CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe

Size: px
Start display at page:

Download "CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe"

Transcription

1 CSCI 0 fel Ferreir d Silv rfsilv@isi.edu Slides dpted from: Mrk edekopp nd Dvid Kempe

2 LOG STUCTUED MEGE TEES

3 Series Summtion eview Let n = k $ = #%& #. Wht is n? n = k+ - Wht is log () + log () + log () + log (8)+ + log ( k ) $ = k = Arithmetic series: i O(k ) #%& So then wht if k = log(n) s in: log () + log () + log () + log (8)+ + log ( log(n) ) O(log n) ( #%) i = (((,)) = θ n. Geometric series ( c # #%). = c(,) c = θ c(

4 Merge Trees Overview Consider list of (pointers to) rrys with the following constrints Ech rry is sorted though no ordering constrints exist etween rrys The rry t list index k is of exctly size k or empty An rry t list loction k cn e of size k or empty 0 NULL 0 Note: These re the keys for set (or key,vlue pirs for mp) Size = 8 Size = if non-empty

5 Merge Trees Size Define n s the # of keys in the entire structure k s the size of the list (i.e. positions in the list) Given k, wht is n? Let n = k = $ #%& #. Wht is n? n= k - An rry t list loction k cn e of size k or empty 0 NULL Size = 8 Size = if non-empty Note: These re the keys for set (or key,vlue pirs for mp)

6 Merge Trees Find Opertion To find n element (or check if it exists) Iterte through the rrys in order (i.e. strt with rry t list position 0, then the rry t list position, etc.) In ech rry perform inry serch If you rech the end of the list of rrys without finding the vlue it does not exist in the set/mp An rry t list loction k cn e of size k or empty 0 NULL 0 Note: These re the keys for set (or key,vlue pirs for mp) Size = 8 Size = if non-empty

7 7 Find untime Wht is the worst cse runtime of find? When the item is not present which requires, inry serch is performed on ech list T(n) = log () + log () + log ( k ) $ = k = #%& i = O(k ) But let's put tht in terms of the numer of elements in the structure (i.e. n) ecll k = log (n)+ So find is O(log (n) ) An rry t list loction k cn e of size k or empty 0 NULL 0 Note: These re the keys for set (or key,vlue pirs for mp) Size = 8 Size = if non-empty

8 8 Improving Find's untime While we might e oky with [log(n)], how might we improve the find runtime in the generl cse? Hint: I would e willing to py O() to know if key is not in prticulr rry without hving to perform find A Bloom filter could e mintined longside ech rry nd llow us to skip performing inry serch in n rry

9 9 Insertion Algorithm Let j e the smllest integer such tht rry j is empty (first empty slot in the list of rrys) An insertion will cuse Loction j's rry to ecome filled Loctions 0 through j- to ecome empty An rry t list loction k cn e of size k or empty insert(9) j= 0 NULL 0 9 Before insertion 8 0 Size = 8 0 After insertion Size = 8

10 0 Insertion Algorithm Strting t rry 0, itertively merge the previously merged rry with the next, stopping when n empty loction is encountered insert(9) 9 0 NULL 0 NULL 0 NULL Merge List 0 is full so merge two rrys of size 9 Merge List is full so merge two rrys of size Size = 8

11 Insert Exmples insert() 0 NULL insert(8) 0 NULL Cost = / 0 insert() 0 NULL Cost = / Cost = / insert() Cost = / 0 0 NULL insert(7) Cost = / 0 NULL insert(9) Cost = / 0 NULL 9 insert() Cost = / 0 0 NULL 7 8 9

12 Insertion untime: First Look 0 Best cse? First list is empty nd llows direct insertion in O() Worst cse? All list entries (rrys) re full so we hve to merge t ech loction In this cse we will end with n rry of size n= k in position k Also recll merging two rrys of size m is Θ(m) So the totl cost of ll the merges is n = *n- = Θ(n) = Θ( k ) But if the worst cse occurs how soon cn it occur gin? It seems the costs vry from one insert to the next This is good plce to use mortized nlysis insert() insert() insert() insert(9) NULL 0 NULL 0 NULL 0 NULL 9

13 Totl Cost for N insertions Totl cost of n= insertions: =*n/ + *n/ + *n/8 + 8*n/ + n =n/ + n/ + n/ + n/ + n =n/*log (n) + n Amortized cost = Totl cost / n opertions log (n)/ + = O(log (n))

14 Amortized Anlysis of Insert We hve sid when you end (plce n rry) in position k you hve to do O( k+ ) work for ll the merges How often do we end in position k The 0 th position will e free with proility ½ (p=0.) We will stop t the st position with proility ¼ (p=0.) We will stop t the nd position with proility /8 (p=0.) We will stop t the k th position with proility / k = -k So we py k+ with proility -(k+) Suppose we hve n items in the structure (i.e. mx k is log n) wht is the expected cost of inserting new element 789 (() $%& $,) ($,)) 789 (() = $%& = log (n) insert() Cost = / 0 insert() Cost = / insert() Cost = / 0 insert(9) Cost = / 0 NULL 0 NULL 0 NULL 0 NULL 9

15 Summry Vrints of log structured merge trees hve found populr usge in industry Strting rry size might e firly lrge (size of memory of single server) Lrge rrys (from merging) re stored on disk Pros: Ese of implementtion Sequentil ccess of rrys helps lower its constnt fctors Opertions: Find = log(n) Insert = Amortized log(n) emove = often not considered/supported

16 SPLAY TEES

17 7 Sources / eding Mteril for these slides ws derived from the following sources /lecture0-sply.pdf Nice Visuliztion Tool html

18 8 Sply Tree Intro Another mp/set implementtion (storing keys or key/vlue pirs) Insert, emove, Find ecll To do m inserts/finds/removes on n BTree w/ n elements would cost? O(m*log(n)) Sply trees hve worst cse find, insert, delete time of O(n) However, they gurntee tht if you do m opertions on sply tree with n elements tht the totl ("mortized" uh-oh) time is O(m*log(n)) They hve further enefit tht recently ccessed elements will e ner the top of the tree In fct, the most recently ccessed item is lwys t the top of the tree

19 9 Sply Opertion Sply mens "spred" As you serch for n item or fter you insert n item we will perform series of sply opertions These opertions will cuse the desired node to lwys end up t the top of the tree A desirle side-effect is tht ccessing key multiple times within short time window will yield fst serches ecuse it will e ner the top See next slide on principle of loclity T If we serch for or insert T T T will end up s the root node with the old root in the top level or two

20 dimensions of this principle: spce & time Sptil Loclity Future ccesses will likely cluster ner current ccesses Instructions nd dt rrys re sequentil (they re ll one fter the next) Temporl Loclity Future ccesses will likely e to recently ccessed items Sme code nd dt re repetedly ccessed (loops, suroutines, if(x > y) x++; 90/0 rule: Anlysis shows tht usully 0% of the written instructions ccount for 90% of the executed instructions Sply trees help exploit temporl loclity y gurnteeing recently ccessed items ner the top of the tree 0 Principle of Loclity

21 Sply Cses. Zig-Zig G. oot/zig Cse (Single ottion) P d P c G c c d c Left rotte of, ight rotte of,. Zig-Zg G G P d P G P G P c d d c d c c

22 Find() Zig 7 7 Zig-Zig 7 Zig-Zig esulting Tree 7

23 Find() Zig-Zg Zig-Zg esulting Tree Notice the tree is strting to look t lot more lnced

24 Worst Cse Suppose you wnt to mke the mortized time (verged time over multiple clls to find/insert/remove) look d, you might try to lwys ccess the node in the tree Deepest But sply trees hve property tht s we keep ccessing deep nodes the tree strts to lnce nd thus ccess to deep nodes strt y costing O(n) ut soon strt costing O(log n)

25 Insert() Zig-Zig 8 Zig-Zig esulting Tree

26 Insert() Zig-Zg Zig-Zig esulting Tree 8

27 7 Activity Go to html Try to e n dversry y inserting nd finding elements tht would cuse O(n) ech time

28 8 Sply Tree Supported Opertions Insert(x) Norml BST insert, then sply x Find(x) Attempt norml BST find(x) nd sply lst node visited If x is in the tree, then we sply x If x is not in the tree we sply the lef node where our serch ended FindMin(), FindMx() Wlk to fr left or right of tree, return tht node's vlue nd then sply tht node DeleteMin(), DeleteMx() Perform FindMin(), FindMx() [which splys the min/mx to the root] then delete tht node nd set root to e the non-null child of the min/mx emove(x) Find(x) splying it to the top, then overwrite its vlue with is successor/predecessor, deleting the successor/predecessor node

29 9 FindMin() / DeleteMin() FindMin() Zig-Zig Zig esulting Tree DeleteMin() esulting Tree 0

30 0 emove() Zig-Zg Zig-Zg esulting Tree 7 7 Copy successor or predecessor to root Delete successor (emove node or rettch single child)

31 Top Down Splying ther thn wlking down the tree to first find the vlue then splying ck up, we cn sply on the wy down We will e "pruning" the ig tree into two smller trees s we wlk, cutting off the unused pthwys

32 Top-Down Splying. Zig (If Trget is in nd level) oot T L T L oot. Finl Step (when rech Trget) T T L L

33 Top-Down Splying. Zig-Zig Y Z c Y Z L Y Z c L c L Z c L Y. Zig-Zg L Z c L Y Z c Y L Y Z c L Y Z c

34 Find() Zig-Zg 7 Steps tken on our journey to find - - L Y Z c L Y Z c L-Tree -Tree L-Tree -Tree 7 L Z c L Y Z c Y -Tree 7 L-Tree

35 Find() L-Tree -Tree esulting tree fter find esulting tree from ottom-up pproch. Finl Step (when rech Trget) T T L L

36 Insert() L-Tree -Tree L-Tree - -Tree L-Tree 0 8 -Tree Originl esulting Tree from Bottomup pproch

37 7 Summry Sply trees don't enforce lnce ut re selfdjusting to ttempt yield lnced tree Sply trees provide efficient mortized time opertions A single opertion my tke O(n) m opertions on tree with n elements => O(m(log n)) Uses rottions to ttempt lnce Provides fst ccess to recently used keys

CSCI 104 Log Structured Merge Trees. Mark Redekopp

CSCI 104 Log Structured Merge Trees. Mark Redekopp 1 CSCI 10 Log Structured Merge Trees Mark Redekopp Series Summation Review Let n = 1 + + + + k = σk i=0 n = k+1-1 i. What is n? What is log (1) + log () + log () + log (8)++ log ( k ) = 0 + 1 + + 3+ +

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

ITEC2620 Introduction to Data Structures

ITEC2620 Introduction to Data Structures ITEC0 Introduction to Dt Structures Lecture 7 Queues, Priority Queues Queues I A queue is First-In, First-Out = FIFO uffer e.g. line-ups People enter from the ck of the line People re served (exit) from

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

2-3 search trees red-black BSTs B-trees

2-3 search trees red-black BSTs B-trees 2-3 serch trees red-lck BTs B-trees 3 2-3 tree llow 1 or 2 keys per node. 2-node: one key, two children. 3-node: two keys, three children. ymmetric order. Inorder trversl yields keys in scending order.

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

Geometric transformations

Geometric transformations Geometric trnsformtions Computer Grphics Some slides re bsed on Shy Shlom slides from TAU mn n n m m T A,,,,,, 2 1 2 22 12 1 21 11 Rows become columns nd columns become rows nm n n m m A,,,,,, 1 1 2 22

More information

Orthogonal line segment intersection

Orthogonal line segment intersection Computtionl Geometry [csci 3250] Line segment intersection The prolem (wht) Computtionl Geometry [csci 3250] Orthogonl line segment intersection Applictions (why) Algorithms (how) A specil cse: Orthogonl

More information

AI Adjacent Fields. This slide deck courtesy of Dan Klein at UC Berkeley

AI Adjacent Fields. This slide deck courtesy of Dan Klein at UC Berkeley AI Adjcent Fields Philosophy: Logic, methods of resoning Mind s physicl system Foundtions of lerning, lnguge, rtionlity Mthemtics Forml representtion nd proof Algorithms, computtion, (un)decidility, (in)trctility

More information

CSEP 573 Artificial Intelligence Winter 2016

CSEP 573 Artificial Intelligence Winter 2016 CSEP 573 Artificil Intelligence Winter 2016 Luke Zettlemoyer Problem Spces nd Serch slides from Dn Klein, Sturt Russell, Andrew Moore, Dn Weld, Pieter Abbeel, Ali Frhdi Outline Agents tht Pln Ahed Serch

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl component

More information

CS201 Discussion 10 DRAWTREE + TRIES

CS201 Discussion 10 DRAWTREE + TRIES CS201 Discussion 10 DRAWTREE + TRIES DrwTree First instinct: recursion As very generic structure, we could tckle this problem s follows: drw(): Find the root drw(root) drw(root): Write the line for the

More information

MIPS I/O and Interrupt

MIPS I/O and Interrupt MIPS I/O nd Interrupt Review Floting point instructions re crried out on seprte chip clled coprocessor 1 You hve to move dt to/from coprocessor 1 to do most common opertions such s printing, clling functions,

More information

Allocator Basics. Dynamic Memory Allocation in the Heap (malloc and free) Allocator Goals: malloc/free. Internal Fragmentation

Allocator Basics. Dynamic Memory Allocation in the Heap (malloc and free) Allocator Goals: malloc/free. Internal Fragmentation Alloctor Bsics Dynmic Memory Alloction in the Hep (mlloc nd free) Pges too corse-grined for llocting individul objects. Insted: flexible-sized, word-ligned blocks. Allocted block (4 words) Free block (3

More information

Suffix trees, suffix arrays, BWT

Suffix trees, suffix arrays, BWT ALGORITHMES POUR LA BIO-INFORMATIQUE ET LA VISUALISATION COURS 3 Rluc Uricru Suffix trees, suffix rrys, BWT Bsed on: Suffix trees nd suffix rrys presenttion y Him Kpln Suffix trees course y Pco Gomez Liner-Time

More information

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis CS143 Hndout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexicl Anlysis In this first written ssignment, you'll get the chnce to ply round with the vrious constructions tht come up when doing lexicl

More information

The Greedy Method. The Greedy Method

The Greedy Method. The Greedy Method Lists nd Itertors /8/26 Presenttion for use with the textook, Algorithm Design nd Applictions, y M. T. Goodrich nd R. Tmssi, Wiley, 25 The Greedy Method The Greedy Method The greedy method is generl lgorithm

More information

Deletion The Two Child Case 10 Delete(5) Deletion The Two Child Case. Balanced BST. Finally

Deletion The Two Child Case 10 Delete(5) Deletion The Two Child Case. Balanced BST. Finally Deletion Te Two Cild Cse Delete() Deletion Te Two Cild Cse Ide: Replce te deleted node wit vlue gurnteed to e etween te two cild sutrees! Options: succ from rigt sutree: findmin(t.rigt) pred from left

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence Winter 2016 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming Lecture 10 Evolutionry Computtion: Evolution strtegies nd genetic progrmming Evolution strtegies Genetic progrmming Summry Negnevitsky, Person Eduction, 2011 1 Evolution Strtegies Another pproch to simulting

More information

Suffix Tries. Slides adapted from the course by Ben Langmead

Suffix Tries. Slides adapted from the course by Ben Langmead Suffix Tries Slides dpted from the course y Ben Lngmed en.lngmed@gmil.com Indexing with suffixes Until now, our indexes hve een sed on extrcting sustrings from T A very different pproch is to extrct suffixes

More information

Algorithm Design (5) Text Search

Algorithm Design (5) Text Search Algorithm Design (5) Text Serch Tkshi Chikym School of Engineering The University of Tokyo Text Serch Find sustring tht mtches the given key string in text dt of lrge mount Key string: chr x[m] Text Dt:

More information

PARALLEL AND DISTRIBUTED COMPUTING

PARALLEL AND DISTRIBUTED COMPUTING PARALLEL AND DISTRIBUTED COMPUTING 2009/2010 1 st Semester Teste Jnury 9, 2010 Durtion: 2h00 - No extr mteril llowed. This includes notes, scrtch pper, clcultor, etc. - Give your nswers in the ville spce

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5 CS321 Lnguges nd Compiler Design I Winter 2012 Lecture 5 1 FINITE AUTOMATA A non-deterministic finite utomton (NFA) consists of: An input lphet Σ, e.g. Σ =,. A set of sttes S, e.g. S = {1, 3, 5, 7, 11,

More information

Information Retrieval and Organisation

Information Retrieval and Organisation Informtion Retrievl nd Orgnistion Suffix Trees dpted from http://www.mth.tu.c.il/~himk/seminr02/suffixtrees.ppt Dell Zhng Birkeck, University of London Trie A tree representing set of strings { } eef d

More information

Presentation Martin Randers

Presentation Martin Randers Presenttion Mrtin Rnders Outline Introduction Algorithms Implementtion nd experiments Memory consumption Summry Introduction Introduction Evolution of species cn e modelled in trees Trees consist of nodes

More information

Alignment of Long Sequences. BMI/CS Spring 2012 Colin Dewey

Alignment of Long Sequences. BMI/CS Spring 2012 Colin Dewey Alignment of Long Sequences BMI/CS 776 www.biostt.wisc.edu/bmi776/ Spring 2012 Colin Dewey cdewey@biostt.wisc.edu Gols for Lecture the key concepts to understnd re the following how lrge-scle lignment

More information

Stack. A list whose end points are pointed by top and bottom

Stack. A list whose end points are pointed by top and bottom 4. Stck Stck A list whose end points re pointed by top nd bottom Insertion nd deletion tke plce t the top (cf: Wht is the difference between Stck nd Arry?) Bottom is constnt, but top grows nd shrinks!

More information

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search.

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search. CS 88: Artificil Intelligence Fll 00 Lecture : A* Serch 9//00 A* Serch rph Serch Tody Heuristic Design Dn Klein UC Berkeley Multiple slides from Sturt Russell or Andrew Moore Recp: Serch Exmple: Pncke

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

Uninformed Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 31 Jan 2012

Uninformed Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 31 Jan 2012 1 Hl Dumé III (me@hl3.nme) Uninformed Serch Hl Dumé III Comuter Science University of Mrylnd me@hl3.nme CS 421: Introduction to Artificil Intelligence 31 Jn 2012 Mny slides courtesy of Dn Klein, Sturt

More information

Caches I. CSE 351 Autumn Instructor: Justin Hsia

Caches I. CSE 351 Autumn Instructor: Justin Hsia L01: Intro, L01: L16: Combintionl Introduction Cches I Logic CSE369, CSE351, Autumn 2016 Cches I CSE 351 Autumn 2016 Instructor: Justin Hsi Teching Assistnts: Chris M Hunter Zhn John Kltenbch Kevin Bi

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

Today. Search Problems. Uninformed Search Methods. Depth-First Search Breadth-First Search Uniform-Cost Search

Today. Search Problems. Uninformed Search Methods. Depth-First Search Breadth-First Search Uniform-Cost Search Uninformed Serch [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t UC Berkeley. All CS188 mterils re vilble t http://i.berkeley.edu.] Tody Serch Problems Uninformed Serch Methods

More information

Caches I. CSE 351 Spring Instructor: Ruth Anderson

Caches I. CSE 351 Spring Instructor: Ruth Anderson L16: Cches I Cches I CSE 351 Spring 2017 Instructor: Ruth Anderson Teching Assistnts: Dyln Johnson Kevin Bi Linxing Preston Jing Cody Ohlsen Yufng Sun Joshu Curtis L16: Cches I Administrivi Homework 3,

More information

Midterm 2 Sample solution

Midterm 2 Sample solution Nme: Instructions Midterm 2 Smple solution CMSC 430 Introduction to Compilers Fll 2012 November 28, 2012 This exm contins 9 pges, including this one. Mke sure you hve ll the pges. Write your nme on the

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007 CS 88: Artificil Intelligence Fll 2007 Lecture : A* Serch 9/4/2007 Dn Klein UC Berkeley Mny slides over the course dpted from either Sturt Russell or Andrew Moore Announcements Sections: New section 06:

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy Recognition of Tokens if expressions nd reltionl opertors if è if then è then else è else relop

More information

COMBINATORIAL PATTERN MATCHING

COMBINATORIAL PATTERN MATCHING COMBINATORIAL PATTERN MATCHING Genomic Repets Exmple of repets: ATGGTCTAGGTCCTAGTGGTC Motivtion to find them: Genomic rerrngements re often ssocited with repets Trce evolutionry secrets Mny tumors re chrcterized

More information

Mid-term exam. Scores. Fall term 2012 KAIST EE209 Programming Structures for EE. Thursday Oct 25, Student's name: Student ID:

Mid-term exam. Scores. Fall term 2012 KAIST EE209 Programming Structures for EE. Thursday Oct 25, Student's name: Student ID: Fll term 2012 KAIST EE209 Progrmming Structures for EE Mid-term exm Thursdy Oct 25, 2012 Student's nme: Student ID: The exm is closed book nd notes. Red the questions crefully nd focus your nswers on wht

More information

Very sad code. Abstraction, List, & Cons. CS61A Lecture 7. Happier Code. Goals. Constructors. Constructors 6/29/2011. Selectors.

Very sad code. Abstraction, List, & Cons. CS61A Lecture 7. Happier Code. Goals. Constructors. Constructors 6/29/2011. Selectors. 6/9/ Abstrction, List, & Cons CS6A Lecture 7-6-9 Colleen Lewis Very sd code (define (totl hnd) (if (empty? hnd) (+ (butlst (lst hnd)) (totl (butlst hnd))))) STk> (totl (h c d)) 7 STk> (totl (h ks d)) ;;;EEEK!

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

Outline. Introduction Suffix Trees (ST) Building STs in linear time: Ukkonen s algorithm Applications of ST

Outline. Introduction Suffix Trees (ST) Building STs in linear time: Ukkonen s algorithm Applications of ST Suffi Trees Outline Introduction Suffi Trees (ST) Building STs in liner time: Ukkonen s lgorithm Applictions of ST 2 3 Introduction Sustrings String is ny sequence of chrcters. Sustring of string S is

More information

Stack Manipulation. Other Issues. How about larger constants? Frame Pointer. PowerPC. Alternative Architectures

Stack Manipulation. Other Issues. How about larger constants? Frame Pointer. PowerPC. Alternative Architectures Other Issues Stck Mnipultion support for procedures (Refer to section 3.6), stcks, frmes, recursion mnipulting strings nd pointers linkers, loders, memory lyout Interrupts, exceptions, system clls nd conventions

More information

CSCI 446: Artificial Intelligence

CSCI 446: Artificial Intelligence CSCI 446: Artificil Intelligence Serch Instructor: Michele Vn Dyne [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t UC Berkeley. All CS188 mterils re vilble t http://i.berkeley.edu.]

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation Union-Find Problem Given set {,,, n} of n elements. Initilly ech element is in different set. ƒ {}, {},, {n} An intermixed sequence of union nd find opertions is performed. A union opertion combines two

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem Announcements Project : erch It s live! Due 9/. trt erly nd sk questions. It s longer thn most! Need prtner? Come up fter clss or try Pizz ections: cn go to ny, ut hve priority in your own C 88: Artificil

More information

1 Quad-Edge Construction Operators

1 Quad-Edge Construction Operators CS48: Computer Grphics Hndout # Geometric Modeling Originl Hndout #5 Stnford University Tuesdy, 8 December 99 Originl Lecture #5: 9 November 99 Topics: Mnipultions with Qud-Edge Dt Structures Scribe: Mike

More information

Looking up objects in Pastry

Looking up objects in Pastry Review: Pstry routing tbles 0 1 2 3 4 7 8 9 b c d e f 0 1 2 3 4 7 8 9 b c d e f 0 1 2 3 4 7 8 9 b c d e f 0 2 3 4 7 8 9 b c d e f Row0 Row 1 Row 2 Row 3 Routing tble of node with ID i =1fc s - For ech

More information

CS481: Bioinformatics Algorithms

CS481: Bioinformatics Algorithms CS481: Bioinformtics Algorithms Cn Alkn EA509 clkn@cs.ilkent.edu.tr http://www.cs.ilkent.edu.tr/~clkn/teching/cs481/ EXACT STRING MATCHING Fingerprint ide Assume: We cn compute fingerprint f(p) of P in

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distriuted Systems Principles nd Prdigms Chpter 11 (version April 7, 2008) Mrten vn Steen Vrije Universiteit Amsterdm, Fculty of Science Dept. Mthemtics nd Computer Science Room R4.20. Tel: (020) 598 7784

More information

Intermediate Information Structures

Intermediate Information Structures CPSC 335 Intermedite Informtion Structures LECTURE 13 Suffix Trees Jon Rokne Computer Science University of Clgry Cnd Modified from CMSC 423 - Todd Trengen UMD upd Preprocessing Strings We will look t

More information

Fig.25: the Role of LEX

Fig.25: the Role of LEX The Lnguge for Specifying Lexicl Anlyzer We shll now study how to uild lexicl nlyzer from specifiction of tokens in the form of list of regulr expressions The discussion centers round the design of n existing

More information

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples COMPUTER SCIENCE 123 Foundtions of Computer Science 6. Tuples Summry: This lecture introduces tuples in Hskell. Reference: Thompson Sections 5.1 2 R.L. While, 2000 3 Tuples Most dt comes with structure

More information

Basics of Logic Design Arithmetic Logic Unit (ALU)

Basics of Logic Design Arithmetic Logic Unit (ALU) Bsics of Logic Design Arithmetic Logic Unit (ALU) CPS 4 Lecture 9 Tody s Lecture Homework #3 Assigned Due Mrch 3 Project Groups ssigned & posted to lckord. Project Specifiction is on We Due April 9 Building

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

Recall: Properties of B-Trees

Recall: Properties of B-Trees CSE 326 Lecture 10: B-Trees and Heaps It s lunch time what s cookin? B-Trees Insert/Delete Examples and Run Time Analysis Summary of Search Trees Introduction to Heaps and Priority Queues Covered in Chapters

More information

Integration. September 28, 2017

Integration. September 28, 2017 Integrtion September 8, 7 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my

More information

CSCE 531, Spring 2017, Midterm Exam Answer Key

CSCE 531, Spring 2017, Midterm Exam Answer Key CCE 531, pring 2017, Midterm Exm Answer Key 1. (15 points) Using the method descried in the ook or in clss, convert the following regulr expression into n equivlent (nondeterministic) finite utomton: (

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Adm Sheffer. Office hour: Tuesdys 4pm. dmsh@cltech.edu TA: Victor Kstkin. Office hour: Tuesdys 7pm. 1:00 Mondy, Wednesdy, nd Fridy. http://www.mth.cltech.edu/~2014-15/2term/m006/

More information

Graphs with at most two trees in a forest building process

Graphs with at most two trees in a forest building process Grphs with t most two trees in forest uilding process rxiv:802.0533v [mth.co] 4 Fe 208 Steve Butler Mis Hmnk Mrie Hrdt Astrct Given grph, we cn form spnning forest y first sorting the edges in some order,

More information

Systems I. Logic Design I. Topics Digital logic Logic gates Simple combinational logic circuits

Systems I. Logic Design I. Topics Digital logic Logic gates Simple combinational logic circuits Systems I Logic Design I Topics Digitl logic Logic gtes Simple comintionl logic circuits Simple C sttement.. C = + ; Wht pieces of hrdwre do you think you might need? Storge - for vlues,, C Computtion

More information

Caches I. CSE 351 Autumn 2018

Caches I. CSE 351 Autumn 2018 Cches I CSE 351 Autumn 2018 Instructors: Mx Willsey Luis Ceze Teching Assistnts: Britt Henderson Luks Joswik Josie Lee Wei Lin Dniel Snitkovsky Luis Veg Kory Wtson Ivy Yu Alt text: I looked t some of the

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Dt Mining y I. H. Witten nd E. Frnk Simplicity first Simple lgorithms often work very well! There re mny kinds of simple structure, eg: One ttriute does ll the work All ttriutes contriute eqully

More information

CS412/413. Introduction to Compilers Tim Teitelbaum. Lecture 4: Lexical Analyzers 28 Jan 08

CS412/413. Introduction to Compilers Tim Teitelbaum. Lecture 4: Lexical Analyzers 28 Jan 08 CS412/413 Introduction to Compilers Tim Teitelum Lecture 4: Lexicl Anlyzers 28 Jn 08 Outline DFA stte minimiztion Lexicl nlyzers Automting lexicl nlysis Jlex lexicl nlyzer genertor CS 412/413 Spring 2008

More information

4/29/18 FIBONACCI NUMBERS GOLDEN RATIO, RECURRENCES. Fibonacci function. Fibonacci (Leonardo Pisano) ? Statue in Pisa Italy

4/29/18 FIBONACCI NUMBERS GOLDEN RATIO, RECURRENCES. Fibonacci function. Fibonacci (Leonardo Pisano) ? Statue in Pisa Italy /9/8 Fioncci (Leonrdo Pisno) -? Sttue in Pis Itly FIBONACCI NUERS GOLDEN RATIO, RECURRENCES Lecture CS Spring 8 Fioncci function fi() fi() fi(n) fi(n-) + fi(n-) for n,,,,,, 8,,, In his ook in titled Lier

More information

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. Balanced Searching: Tries, Treaps

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. Balanced Searching: Tries, Treaps UNIVERSITY OF CALIFORNIA Deprtment of Electricl Engineering nd Computer Sciences Computer Science Division CS6B Fll 999 P. N. Hilfinger Blnced Serching: Tries, Treps Blnce We ve seen tht inry serch trees

More information

ASTs, Regex, Parsing, and Pretty Printing

ASTs, Regex, Parsing, and Pretty Printing ASTs, Regex, Prsing, nd Pretty Printing CS 2112 Fll 2016 1 Algeric Expressions To strt, consider integer rithmetic. Suppose we hve the following 1. The lphet we will use is the digits {0, 1, 2, 3, 4, 5,

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών. Lecture 3b Lexical Analysis Elias Athanasopoulos

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών. Lecture 3b Lexical Analysis Elias Athanasopoulos ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy RecogniNon of Tokens if expressions nd relnonl opertors if è if then è then else è else relop è

More information

Regular Expression Matching with Multi-Strings and Intervals. Philip Bille Mikkel Thorup

Regular Expression Matching with Multi-Strings and Intervals. Philip Bille Mikkel Thorup Regulr Expression Mtching with Multi-Strings nd Intervls Philip Bille Mikkel Thorup Outline Definition Applictions Previous work Two new problems: Multi-strings nd chrcter clss intervls Algorithms Thompson

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

CS 221: Artificial Intelligence Fall 2011

CS 221: Artificial Intelligence Fall 2011 CS 221: Artificil Intelligence Fll 2011 Lecture 2: Serch (Slides from Dn Klein, with help from Sturt Russell, Andrew Moore, Teg Grenger, Peter Norvig) Problem types! Fully observble, deterministic! single-belief-stte

More information

Control-Flow Analysis and Loop Detection

Control-Flow Analysis and Loop Detection ! Control-Flow Anlysis nd Loop Detection!Lst time! PRE!Tody! Control-flow nlysis! Loops! Identifying loops using domintors! Reducibility! Using loop identifiction to identify induction vribles CS553 Lecture

More information

pdfapilot Server 2 Manual

pdfapilot Server 2 Manual pdfpilot Server 2 Mnul 2011 by clls softwre gmbh Schönhuser Allee 6/7 D 10119 Berlin Germny info@cllssoftwre.com www.cllssoftwre.com Mnul clls pdfpilot Server 2 Pge 2 clls pdfpilot Server 2 Mnul Lst modified:

More information

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona CSc 453 Compilers nd Systems Softwre 4 : Lexicl Anlysis II Deprtment of Computer Science University of Arizon collerg@gmil.com Copyright c 2009 Christin Collerg Implementing Automt NFAs nd DFAs cn e hrd-coded

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

Lexical analysis, scanners. Construction of a scanner

Lexical analysis, scanners. Construction of a scanner Lexicl nlysis scnners (NB. Pges 4-5 re for those who need to refresh their knowledge of DFAs nd NFAs. These re not presented during the lectures) Construction of scnner Tools: stte utomt nd trnsition digrms.

More information

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012 Fculty of Mthemtics Wterloo, Ontrio N2L 3G1 Grde 7/8 Mth Circles Geometric Arithmetic Octoer 31, 2012 Centre for Eduction in Mthemtics nd Computing Ancient Greece hs given irth to some of the most importnt

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

EECS 281: Homework #4 Due: Thursday, October 7, 2004

EECS 281: Homework #4 Due: Thursday, October 7, 2004 EECS 28: Homework #4 Due: Thursdy, October 7, 24 Nme: Emil:. Convert the 24-bit number x44243 to mime bse64: QUJD First, set is to brek 8-bit blocks into 6-bit blocks, nd then convert: x44243 b b 6 2 9

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

2014 Haskell January Test Regular Expressions and Finite Automata

2014 Haskell January Test Regular Expressions and Finite Automata 0 Hskell Jnury Test Regulr Expressions nd Finite Automt This test comprises four prts nd the mximum mrk is 5. Prts I, II nd III re worth 3 of the 5 mrks vilble. The 0 Hskell Progrmming Prize will be wrded

More information

UNIT 11. Query Optimization

UNIT 11. Query Optimization UNIT Query Optimiztion Contents Introduction to Query Optimiztion 2 The Optimiztion Process: An Overview 3 Optimiztion in System R 4 Optimiztion in INGRES 5 Implementing the Join Opertors Wei-Png Yng,

More information

Agenda & Reading. Class Exercise. COMPSCI 105 SS 2012 Principles of Computer Science. Arrays

Agenda & Reading. Class Exercise. COMPSCI 105 SS 2012 Principles of Computer Science. Arrays COMPSCI 5 SS Principles of Computer Science Arrys & Multidimensionl Arrys Agend & Reding Agend Arrys Creting & Using Primitive & Reference Types Assignments & Equlity Pss y Vlue & Pss y Reference Copying

More information

A Heuristic Approach for Discovering Reference Models by Mining Process Model Variants

A Heuristic Approach for Discovering Reference Models by Mining Process Model Variants A Heuristic Approch for Discovering Reference Models by Mining Process Model Vrints Chen Li 1, Mnfred Reichert 2, nd Andres Wombcher 3 1 Informtion System Group, University of Twente, The Netherlnds lic@cs.utwente.nl

More information

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications.

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications. 15-112 Fll 2018 Midterm 1 October 11, 2018 Nme: Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

Compiler-Assisted Cache Replacement

Compiler-Assisted Cache Replacement LCPC 3 Formulting The Prolem of Compiler-Assisted Cche Replcement Hongo Yng LCPC 3 Agend Bckground: Memory hierrchy, ISA with cche hints Prolem definition: How should compiler give cche hint to minimize

More information

Simplifying Algebra. Simplifying Algebra. Curriculum Ready.

Simplifying Algebra. Simplifying Algebra. Curriculum Ready. Simplifying Alger Curriculum Redy www.mthletics.com This ooklet is ll out turning complex prolems into something simple. You will e le to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give this

More information