P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

Size: px
Start display at page:

Download "P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have"

Transcription

1 Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using rndom numers. These methods hve come to e known under the generl ruric Monte Crlo methods, fter the fmous gmling csino. Before discussing Monte Crlo integrtion, we must digress to lern out rndom numers. Rndom Numer Genertors Any stndrd rndom numer genertor produces set of uniformly distriuted (equl proility) numers on some intervl. For the intervl [,] we define P(r)dr = proility of generting rndom numer in the intervl dr ner r For this proility ide to mke sense we must hve P(r)dr = 1= totl proility of generting rndom numer In the cse of uniform distriution, P(r) = constnt nd hence P(r) = 1 All such numericl rndom numer genertors give sequence of numers with lrge repet cycle on some intervl. A good genertor will hve very lrge repet cycle( nonrepeting numers). In MATLAB, the rnd(n,m) function genertes uniformly distriuted pseudo-rndom numers. We illustrte the uniform distriution of 100,000 rndom numers elow: >> hist(rnd(1,100000),10) Pge 1

2 which oviously shows the uniform distriution on the intervl [0,1]. MATLAB lso generte normlly (Gussin) distriuted rndom numers using the rndn function. >> hist(rndn(1,100000),20)) which is oviously norml or gussin distriution. Pge 2

3 These two methods re exmples of "simple smpling" techniques. In mny prolems we need to use proility distriutions tht reflect the pproprite physics of the system under study. In this cse we use different technique clled "importnce smpling". The lgorithm for generting rndom numers with specified distriution(not uniform) goes this wy. Suppose tht we hve set of uniformly distriuted numers (s ove) in the intervl [0,1]. Then the rule r j = x j 0 dx'w(x') will generte set of numers x i rule w(x). For exmple, suppose w(x) = e x otin r j = 1 e x j x j = log(1 r j ) { } distriuted ccording to the 0 x 4. Then we which is the desired result. This is illustrted in the plot elow: >> hist((-log(1-rnd(1,100000))),20) Integrtion using Importnce Smpling (Monte Crlo Method) Now consider function to e integrted, s shown elow: Pge 3

4 y f(x) x The integrl is just the re under the curve. The width of the intervl (-) times the verge vlue of the function is lso the vlue of the integrl, tht is, f (x)dx = ( ) f verge = ( ) f So if we hd some indepent wy of clculting the verge vlue of the integrnd, then we could evlute the integrl. Tht is where we cn use rndom numers. Imgine tht we hve list of rndom numers, x j, uniformly distriuted etween nd. To clculte the function verge, we simply evlute f(x) t ech of the rndomly selected points, nd divide y the numer of points: f N = 1 N N i=1 f (x i ) As the numer of points used in clculting the verge increses, f N pproches the true verge vlue, f. Therefore, s numericl pproximtion we cn write f (x)dx = N f (x i ) N i=1 Alterntively, we cn look t this so-clled Monte Crlo integrtion method in the following wy: To integrte the function f(x) over the intervl [,] we Pge 4

5 [1] find some vlue M such tht f(x) < M over the intervl [,] [2] select rndom numer x from uniform distriution over the intervl [,] [3] select rndom numer y from uniform distriution over the intervl [0,M] [4] determine if y > f(x) or y f(x) [5] repet this process N times, keeping trck of the numer of times y f(x) or under the curve (= successes); cll the totl numer of successes S. The estimted proility of success is then S N = Are under curve Totl re inside rectngle = f (x)dx M ( ) where the rectngle used is shown in the figure elow: y y = M f(x) x After numer of trils, the vlue of the integrl cn e clculted from the ove formul f (x)dx = M ( ) S N Think out throwing drts nd counting the numer of drts tht lnd in the re representing the integrl. Your progrm ove only works if the integrnd is greter thn or equl to zero everywhere over the rnge of integrtion. Suppose, in fct, tht the function f(x) ws not lwys greter thn zero in the intervl [,] s shown elow. Pge 5

6 y y = M f(x) x y = -R We cn modify the Monte Crlo integrtion method to hndle such cses, i.e., fix the prolem with f(x) possily eing less thn zero s follows. To integrte the function f(x) over the intervl [,] we [1] find some vlue M such tht f(x) < M over the intervl [,] [2] find some R such tht f(x) > - R over the intervl [,] [2] select rndom numer x from uniform distriution over the intervl [,] [3] select rndom numer y from uniform distriution over the intervl [-R,M] [4] determine if y > f(x) or y f(x) [5] repet this process N times, keeping trck of the numer of times y f(x) or under the curve (= successes); cll the totl numer of successes S. The estimted proility of success is then S N = Are under curve Totl re inside rectngle = f (x)dx = (M + R)( ) S N f (x)dx (M + R)( ) This must now e corrected for the fct tht the line y = -R hs een used s the seline for the integrl insted of the line y = 0. This is ccomplished y sutrcting the rectngulr re R(-). The finl integrl is then f (x)dx = (M + R)( ) S R( ) N Pge 6

7 The Metropolis Algorithm Suppose tht we wnt to generte set of points in some, possily multidimensionl, spce of vriles X distriuted with proility density w(x) (not necessrily uniform). The Metropolis lgorithm genertes set of points X 0, X 1, X 2,... s those visited successively y rndom wlker moving through the X spce. As the wlk ecomes longer nd longer, the points it connects will pproximte closely the desired distriution. The rules for the rndom wlk re s follows: [1] Suppose tht the wlker is t point X n in the sequence. To generte X n+1 it mkes tril step to new point X t. This new point cn e chosen in ny convenient mnner, for exmple, uniformly t rndom within multidimensionl cue of smll side δ out X n. [2] This tril step is then "ccepted" or "rejected" ccording to the rtio r = w(x t ) w(x n ) tht is, if r is lrger thn one, then the step is lwys ccepted (i.e., we put X n+1 = X t, while if r is less thn one, the step is ccepted with proility r. This ltter step is conveniently ccomplished y compring r with rndom numer η uniformly distriuted in the intervl nd ccepting the step if η < r. If the tril step is not ccepted, then it is rejected, nd we put X n+1 = X n. This genertes X n+1, nd we my proceed to generte X n+2 y the sme process. Any ritrry point X n cn e used to strt this rndom wlk. A MATLAB code to use the Metropolis lgorithm for the cse w(x) = e 0.2 X 2 looks like: x=[]; X0=0; delt=4; nccept=0; Pge 7

8 n=0; while (nccept < 5000) n=n+1; XT = X0 + delt*(2*rnd(1,1)-1); rtio=exp(0.5*(x0^2-xt^2)); if (rtio > rnd) x=[x,xt]; X0=XT; nccept=nccept+1; hist(x,40) which clerly reflects the proposed Gussin distriution. A good rule is to choose δ so tht out 1/3 of the trils is ccepted nd to choose X 0 such tht w(x) is ner mximum. Becuse successive points in this distriution re not sttisticlly indepent of ech other, some cre must e tken when choosing set of points to use from lrger set tht hs een generted erlier. Generlly, the ccepted method is to choose points seprted y some intervl, sy every k th point, where k is such tht ny correltions re wshed out. Pge 8

9 A simple Metropolis method function is : function z=metropolis(input) % must hve nother funct.m file defined rnd('seed',sum(100*clock)); x=input(1); delt=input(2); xtril=x+delt*(2*rnd(1)-1); w=funct(xtril)/funct(x); if (rnd < w) z=xtril; else z= x; The code elow tests this function for w(x) = e 0.2 X 2 : zz=zeros(100000) z=metropolis([0.0,4.0]); for j=1: z=metropolis([z,4.0]); zz(j)=z hist(zz,40); Agin this clerly reflects the correct distriution. Simple Simultion Exmple Using Rndom Numers Pge 9

10 Another exmple of using rndom numers to simulte prticles in ox with two distinct sides. Suppose prticle cn e t only two positions XR nd XL nd tht w(x) = n R N δ X, XL + n L N δ X, XR tht is, the proility of eing on given side of the ox is given y the rtio of the numer of prticles on tht side of the ox to the totl numer of prticles. Consider the progrm elow. We hve N = 1000 prticles in ox. We strt with rndom frction of the N prticles on the LHS of the ox. If ll prticles on the LHS, then we s one to the RHS. In ll other cses, we then use the Metropolis lgorithm to decide whether we decrese the numer of prticles on the LHS y 1 (increse the numer on the RHS y 1) or vice vers. The rtio r in this cse is the proility of eing on the LHS. rtio = r = w(xl) = n L N Consider the progrm elow: % Metropoplis simultion rnd('seed',sum(100*clock)); N=1000; tmx=10000; nl=round(rnd*n); t=0; p=plot(t,nl,'.','ersemode','none'); xis([0,tmx,0,n]); while (t <= tmx) t=t+1; rtio=nl/n; if (rtio >= 1) nl=nl-1; else if (rnd <= rtio) nl=nl-1; else nl=nl+1; Pge 10

11 set(p,'xdt',t,'ydt',nl) drwnow The result is: When we run this simultion, we lwys up with pproximtely 1/2 of the prticles on ech side(the equilirium configurtion) nd the simultion ccurtely represents the fluctutions present t equilirium. This exmple illustrtes how chnce or rndom motion cn generte deterministic ehvior. Pge 11

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

Approximate computations

Approximate computations Living with floting-point numers Stndrd normlized representtion (sign + frction + exponent): Approximte computtions Rnges of vlues: Representtions for:, +, +0, 0, NN (not numer) Jordi Cortdell Deprtment

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation Representtion of Numbers Number Representtion Computer represent ll numbers, other thn integers nd some frctions with imprecision. Numbers re stored in some pproximtion which cn be represented by fixed

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming Lecture 10 Evolutionry Computtion: Evolution strtegies nd genetic progrmming Evolution strtegies Genetic progrmming Summry Negnevitsky, Person Eduction, 2011 1 Evolution Strtegies Another pproch to simulting

More information

Lecture 7: Integration Techniques

Lecture 7: Integration Techniques Lecture 7: Integrtion Techniques Antiderivtives nd Indefinite Integrls. In differentil clculus, we were interested in the derivtive of given rel-vlued function, whether it ws lgeric, eponentil or logrithmic.

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5 CS321 Lnguges nd Compiler Design I Winter 2012 Lecture 5 1 FINITE AUTOMATA A non-deterministic finite utomton (NFA) consists of: An input lphet Σ, e.g. Σ =,. A set of sttes S, e.g. S = {1, 3, 5, 7, 11,

More information

Integration. September 28, 2017

Integration. September 28, 2017 Integrtion September 8, 7 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my

More information

Fig.25: the Role of LEX

Fig.25: the Role of LEX The Lnguge for Specifying Lexicl Anlyzer We shll now study how to uild lexicl nlyzer from specifiction of tokens in the form of list of regulr expressions The discussion centers round the design of n existing

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information

Integration. October 25, 2016

Integration. October 25, 2016 Integrtion October 5, 6 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my hve

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

MA 124 (Calculus II) Lecture 2: January 24, 2019 Section A3. Professor Jennifer Balakrishnan,

MA 124 (Calculus II) Lecture 2: January 24, 2019 Section A3. Professor Jennifer Balakrishnan, Wht is on tody Professor Jennifer Blkrishnn, jbl@bu.edu 1 Velocity nd net chnge 1 2 Regions between curves 3 1 Velocity nd net chnge Briggs-Cochrn-Gillett 6.1 pp. 398-46 Suppose you re driving long stright

More information

8.2 Areas in the Plane

8.2 Areas in the Plane 39 Chpter 8 Applictions of Definite Integrls 8. Ares in the Plne Wht ou will lern out... Are Between Curves Are Enclosed Intersecting Curves Boundries with Chnging Functions Integrting with Respect to

More information

Numerical integration methods

Numerical integration methods Chpter 1 Numericl integrtion methods The bility to clculte integrls is quite importnt. The uthor ws told tht, in the old dys, the gun ports were cut into ship only fter it ws flot, loded with equivlent

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Dt Mining y I. H. Witten nd E. Frnk Simplicity first Simple lgorithms often work very well! There re mny kinds of simple structure, eg: One ttriute does ll the work All ttriutes contriute eqully

More information

This notebook investigates the properties of non-integer differential operators using Fourier analysis.

This notebook investigates the properties of non-integer differential operators using Fourier analysis. Frctionl erivtives.nb Frctionl erivtives by Fourier ecomposition by Eric Thrne 4/9/6 This notebook investigtes the properties of non-integer differentil opertors using Fourier nlysis. In[]:=

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes by disks: volume prt ii 6 6 Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem 6) nd the ccumultion process is to determine so-clled volumes

More information

Approximation of Two-Dimensional Rectangle Packing

Approximation of Two-Dimensional Rectangle Packing pproximtion of Two-imensionl Rectngle Pcking Pinhong hen, Yn hen, Mudit Goel, Freddy Mng S70 Project Report, Spring 1999. My 18, 1999 1 Introduction 1-d in pcking nd -d in pcking re clssic NP-complete

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

Agilent Mass Hunter Software

Agilent Mass Hunter Software Agilent Mss Hunter Softwre Quick Strt Guide Use this guide to get strted with the Mss Hunter softwre. Wht is Mss Hunter Softwre? Mss Hunter is n integrl prt of Agilent TOF softwre (version A.02.00). Mss

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION Chpter 3 DACS 1 Lok 004/05 CHAPTER 5 APPLICATIONS OF INTEGRATION 5.1 Geometricl Interprettion-Definite Integrl (pge 36) 5. Are of Region (pge 369) 5..1 Are of Region Under Grph (pge 369) Figure 5.7 shows

More information

9 Graph Cutting Procedures

9 Graph Cutting Procedures 9 Grph Cutting Procedures Lst clss we begn looking t how to embed rbitrry metrics into distributions of trees, nd proved the following theorem due to Brtl (1996): Theorem 9.1 (Brtl (1996)) Given metric

More information

Presentation Martin Randers

Presentation Martin Randers Presenttion Mrtin Rnders Outline Introduction Algorithms Implementtion nd experiments Memory consumption Summry Introduction Introduction Evolution of species cn e modelled in trees Trees consist of nodes

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials Product of polynomils Introduction to Progrmming (in C++) Numericl lgorithms Jordi Cortdell, Ricrd Gvldà, Fernndo Orejs Dept. of Computer Science, UPC Given two polynomils on one vrile nd rel coefficients,

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

Solutions to Math 41 Final Exam December 12, 2011

Solutions to Math 41 Final Exam December 12, 2011 Solutions to Mth Finl Em December,. ( points) Find ech of the following its, with justifiction. If there is n infinite it, then eplin whether it is or. ( ) / ln() () (5 points) First we compute the it:

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Matlab s Numerical Integration Commands

Matlab s Numerical Integration Commands Mtlb s Numericl Integrtion Commnds The relevnt commnds we consider re qud nd dblqud, triplequd. See the Mtlb help files for other integrtion commnds. By the wy, qud refers to dptive qudrture. To integrte:

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards A Tutology Checker loosely relted to Stålmrck s Algorithm y Mrtin Richrds mr@cl.cm.c.uk http://www.cl.cm.c.uk/users/mr/ University Computer Lortory New Museum Site Pemroke Street Cmridge, CB2 3QG Mrtin

More information

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis CS143 Hndout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexicl Anlysis In this first written ssignment, you'll get the chnce to ply round with the vrious constructions tht come up when doing lexicl

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

)

) Chpter Five /SOLUTIONS Since the speed ws between nd mph during this five minute period, the fuel efficienc during this period is between 5 mpg nd 8 mpg. So the fuel used during this period is between

More information

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts Clss-XI Mthemtics Conic Sections Chpter-11 Chpter Notes Key Concepts 1. Let be fixed verticl line nd m be nother line intersecting it t fixed point V nd inclined to it t nd ngle On rotting the line m round

More information

6.3 Definite Integrals and Antiderivatives

6.3 Definite Integrals and Antiderivatives Section 6. Definite Integrls nd Antiderivtives 8 6. Definite Integrls nd Antiderivtives Wht ou will lern out... Properties of Definite Integrls Averge Vlue of Function Men Vlue Theorem for Definite Integrls

More information

Simplifying Algebra. Simplifying Algebra. Curriculum Ready.

Simplifying Algebra. Simplifying Algebra. Curriculum Ready. Simplifying Alger Curriculum Redy www.mthletics.com This ooklet is ll out turning complex prolems into something simple. You will e le to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give this

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals Double Integrls MATH 375 Numericl Anlysis J. Robert Buchnn Deprtment of Mthemtics Fll 2013 J. Robert Buchnn Double Integrls Objectives Now tht we hve discussed severl methods for pproximting definite integrls

More information

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area:

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area: Bck to Are: Are & Volume Chpter 6. & 6. Septemer 5, 6 We cn clculte the re etween the x-xis nd continuous function f on the intervl [,] using the definite integrl:! f x = lim$ f x * i )%x n i= Where fx

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example:

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example: cisc1110 fll 2010 lecture VI.2 cll y vlue function prmeters more on functions more on cll y vlue nd cll y reference pssing strings to functions returning strings from functions vrile scope glol vriles

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe CSCI 0 fel Ferreir d Silv rfsilv@isi.edu Slides dpted from: Mrk edekopp nd Dvid Kempe LOG STUCTUED MEGE TEES Series Summtion eview Let n = + + + + k $ = #%& #. Wht is n? n = k+ - Wht is log () + log ()

More information

Languages. L((a (b)(c))*) = { ε,a,bc,aa,abc,bca,... } εw = wε = w. εabba = abbaε = abba. (a (b)(c)) *

Languages. L((a (b)(c))*) = { ε,a,bc,aa,abc,bca,... } εw = wε = w. εabba = abbaε = abba. (a (b)(c)) * Pln for Tody nd Beginning Next week Interpreter nd Compiler Structure, or Softwre Architecture Overview of Progrmming Assignments The MeggyJv compiler we will e uilding. Regulr Expressions Finite Stte

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence Winter 2016 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl

More information

Lexical Analysis: Constructing a Scanner from Regular Expressions

Lexical Analysis: Constructing a Scanner from Regular Expressions Lexicl Anlysis: Constructing Scnner from Regulr Expressions Gol Show how to construct FA to recognize ny RE This Lecture Convert RE to n nondeterministic finite utomton (NFA) Use Thompson s construction

More information

9 4. CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association

9 4. CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association 9. CISC - Curriculum & Instruction Steering Committee The Winning EQUATION A HIGH QUALITY MATHEMATICS PROFESSIONAL DEVELOPMENT PROGRAM FOR TEACHERS IN GRADES THROUGH ALGEBRA II STRAND: NUMBER SENSE: Rtionl

More information

Math 35 Review Sheet, Spring 2014

Math 35 Review Sheet, Spring 2014 Mth 35 Review heet, pring 2014 For the finl exm, do ny 12 of the 15 questions in 3 hours. They re worth 8 points ech, mking 96, with 4 more points for netness! Put ll your work nd nswers in the provided

More information

Example: 2:1 Multiplexer

Example: 2:1 Multiplexer Exmple: 2:1 Multiplexer Exmple #1 reg ; lwys @( or or s) egin if (s == 1') egin = ; else egin = ; 1 s B. Bs 114 Exmple: 2:1 Multiplexer Exmple #2 Normlly lwys include egin nd sttements even though they

More information

Midterm 2 Sample solution

Midterm 2 Sample solution Nme: Instructions Midterm 2 Smple solution CMSC 430 Introduction to Compilers Fll 2012 November 28, 2012 This exm contins 9 pges, including this one. Mke sure you hve ll the pges. Write your nme on the

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

Section 5.3 : Finding Area Between Curves

Section 5.3 : Finding Area Between Curves MATH 9 Section 5. : Finding Are Between Curves Importnt: In this section we will lern just how to set up the integrls to find re etween curves. The finl nswer for ech emple in this hndout is given for

More information

Engineer To Engineer Note

Engineer To Engineer Note Engineer To Engineer Note EE-169 Technicl Notes on using Anlog Devices' DSP components nd development tools Contct our technicl support by phone: (800) ANALOG-D or e-mil: dsp.support@nlog.com Or visit

More information

CS412/413. Introduction to Compilers Tim Teitelbaum. Lecture 4: Lexical Analyzers 28 Jan 08

CS412/413. Introduction to Compilers Tim Teitelbaum. Lecture 4: Lexical Analyzers 28 Jan 08 CS412/413 Introduction to Compilers Tim Teitelum Lecture 4: Lexicl Anlyzers 28 Jn 08 Outline DFA stte minimiztion Lexicl nlyzers Automting lexicl nlysis Jlex lexicl nlyzer genertor CS 412/413 Spring 2008

More information

The Math Learning Center PO Box 12929, Salem, Oregon Math Learning Center

The Math Learning Center PO Box 12929, Salem, Oregon Math Learning Center Resource Overview Quntile Mesure: Skill or Concept: 80Q Multiply two frctions or frction nd whole numer. (QT N ) Excerpted from: The Mth Lerning Center PO Box 99, Slem, Oregon 9709 099 www.mthlerningcenter.org

More information

Graphing Conic Sections

Graphing Conic Sections Grphing Conic Sections Definition of Circle Set of ll points in plne tht re n equl distnce, clled the rdius, from fixed point in tht plne, clled the center. Grphing Circle (x h) 2 + (y k) 2 = r 2 where

More information

Summer Review Packet For Algebra 2 CP/Honors

Summer Review Packet For Algebra 2 CP/Honors Summer Review Pcket For Alger CP/Honors Nme Current Course Mth Techer Introduction Alger uilds on topics studied from oth Alger nd Geometr. Certin topics re sufficientl involved tht the cll for some review

More information

CHAPTER III IMAGE DEWARPING (CALIBRATION) PROCEDURE

CHAPTER III IMAGE DEWARPING (CALIBRATION) PROCEDURE CHAPTER III IMAGE DEWARPING (CALIBRATION) PROCEDURE 3.1 Scheimpflug Configurtion nd Perspective Distortion Scheimpflug criterion were found out to be the best lyout configurtion for Stereoscopic PIV, becuse

More information

CSCE 531, Spring 2017, Midterm Exam Answer Key

CSCE 531, Spring 2017, Midterm Exam Answer Key CCE 531, pring 2017, Midterm Exm Answer Key 1. (15 points) Using the method descried in the ook or in clss, convert the following regulr expression into n equivlent (nondeterministic) finite utomton: (

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl component

More information

A REINFORCEMENT LEARNING APPROACH TO SCHEDULING DUAL-ARMED CLUSTER TOOLS WITH TIME VARIATIONS

A REINFORCEMENT LEARNING APPROACH TO SCHEDULING DUAL-ARMED CLUSTER TOOLS WITH TIME VARIATIONS A REINFORCEMENT LEARNING APPROACH TO SCHEDULING DUAL-ARMED CLUSTER TOOLS WITH TIME VARIATIONS Ji-Eun Roh (), Te-Eog Lee (b) (),(b) Deprtment of Industril nd Systems Engineering, Kore Advnced Institute

More information

CS 241 Week 4 Tutorial Solutions

CS 241 Week 4 Tutorial Solutions CS 4 Week 4 Tutoril Solutions Writing n Assemler, Prt & Regulr Lnguges Prt Winter 8 Assemling instrutions utomtilly. slt $d, $s, $t. Solution: $d, $s, nd $t ll fit in -it signed integers sine they re 5-it

More information

Lily Yen and Mogens Hansen

Lily Yen and Mogens Hansen SKOLID / SKOLID No. 8 Lily Yen nd Mogens Hnsen Skolid hs joined Mthemticl Myhem which is eing reformtted s stnd-lone mthemtics journl for high school students. Solutions to prolems tht ppered in the lst

More information

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012 Dynmic Progrmming Andres Klppenecker [prtilly bsed on slides by Prof. Welch] 1 Dynmic Progrmming Optiml substructure An optiml solution to the problem contins within it optiml solutions to subproblems.

More information

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona CSc 453 Compilers nd Systems Softwre 4 : Lexicl Anlysis II Deprtment of Computer Science University of Arizon collerg@gmil.com Copyright c 2009 Christin Collerg Implementing Automt NFAs nd DFAs cn e hrd-coded

More information

Calculus Differentiation

Calculus Differentiation //007 Clulus Differentition Jeffrey Seguritn person in rowot miles from the nerest point on strit shoreline wishes to reh house 6 miles frther down the shore. The person n row t rte of mi/hr nd wlk t rte

More information

Physics 208: Electricity and Magnetism Exam 1, Secs Feb IMPORTANT. Read these directions carefully:

Physics 208: Electricity and Magnetism Exam 1, Secs Feb IMPORTANT. Read these directions carefully: Physics 208: Electricity nd Mgnetism Exm 1, Secs. 506 510 11 Feb. 2004 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your nme netly: Lst nme: First nme: Sign your nme: Plese

More information

Fall 2018 Midterm 2 November 15, 2018

Fall 2018 Midterm 2 November 15, 2018 Nme: 15-112 Fll 2018 Midterm 2 November 15, 2018 Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

The Distributed Data Access Schemes in Lambda Grid Networks

The Distributed Data Access Schemes in Lambda Grid Networks The Distributed Dt Access Schemes in Lmbd Grid Networks Ryot Usui, Hiroyuki Miygi, Yutk Arkw, Storu Okmoto, nd Noki Ymnk Grdute School of Science for Open nd Environmentl Systems, Keio University, Jpn

More information

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997.

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997. Forced convex n-gons in the plne F. R. K. Chung y University ofpennsylvni Phildelphi, Pennsylvni 19104 R. L. Grhm AT&T Ls - Reserch Murry Hill, New Jersey 07974 Mrch 2,1997 Astrct In seminl pper from 1935,

More information

Typing with Weird Keyboards Notes

Typing with Weird Keyboards Notes Typing with Weird Keyords Notes Ykov Berchenko-Kogn August 25, 2012 Astrct Consider lnguge with n lphet consisting of just four letters,,,, nd. There is spelling rule tht sys tht whenever you see n next

More information

The Greedy Method. The Greedy Method

The Greedy Method. The Greedy Method Lists nd Itertors /8/26 Presenttion for use with the textook, Algorithm Design nd Applictions, y M. T. Goodrich nd R. Tmssi, Wiley, 25 The Greedy Method The Greedy Method The greedy method is generl lgorithm

More information

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X 4. Mon, Sept. 30 Lst time, we defined the quotient topology coming from continuous surjection q : X! Y. Recll tht q is quotient mp (nd Y hs the quotient topology) if V Y is open precisely when q (V ) X

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Patterns and Algebra. My name. Series

Patterns and Algebra. My name. Series Student Techer Ptterns nd Alger My nme Series D Copyright 009 P Lerning. All rights reserved. First edition printed 009 in Austrli. A ctlogue record for this ook is ville from P Lerning Ltd. ISBN 978--9860--

More information