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends Compt Drwings of 1-Plnr Grphs with Right-Angle Crossings nd Few Bends Steven Chplik, Fbin Lipp, Alexnder Wolff, nd Johnnes Zink Lehrstuhl für Informtik I, Universität Würzburg, Germny http://www1.informtik.uni-wuerzburg.de/en/stff

More information

CS553 Lecture Introduction to Data-flow Analysis 1

CS553 Lecture Introduction to Data-flow Analysis 1 ! Ide Introdution to Dt-flow nlysis!lst Time! Implementing Mrk nd Sweep GC!Tody! Control flow grphs! Liveness nlysis! Register llotion CS553 Leture Introdution to Dt-flow Anlysis 1 Dt-flow Anlysis! Dt-flow

More information

The Network Layer: Routing in the Internet. The Network Layer: Routing & Addressing Outline

The Network Layer: Routing in the Internet. The Network Layer: Routing & Addressing Outline CPSC 852 Internetworking The Network Lyer: Routing in the Internet Mihele Weigle Deprtment of Computer Siene Clemson University mweigle@s.lemson.edu http://www.s.lemson.edu/~mweigle/ourses/ps852 1 The

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

Chapter 2. Chapter 2 5. Section segments: AB, BC, BD, BE. 32. N 53 E GEOMETRY INVESTIGATION Answers will vary. 34. (a) N. sunset.

Chapter 2. Chapter 2 5. Section segments: AB, BC, BD, BE. 32. N 53 E GEOMETRY INVESTIGATION Answers will vary. 34. (a) N. sunset. Chpter 2 5 Chpter 2 32. N 53 E GEOMETRY INVESTIGATION Answers will vry. 34. () N Setion 2.1 2. 4 segments: AB, BC, BD, BE sunset sunrise 4. 2 rys: CD (or CE ), CB (or CA ) 6. ED, EC, EB W Oslo, Norwy E

More information

Review Packet #3 Notes

Review Packet #3 Notes SCIE 40, Fll 05 Miller Review Pket # Notes Prllel Lines If two prllel lines re onneted y third line (lled the trnsversl), the resulting ngles re either ongruent or supplementry. Angle pirs re nmed s follows:

More information

Cameras. Importance of camera models

Cameras. Importance of camera models pture imges mesuring devie Digitl mers mers fill in memor ith olor-smple informtion D hrge-oupled Devie insted of film film lso hs finite resolution grininess depends on speed IS 00 00 6400 sie 35mm IMAX

More information

Digital Design. Chapter 1: Introduction. Digital Design. Copyright 2006 Frank Vahid

Digital Design. Chapter 1: Introduction. Digital Design. Copyright 2006 Frank Vahid Chpter : Introduction Copyright 6 Why Study?. Look under the hood of computers Solid understnding --> confidence, insight, even better progrmmer when wre of hrdwre resource issues Electronic devices becoming

More information

COSC 6374 Parallel Computation. Dense Matrix Operations

COSC 6374 Parallel Computation. Dense Matrix Operations COSC 6374 Prllel Computtion Dense Mtrix Opertions Edgr Griel Fll Edgr Griel Prllel Computtion Edgr Griel erminology Dense Mtrix: ll elements of the mtrix ontin relevnt vlues ypilly stored s 2-D rry, (e.g.

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3.5.1 Single slit diffrction Wves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. We will consider this lter.

More information

Agilent Mass Hunter Software

Agilent Mass Hunter Software Agilent Mss Hunter Softwre Quick Strt Guide Use this guide to get strted with the Mss Hunter softwre. Wht is Mss Hunter Softwre? Mss Hunter is n integrl prt of Agilent TOF softwre (version A.02.00). Mss

More information

Geometrical reasoning 1

Geometrical reasoning 1 MODULE 5 Geometril resoning 1 OBJECTIVES This module is for study y n individul teher or group of tehers. It: looks t pprohes to developing pupils visulistion nd geometril resoning skills; onsiders progression

More information

CS453 INTRODUCTION TO DATAFLOW ANALYSIS

CS453 INTRODUCTION TO DATAFLOW ANALYSIS CS453 INTRODUCTION TO DATAFLOW ANALYSIS CS453 Leture Register llotion using liveness nlysis 1 Introdution to Dt-flow nlysis Lst Time Register llotion for expression trees nd lol nd prm vrs Tody Register

More information

Tiling Triangular Meshes

Tiling Triangular Meshes Tiling Tringulr Meshes Ming-Yee Iu EPFL I&C 1 Introdution Astrt When modelling lrge grphis senes, rtists re not epeted to model minute nd repetitive fetures suh s grss or snd with individul piees of geometry

More information

Review Packet #3 Notes

Review Packet #3 Notes SCIE 40, Spring 0 Miller Review Pket # Notes Mpping Nottion We use mpping nottion to note how oordinte hnges. For exmple, if the point ( ) trnsformed under mpping nottion of ( x, y) ( x, y), then it eomes

More information

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems Distriuted Systems Priniples nd Prdigms Mrten vn Steen VU Amsterdm, Dept. Computer Siene steen@s.vu.nl Chpter 11: Distriuted File Systems Version: Deemer 10, 2012 2 / 14 Distriuted File Systems Distriuted

More information

Order these angles from smallest to largest by wri ng 1 to 4 under each one. Put a check next to the right angle.

Order these angles from smallest to largest by wri ng 1 to 4 under each one. Put a check next to the right angle. Lines nd ngles Connect ech set of lines to the correct nme: prllel perpendiculr Order these ngles from smllest to lrgest y wri ng to 4 under ech one. Put check next to the right ngle. Complete this tle

More information

Problem Final Exam Set 2 Solutions

Problem Final Exam Set 2 Solutions CSE 5 5 Algoritms nd nd Progrms Prolem Finl Exm Set Solutions Jontn Turner Exm - //05 0/8/0. (5 points) Suppose you re implementing grp lgoritm tt uses ep s one of its primry dt strutures. Te lgoritm does

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Instructor: Adm Sheffer. TA: Cosmin Pohot. 1pm Mondys, Wednesdys, nd Fridys. http://mth.cltech.edu/~2015-16/2term/m006/ Min ook: Introduction to Grph

More information

a c = A C AD DB = BD

a c = A C AD DB = BD 1.) SIMILR TRINGLES.) Some possile proportions: Geometry Review- M.. Sntilli = = = = =.) For right tringle ut y its ltitude = = =.) Or for ll possiilities, split into 3 similr tringles: ll orresponding

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3..1 Single slit diffrction ves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. e will consider this lter. Tke

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

Single-Layer Trunk Routing Using 45-Degree Lines within Critical Areas for PCB Routing

Single-Layer Trunk Routing Using 45-Degree Lines within Critical Areas for PCB Routing SASIMI 2010 Proeedings (R3-8) Single-Lyer Trunk Routing Using 45-Degree Lines within Critil Ares for PCB Routing Kyosuke SHINODA Yukihide KOHIRA Atsushi TAKAHASHI Tokyo Institute of Tehnology Dept. of

More information

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe CSCI 0 fel Ferreir d Silv rfsilv@isi.edu Slides dpted from: Mrk edekopp nd Dvid Kempe LOG STUCTUED MEGE TEES Series Summtion eview Let n = + + + + k $ = #%& #. Wht is n? n = k+ - Wht is log () + log ()

More information

Measurement and geometry

Measurement and geometry Mesurement nd geometry 4 Geometry Geometry is everywhere. Angles, prllel lines, tringles nd qudrilterls n e found ll round us, in our homes, on trnsport, in onstrution, rt nd nture. This sene from Munih

More information

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E 4-1 NAME DATE PERIOD Pges 142 147 Prllel Lines nd Plnes When plnes do not intersect, they re sid to e prllel. Also, when lines in the sme plne do not intersect, they re prllel. But when lines re not in

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

Journal of Combinatorial Theory, Series A

Journal of Combinatorial Theory, Series A Journl of Comintoril Theory, Series A 0 (0) Contents lists ville t SiVerse SieneDiret Journl of Comintoril Theory, Series A www.elsevier.om/lote/jt Spheril tiling y ongruent pentgons Hongho Go, Nn Shi,

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

Lecture 8: Graph-theoretic problems (again)

Lecture 8: Graph-theoretic problems (again) COMP36111: Advned Algorithms I Leture 8: Grph-theoreti prolems (gin) In Prtt-Hrtmnn Room KB2.38: emil: iprtt@s.mn..uk 2017 18 Reding for this leture: Sipser: Chpter 7. A grph is pir G = (V, E), where V

More information

Distance vector protocol

Distance vector protocol istne vetor protool Irene Finohi finohi@i.unirom.it Routing Routing protool Gol: etermine goo pth (sequene of routers) thru network from soure to Grph strtion for routing lgorithms: grph noes re routers

More information

Containers: Queue and List

Containers: Queue and List Continers: Queue n List Queue A ontiner in whih insertion is one t one en (the til) n eletion is one t the other en (the he). Also lle FIFO (First-In, First-Out) Jori Cortell n Jori Petit Deprtment of

More information

Introduction to Algebra

Introduction to Algebra INTRODUCTORY ALGEBRA Mini-Leture 1.1 Introdution to Alger Evlute lgeri expressions y sustitution. Trnslte phrses to lgeri expressions. 1. Evlute the expressions when =, =, nd = 6. ) d) 5 10. Trnslte eh

More information

Lecture 13: Graphs I: Breadth First Search

Lecture 13: Graphs I: Breadth First Search Leture 13 Grphs I: BFS 6.006 Fll 2011 Leture 13: Grphs I: Bredth First Serh Leture Overview Applitions of Grph Serh Grph Representtions Bredth-First Serh Rell: Grph G = (V, E) V = set of verties (ritrry

More information

String comparison by transposition networks

String comparison by transposition networks String omprison y trnsposition networks Alexnder Tiskin (Joint work with Peter Krushe) Deprtment of Computer Siene University of Wrwik http://www.ds.wrwik..uk/~tiskin (inludes n extended version of this

More information

WORKSHOP 8B TENSION COUPON

WORKSHOP 8B TENSION COUPON WORKSHOP 8B TENSION COUPON WS8B-2 Workshop Ojetives Prtie reting n eiting geometry Prtie mesh seeing n iso meshing tehniques. WS8B-3 Suggeste Exerise Steps 1. Crete new tse. 2. Crete geometry moel of the

More information

Paradigm 5. Data Structure. Suffix trees. What is a suffix tree? Suffix tree. Simple applications. Simple applications. Algorithms

Paradigm 5. Data Structure. Suffix trees. What is a suffix tree? Suffix tree. Simple applications. Simple applications. Algorithms Prdigm. Dt Struture Known exmples: link tble, hep, Our leture: suffix tree Will involve mortize method tht will be stressed shortly in this ourse Suffix trees Wht is suffix tree? Simple pplitions History

More information

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a Mth 176 Clculus Sec. 6.: Volume I. Volume By Slicing A. Introduction We will e trying to find the volume of solid shped using the sum of cross section res times width. We will e driving towrd developing

More information

Introducing fractions

Introducing fractions Introduing frtions Nme Colour hlf of eh shpe: Show the following fr ons: out of out of out of Lel these fr ons: Shde these fr ons: 7 0 Represents ommon fr ons on different models Interprets the numertor

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Adm Sheffer. Office hour: Tuesdys 4pm. dmsh@cltech.edu TA: Victor Kstkin. Office hour: Tuesdys 7pm. 1:00 Mondy, Wednesdy, nd Fridy. http://www.mth.cltech.edu/~2014-15/2term/m006/

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

Last Time? Ray Casting II. Explicit vs. Implicit? Assignment 1: Ray Casting. Object-Oriented Design. Graphics Textbooks

Last Time? Ray Casting II. Explicit vs. Implicit? Assignment 1: Ray Casting. Object-Oriented Design. Graphics Textbooks Csting II Lst Time? Csting / Tring Orthogrphi Cmer epresenttion (t) = origin + t * diretion -Sphere Intersetion -lne Intersetion Impliit vs. Epliit epresenttions MIT EECS 6.837, Cutler nd Durnd 1 MIT EECS

More information

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming Lecture 10 Evolutionry Computtion: Evolution strtegies nd genetic progrmming Evolution strtegies Genetic progrmming Summry Negnevitsky, Person Eduction, 2011 1 Evolution Strtegies Another pproch to simulting

More information

Reprinted from "Algorithm Design" by M. T. Goodrich and R. Tamassia (c) 2002 John Wiley & Sons Inc.

Reprinted from Algorithm Design by M. T. Goodrich and R. Tamassia (c) 2002 John Wiley & Sons Inc. Reprinted from "Algorithm Design" by M. T. Goodrich nd R. Tmssi (c) 2002 John Wiley & Sons Inc. 572 Chpter 12. Computtionl Geometry 12.5 Convex Hulls One of the most studied geometric problems is tht of

More information

Angle Properties in Polygons. Part 1 Interior Angles

Angle Properties in Polygons. Part 1 Interior Angles 2.4 Angle Properties in Polygons YOU WILL NEED dynmic geometry softwre OR protrctor nd ruler EXPLORE A pentgon hs three right ngles nd four sides of equl length, s shown. Wht is the sum of the mesures

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

COSC 6374 Parallel Computation. Communication Performance Modeling (II) Edgar Gabriel Fall Overview. Impact of communication costs on Speedup

COSC 6374 Parallel Computation. Communication Performance Modeling (II) Edgar Gabriel Fall Overview. Impact of communication costs on Speedup COSC 6374 Prllel Computtion Communition Performne Modeling (II) Edgr Griel Fll 2015 Overview Impt of ommunition osts on Speedup Crtesin stenil ommunition All-to-ll ommunition Impt of olletive ommunition

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

COMPUTATION AND VISUALIZATION OF REACHABLE DISTRIBUTION NETWORK SUBSTATION VOLTAGE

COMPUTATION AND VISUALIZATION OF REACHABLE DISTRIBUTION NETWORK SUBSTATION VOLTAGE 24 th Interntionl Conferene on Eletriity Distriution Glsgow, 12-15 June 2017 Pper 0615 COMPUTATION AND VISUALIZATION OF REACHABLE DISTRIBUTION NETWORK SUBSTATION VOLTAGE Mihel SANKUR Dniel ARNOLD Lun SCHECTOR

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

and vertically shrinked by

and vertically shrinked by 1. A first exmple 1.1. From infinite trnsltion surfe mp to end-periodi mp. We begin with n infinite hlf-trnsltion surfe M 0 desribed s in Figure 1 nd n ffine mp f 0 defined s follows: the surfe is horizontlly

More information

OPERATIONS AND ALGEBRAIC THINKING NUMBER AND OPERATIONS IN BASE TEN NUMBER AND OPERATIONS: FRACTIONS

OPERATIONS AND ALGEBRAIC THINKING NUMBER AND OPERATIONS IN BASE TEN NUMBER AND OPERATIONS: FRACTIONS OPERTIONS ND LGERIC THINKING 003-019 WRITE ND INTERPRET NUMERICL EXPRESSIONS NLYZE PTTERNS ND RELTIONSHIPS NUMER ND OPERTIONS IN SE TEN 020-174 UNDERSTND THE PLCE VLUE SYSTEM PERFORM OPERTIONS WITH MULTI-DIGIT

More information

Quadrilateral and Tetrahedral Mesh Stripification Using 2-Factor Partitioning of the Dual Graph

Quadrilateral and Tetrahedral Mesh Stripification Using 2-Factor Partitioning of the Dual Graph The Visul omputer mnusript No. (will e inserted y the editor) Plo Diz-Gutierrez M. Gopi Qudrilterl nd Tetrhedrl Mesh Stripifition Using 2-Ftor Prtitioning of the Dul Grph strt In order to find 2-ftor of

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

Shared Memory Architectures. Programming and Synchronization. Today s Outline. Page 1. Message passing review Cosmic Cube discussion

Shared Memory Architectures. Programming and Synchronization. Today s Outline. Page 1. Message passing review Cosmic Cube discussion Tody s Outline Arhitetures Progrmming nd Synhroniztion Disuss pper on Cosmi Cube (messge pssing) Messge pssing review Cosmi Cube disussion > Messge pssing mhine Shred memory model > Communition > Synhroniztion

More information