Raghuraman Gopalan Center for Automation Research University of Maryland, College Park

Size: px
Start display at page:

Download "Raghuraman Gopalan Center for Automation Research University of Maryland, College Park"

Transcription

1 2D Shape Matching (and Object Recognition) Raghuraman Gopalan Center for Automation Research University of Maryland, College Park 1

2 Outline What is a shape? Part 1: Matching/ Recognition Shape contexts [Belongie, Malik, Puzicha TPAMI 02] Indexing [Biswas, Aggarwal, Chellappa TMM 10] Part 2: General discussion 2

3 Shape Some slides were adapted from Prof. Grauman s course at Texas Austin, and Prof. Malik s presentation at MIT 3

4 Where have we encountered shape before? Edges/ Contours Silhouettes 4

5 A definition of shape Defn 1: A set of points that collectively represent the object We are interested in their location information alone!! Defn 2: Mathematically, shape is an equivalence class under a group of transformations Given a set of points X representing an object O, and a set of transformations T, shape S={t(X) t\in T} Issues? Kendall 84 5

6 Applications of Shapes Analysis of anatomical structures Figure from Grimson & Golland Recognition, detection Fig from Opelt et al. Pose Morphology Characteristic feature Fig from Belongie et al. 6

7 Part 1: 2D shape matching 7

8 Recognition using shapes (eg. model fitting) [Fig from Marszalek & Schmid, 2007] For example, the model could be a line, a circle, or an arbitrary shape. 8

9 Example: Deformable contours Visual Dynamics Group, Dept. Engineering Science, University of Oxford. Applications: Traffic monitoring Human-computer interaction Animation Surveillance Computer Assisted Diagnosis in medical imaging 9

10 Issues at stake Representation Holistic Part-based Matching How to compute distance between shapes? Challenges in recognition Information loss in 3D to 2D projection Articulations Occlusion. Invariance??? Any other issue? 10

11 Representation [Veltkamp 00] Holistic Moments Fourier descriptors Computational geometry Curvature scale-space 11

12 12

13 Part-based medial axis transform shock graphs 13

14 Matching: How to compare shapes? 14

15 Discussion for a set of points Hausdorff distance 15

16 Chamfer distance Average distance to nearest feature T: template shape a set of points I: image to search a set of points di(t): min distance for point t to some point in I 16

17 Chamfer distance How is the measure different than just filtering with a mask having the shape points? Edge image 17

18 Distance Transform Image features (2D) Distance Transform Distance Transform is a function D( ) that for each image pixel p assigns a non-negative number D(p) corresponding to distance from p to the nearest feature in the image I Features could be edge points, foreground points, Source: Yuri Boykov 18

19 Distance transform original edges distance transform Value at (x,y) tells how far that position is from the nearest edge point (or other binary mage structure) >> help bwdist 19

20 Chamfer distance Average distance to nearest feature Edge image Distance transform image 20

21 Chamfer distance Edge image Distance transform image Fig from D. Gavrila, DAGM

22 A limitation of active contours External energy: snake does not really see object boundaries in the image unless it gets very close to it. image gradients I are large only directly on the boundary 22

23 What limitations might we have using only edge points to represent a shape? How descriptive is a point? 23

24 Comparing shapes What points on these two sampled contours are most similar? How do you know? 24

25 Shape context descriptor [Belongie et al 02] Count the number of points inside each bin, e.g.: Count = 4... Count = 10 Compact representation of distribution of points relative to each point Shape context slides from Belongie et al. 25

26 Shape context descriptor 26

27 Comparing shape contexts Compute matching costs using Chi Squared distance: Recover correspondences by solving for least cost assignment, using costs C ij (Then use a deformable template match, given the correspondences.) 27

28 Invariance/ Robustness Translation Scaling Rotation Modeling transformations thin plate splines (TPS) Generalization of cubic splines to 2D Matching cost = f(shape context distances, bending energy of thin plate splines) Can add appearance information too Outliers? 28

29 An example of shape context-based matching 29

30 Some retrieval results 30

31 Efficient matching of shape contexts [Mori et al 05] Fast-pruning randomly select a set of points Detailed matching 31

32 Efficient matching of shape contexts [Mori et al 05] contd Vector quantization 32

33 Are things clear so far? 33

34 Detour - Articulation [Ling, Jacobs 07] 34

35 Inner distance vs. (2D) geodesic distance 35

36 The problem of junctions Is inner distance truly invariant to articulations? 36

37 37

38 Non-planar articulations? [Gopalan, Turaga, Chellappa 10] 38

39 Indexing approach to shape matching [Biswas et al 10] Why? 39

40 Indexing - framework Pair-wise Features: Inner distance, Contour length, relative angles etc. 40

41 41

42 Part 2 Shapes as equivalence classes Kendall s shape space Shape is all the geometric information that remains when the location, scale and rotation effects are filtered out from the object 42

43 Pre-shape Kendall s Statistical Shape Theory used for the characterization of shape. Pre-shape accounts for location and scale invariance alone. k landmark points (X:k\times 2) Translational Invariance: Subtract mean Scale Invariance : Normalize the scale CX 1 Z, 1 1 T c = where C = Ik k k C X k Some slides were adapted from Dr. Veeraraghavan s website 43

44 Feature extraction Silhoutte Landmarks Centered Landmarks Pre-shape vector 44

45 [Veeraraghavan, Roy-Chowdhury, Chellappa 05] Shape lies on a spherical manifold. Shape distance must incorporate the non- Euclidean nature of the shape space. 45

46 Affine subspaces [Turaga, Veeraraghavan, Chellappa 08] 46

47 Other examples Space of Blur Modeling group trajectories etc.. 47

48 Conclusion Shape as a set of points configuring the geometry of the object Representation, matching, recognition Shape contexts, Indexing, Articulation Shape as equivalence class under a group of transformations 48

49 Announcements HW 5 will be posted today; On Stereo, and Shape matching Due Nov. 30 (Tuesday after Thanksgiving) Turn in HW 4 Midterms solutions by weekend 49

50 Questions? 50

Edges and Binary Image Analysis April 12 th, 2018

Edges and Binary Image Analysis April 12 th, 2018 4/2/208 Edges and Binary Image Analysis April 2 th, 208 Yong Jae Lee UC Davis Previously Filters allow local image neighborhood to influence our description and features Smoothing to reduce noise Derivatives

More information

Previously. Edge detection. Today. Thresholding. Gradients -> edges 2/1/2011. Edges and Binary Image Analysis

Previously. Edge detection. Today. Thresholding. Gradients -> edges 2/1/2011. Edges and Binary Image Analysis 2//20 Previously Edges and Binary Image Analysis Mon, Jan 3 Prof. Kristen Grauman UT-Austin Filters allow local image neighborhood to influence our description and features Smoothing to reduce noise Derivatives

More information

Improving Shape retrieval by Spectral Matching and Meta Similarity

Improving Shape retrieval by Spectral Matching and Meta Similarity 1 / 21 Improving Shape retrieval by Spectral Matching and Meta Similarity Amir Egozi (BGU), Yosi Keller (BIU) and Hugo Guterman (BGU) Department of Electrical and Computer Engineering, Ben-Gurion University

More information

Shape Contexts. Newton Petersen 4/25/2008

Shape Contexts. Newton Petersen 4/25/2008 Shape Contexts Newton Petersen 4/25/28 "Shape Matching and Object Recognition Using Shape Contexts", Belongie et al. PAMI April 22 Agenda Study Matlab code for computing shape context Look at limitations

More information

Cell Clustering Using Shape and Cell Context. Descriptor

Cell Clustering Using Shape and Cell Context. Descriptor Cell Clustering Using Shape and Cell Context Descriptor Allison Mok: 55596627 F. Park E. Esser UC Irvine August 11, 2011 Abstract Given a set of boundary points from a 2-D image, the shape context captures

More information

Edges and Binary Image Analysis. Thurs Jan 26 Kristen Grauman UT Austin. Today. Edge detection and matching

Edges and Binary Image Analysis. Thurs Jan 26 Kristen Grauman UT Austin. Today. Edge detection and matching /25/207 Edges and Binary Image Analysis Thurs Jan 26 Kristen Grauman UT Austin Today Edge detection and matching process the image gradient to find curves/contours comparing contours Binary image analysis

More information

Articulation-Invariant Representation of Non-planar Shapes

Articulation-Invariant Representation of Non-planar Shapes Articulation-Invariant Representation of Non-planar Shapes Raghuraman Gopalan, Pavan Turaga, and Rama Chellappa Dept. of ECE, University of Maryland, College Park, MD 20742 USA {raghuram,pturaga,rama}@umiacs.umd.edu

More information

Using the Inner-Distance for Classification of Articulated Shapes

Using the Inner-Distance for Classification of Articulated Shapes Using the Inner-Distance for Classification of Articulated Shapes Haibin Ling David W. Jacobs Computer Science Department, University of Maryland, College Park {hbling, djacobs}@ umiacs.umd.edu Abstract

More information

Segmentation. Separate image into coherent regions

Segmentation. Separate image into coherent regions Segmentation II Segmentation Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Interactive

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Section 10 - Detectors part II Descriptors Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering

More information

Topic 6 Representation and Description

Topic 6 Representation and Description Topic 6 Representation and Description Background Segmentation divides the image into regions Each region should be represented and described in a form suitable for further processing/decision-making Representation

More information

Image gradients and edges

Image gradients and edges Image gradients and edges Thurs Sept 3 Prof. Kristen Grauman UT-Austin Last time Various models for image noise Linear filters and convolution useful for Image smoothing, remov ing noise Box filter Gaussian

More information

A New Shape Matching Measure for Nonlinear Distorted Object Recognition

A New Shape Matching Measure for Nonlinear Distorted Object Recognition A New Shape Matching Measure for Nonlinear Distorted Object Recognition S. Srisuky, M. Tamsriy, R. Fooprateepsiri?, P. Sookavatanay and K. Sunaty Department of Computer Engineeringy, Department of Information

More information

Local Features and Bag of Words Models

Local Features and Bag of Words Models 10/14/11 Local Features and Bag of Words Models Computer Vision CS 143, Brown James Hays Slides from Svetlana Lazebnik, Derek Hoiem, Antonio Torralba, David Lowe, Fei Fei Li and others Computer Engineering

More information

STATISTICS AND ANALYSIS OF SHAPE

STATISTICS AND ANALYSIS OF SHAPE Control and Cybernetics vol. 36 (2007) No. 2 Book review: STATISTICS AND ANALYSIS OF SHAPE by H. Krim, A. Yezzi, Jr., eds. There are numerous definitions of a notion of shape of an object. These definitions

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION EE 584 MACHINE VISION Binary Images Analysis Geometrical & Topological Properties Connectedness Binary Algorithms Morphology Binary Images Binary (two-valued; black/white) images gives better efficiency

More information

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I)

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Fred Park UCI icamp 2011 Outline 1. Motivation and Shape Definition 2. Shape Descriptors 3. Classification 4. Applications: Shape Matching,

More information

Shape Classification Using Regional Descriptors and Tangent Function

Shape Classification Using Regional Descriptors and Tangent Function Shape Classification Using Regional Descriptors and Tangent Function Meetal Kalantri meetalkalantri4@gmail.com Rahul Dhuture Amit Fulsunge Abstract In this paper three novel hybrid regional descriptor

More information

Lecture 8: Fitting. Tuesday, Sept 25

Lecture 8: Fitting. Tuesday, Sept 25 Lecture 8: Fitting Tuesday, Sept 25 Announcements, schedule Grad student extensions Due end of term Data sets, suggestions Reminder: Midterm Tuesday 10/9 Problem set 2 out Thursday, due 10/11 Outline Review

More information

Shape Descriptor using Polar Plot for Shape Recognition.

Shape Descriptor using Polar Plot for Shape Recognition. Shape Descriptor using Polar Plot for Shape Recognition. Brijesh Pillai ECE Graduate Student, Clemson University bpillai@clemson.edu Abstract : This paper presents my work on computing shape models that

More information

Finding 2D Shapes and the Hough Transform

Finding 2D Shapes and the Hough Transform CS 4495 Computer Vision Finding 2D Shapes and the Aaron Bobick School of Interactive Computing Administrivia Today: Modeling Lines and Finding them CS4495: Problem set 1 is still posted. Please read the

More information

Shape Context Matching For Efficient OCR

Shape Context Matching For Efficient OCR Matching For Efficient OCR May 14, 2012 Matching For Efficient OCR Table of contents 1 Motivation Background 2 What is a? Matching s Simliarity Measure 3 Matching s via Pyramid Matching Matching For Efficient

More information

Lecture 10: Image Descriptors and Representation

Lecture 10: Image Descriptors and Representation I2200: Digital Image processing Lecture 10: Image Descriptors and Representation Prof. YingLi Tian Nov. 15, 2017 Department of Electrical Engineering The City College of New York The City University of

More information

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town Recap: Smoothing with a Gaussian Computer Vision Computer Science Tripos Part II Dr Christopher Town Recall: parameter σ is the scale / width / spread of the Gaussian kernel, and controls the amount of

More information

Shape Matching. Brandon Smith and Shengnan Wang Computer Vision CS766 Fall 2007

Shape Matching. Brandon Smith and Shengnan Wang Computer Vision CS766 Fall 2007 Shape Matching Brandon Smith and Shengnan Wang Computer Vision CS766 Fall 2007 Outline Introduction and Background Uses of shape matching Kinds of shape matching Support Vector Machine (SVM) Matching with

More information

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14 Announcements Computer Vision I CSE 152 Lecture 14 Homework 3 is due May 18, 11:59 PM Reading: Chapter 15: Learning to Classify Chapter 16: Classifying Images Chapter 17: Detecting Objects in Images Given

More information

Deformable 2D Shape Matching Based on Shape Contexts and Dynamic Programming

Deformable 2D Shape Matching Based on Shape Contexts and Dynamic Programming Deformable 2D Shape Matching Based on Shape Contexts and Dynamic Programming Iasonas Oikonomidis and Antonis A. Argyros Institute of Computer Science, Forth and Computer Science Department, University

More information

Some material taken from: Yuri Boykov, Western Ontario

Some material taken from: Yuri Boykov, Western Ontario CS664 Lecture #22: Distance transforms, Hausdorff matching, flexible models Some material taken from: Yuri Boykov, Western Ontario Announcements The SIFT demo toolkit is available from http://www.evolution.com/product/oem/d

More information

CS664 Lecture #21: SIFT, object recognition, dynamic programming

CS664 Lecture #21: SIFT, object recognition, dynamic programming CS664 Lecture #21: SIFT, object recognition, dynamic programming Some material taken from: Sebastian Thrun, Stanford http://cs223b.stanford.edu/ Yuri Boykov, Western Ontario David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

More information

Rotation Invariant Image Registration using Robust Shape Matching

Rotation Invariant Image Registration using Robust Shape Matching International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 2 (2014), pp. 125-132 International Research Publication House http://www.irphouse.com Rotation Invariant

More information

Visuelle Perzeption für Mensch- Maschine Schnittstellen

Visuelle Perzeption für Mensch- Maschine Schnittstellen Visuelle Perzeption für Mensch- Maschine Schnittstellen Vorlesung, WS 2009 Prof. Dr. Rainer Stiefelhagen Dr. Edgar Seemann Institut für Anthropomatik Universität Karlsruhe (TH) http://cvhci.ira.uka.de

More information

Model-Based Human Motion Capture from Monocular Video Sequences

Model-Based Human Motion Capture from Monocular Video Sequences Model-Based Human Motion Capture from Monocular Video Sequences Jihun Park 1, Sangho Park 2, and J.K. Aggarwal 2 1 Department of Computer Engineering Hongik University Seoul, Korea jhpark@hongik.ac.kr

More information

Model-based Visual Tracking:

Model-based Visual Tracking: Technische Universität München Model-based Visual Tracking: the OpenTL framework Giorgio Panin Technische Universität München Institut für Informatik Lehrstuhl für Echtzeitsysteme und Robotik (Prof. Alois

More information

Object and Class Recognition I:

Object and Class Recognition I: Object and Class Recognition I: Object Recognition Lectures 10 Sources ICCV 2005 short courses Li Fei-Fei (UIUC), Rob Fergus (Oxford-MIT), Antonio Torralba (MIT) http://people.csail.mit.edu/torralba/iccv2005

More information

2: Image Display and Digital Images. EE547 Computer Vision: Lecture Slides. 2: Digital Images. 1. Introduction: EE547 Computer Vision

2: Image Display and Digital Images. EE547 Computer Vision: Lecture Slides. 2: Digital Images. 1. Introduction: EE547 Computer Vision EE547 Computer Vision: Lecture Slides Anthony P. Reeves November 24, 1998 Lecture 2: Image Display and Digital Images 2: Image Display and Digital Images Image Display: - True Color, Grey, Pseudo Color,

More information

CoE4TN4 Image Processing

CoE4TN4 Image Processing CoE4TN4 Image Processing Chapter 11 Image Representation & Description Image Representation & Description After an image is segmented into regions, the regions are represented and described in a form suitable

More information

TA Section 7 Problem Set 3. SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999)

TA Section 7 Problem Set 3. SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999) TA Section 7 Problem Set 3 SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999) Sam Corbett-Davies TA Section 7 02-13-2014 Distinctive Image Features from Scale-Invariant

More information

Segmentation & Clustering

Segmentation & Clustering EECS 442 Computer vision Segmentation & Clustering Segmentation in human vision K-mean clustering Mean-shift Graph-cut Reading: Chapters 14 [FP] Some slides of this lectures are courtesy of prof F. Li,

More information

Leaf Classification from Boundary Analysis

Leaf Classification from Boundary Analysis Leaf Classification from Boundary Analysis Anne Jorstad AMSC 663 Midterm Progress Report Fall 2007 Advisor: Dr. David Jacobs, Computer Science 1 Outline Background, Problem Statement Algorithm Validation

More information

Shape Matching and Object Recognition using Low Distortion Correspondences

Shape Matching and Object Recognition using Low Distortion Correspondences Shape Matching and Object Recognition using Low Distortion Correspondences Authors: Alexander C. Berg, Tamara L. Berg, Jitendra Malik Presenter: Kalyan Chandra Chintalapati Flow of the Presentation Introduction

More information

Intuitive, Localized Analysis of Shape Variability

Intuitive, Localized Analysis of Shape Variability Intuitive, Localized Analysis of Shape Variability Paul Yushkevich, Stephen M. Pizer, Sarang Joshi, and J. S. Marron Medical Image Display and Analysis Group, University of North Carolina at Chapel Hill.

More information

Digital Image Processing Fundamentals

Digital Image Processing Fundamentals Ioannis Pitas Digital Image Processing Fundamentals Chapter 7 Shape Description Answers to the Chapter Questions Thessaloniki 1998 Chapter 7: Shape description 7.1 Introduction 1. Why is invariance to

More information

Robust 2D Shape Correspondence using Geodesic Shape Context

Robust 2D Shape Correspondence using Geodesic Shape Context Robust 2D Shape Correspondence using Geodesic Shape Context Varun Jain Richard (Hao) Zhang GrUVi Lab, School of Computing Science Simon Fraser University, Burnaby, BC, Canada E-mail: vjain, haoz@cs.sfu.ca

More information

Category vs. instance recognition

Category vs. instance recognition Category vs. instance recognition Category: Find all the people Find all the buildings Often within a single image Often sliding window Instance: Is this face James? Find this specific famous building

More information

Automatic Image Alignment (feature-based)

Automatic Image Alignment (feature-based) Automatic Image Alignment (feature-based) Mike Nese with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2006 Today s lecture Feature

More information

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt)

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt) Lecture 14 Shape ch. 9, sec. 1-8, 12-14 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these slides by John Galeotti,

More information

Snakes, level sets and graphcuts. (Deformable models)

Snakes, level sets and graphcuts. (Deformable models) INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGIES BULGARIAN ACADEMY OF SCIENCE Snakes, level sets and graphcuts (Deformable models) Centro de Visión por Computador, Departament de Matemàtica Aplicada

More information

A SIFT Descriptor with Global Context

A SIFT Descriptor with Global Context A SIFT Descriptor with Global Context Eric N. Mortensen Oregon State University enm@eecs.oregonstate.edu Hongli Deng Oregon State University deng@eecs.oregonstate.edu Linda Shapiro University of Washington

More information

Instance-level recognition II.

Instance-level recognition II. Reconnaissance d objets et vision artificielle 2010 Instance-level recognition II. Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique, Ecole Normale

More information

Reeb Graphs Through Local Binary Patterns

Reeb Graphs Through Local Binary Patterns Reeb Graphs Through Local Binary Patterns Ines Janusch and Walter G. Kropatsch Pattern Recognition and Image Processing Group Institute of Computer Graphics and Algorithms Vienna University of Technology,

More information

Topological Mapping. Discrete Bayes Filter

Topological Mapping. Discrete Bayes Filter Topological Mapping Discrete Bayes Filter Vision Based Localization Given a image(s) acquired by moving camera determine the robot s location and pose? Towards localization without odometry What can be

More information

Lecture 7: Morphological Image Processing

Lecture 7: Morphological Image Processing I2200: Digital Image processing Lecture 7: Morphological Image Processing Prof. YingLi Tian Oct. 25, 2017 Department of Electrical Engineering The City College of New York The City University of New York

More information

Statistical Shape Analysis

Statistical Shape Analysis Statistical Shape Analysis I. L. Dryden and K. V. Mardia University ofleeds, UK JOHN WILEY& SONS Chichester New York Weinheim Brisbane Singapore Toronto Contents Preface Acknowledgements xv xix 1 Introduction

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT SIFT: Scale Invariant Feature Transform; transform image

More information

Shape recognition with edge-based features

Shape recognition with edge-based features Shape recognition with edge-based features K. Mikolajczyk A. Zisserman C. Schmid Dept. of Engineering Science Dept. of Engineering Science INRIA Rhône-Alpes Oxford, OX1 3PJ Oxford, OX1 3PJ 38330 Montbonnot

More information

Review for the Final

Review for the Final Review for the Final CS 635 Review (Topics Covered) Image Compression Lossless Coding Compression Huffman Interpixel RLE Lossy Quantization Discrete Cosine Transform JPEG CS 635 Review (Topics Covered)

More information

Machine vision. Summary # 6: Shape descriptors

Machine vision. Summary # 6: Shape descriptors Machine vision Summary # : Shape descriptors SHAPE DESCRIPTORS Objects in an image are a collection of pixels. In order to describe an object or distinguish between objects, we need to understand the properties

More information

Face Shape Classification Based on Region Similarity, Correlation and Fractal Dimensions

Face Shape Classification Based on Region Similarity, Correlation and Fractal Dimensions www.ijcsi.org 24 Face Shape Classification Based on Region Similarity, Correlation and Fractal Dimensions N K Bansode 1, P K Sinha 2 1 Department of Computer & IT, College of Engineering, Pune University

More information

Instance-level recognition part 2

Instance-level recognition part 2 Visual Recognition and Machine Learning Summer School Paris 2011 Instance-level recognition part 2 Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

Recognizing hand-drawn images using shape context

Recognizing hand-drawn images using shape context Recognizing hand-drawn images using shape context Gyozo Gidofalvi Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92037 gyozo@cs.ucsd.edu Abstract The objective

More information

Local Features: Detection, Description & Matching

Local Features: Detection, Description & Matching Local Features: Detection, Description & Matching Lecture 08 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr David Lowe Professor, University of British

More information

CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS

CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS B.Vanajakshi Department of Electronics & Communications Engg. Assoc.prof. Sri Viveka Institute of Technology Vijayawada, India E-mail:

More information

Segmentation and Grouping April 19 th, 2018

Segmentation and Grouping April 19 th, 2018 Segmentation and Grouping April 19 th, 2018 Yong Jae Lee UC Davis Features and filters Transforming and describing images; textures, edges 2 Grouping and fitting [fig from Shi et al] Clustering, segmentation,

More information

Object Recognition using Visual Codebook

Object Recognition using Visual Codebook Object Recognition using Visual Codebook Abstract: Object recognition is an important task in image processing and computer vision. This paper proposes shape context, color histogram and completed local

More information

Visual Object Recognition

Visual Object Recognition Visual Object Recognition -67777 Instructor: Daphna Weinshall, daphna@cs.huji.ac.il Office: Ross 211 Office hours: Sunday 12:00-13:00 1 Sources Recognizing and Learning Object Categories ICCV 2005 short

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Human pose estimation using Active Shape Models

Human pose estimation using Active Shape Models Human pose estimation using Active Shape Models Changhyuk Jang and Keechul Jung Abstract Human pose estimation can be executed using Active Shape Models. The existing techniques for applying to human-body

More information

Announcements, schedule. Lecture 8: Fitting. Weighted graph representation. Outline. Segmentation by Graph Cuts. Images as graphs

Announcements, schedule. Lecture 8: Fitting. Weighted graph representation. Outline. Segmentation by Graph Cuts. Images as graphs Announcements, schedule Lecture 8: Fitting Tuesday, Sept 25 Grad student etensions Due of term Data sets, suggestions Reminder: Midterm Tuesday 10/9 Problem set 2 out Thursday, due 10/11 Outline Review

More information

Announcements. Recognition I. Gradient Space (p,q) What is the reflectance map?

Announcements. Recognition I. Gradient Space (p,q) What is the reflectance map? Announcements I HW 3 due 12 noon, tomorrow. HW 4 to be posted soon recognition Lecture plan recognition for next two lectures, then video and motion. Introduction to Computer Vision CSE 152 Lecture 17

More information

Distribution Distance Functions

Distribution Distance Functions COMP 875 November 10, 2009 Matthew O Meara Question How similar are these? Outline Motivation Protein Score Function Object Retrieval Kernel Machines 1 Motivation Protein Score Function Object Retrieval

More information

Automatic Reconstruction of 3D Objects Using a Mobile Monoscopic Camera

Automatic Reconstruction of 3D Objects Using a Mobile Monoscopic Camera Automatic Reconstruction of 3D Objects Using a Mobile Monoscopic Camera Wolfgang Niem, Jochen Wingbermühle Universität Hannover Institut für Theoretische Nachrichtentechnik und Informationsverarbeitung

More information

Fuzzy based Multiple Dictionary Bag of Words for Image Classification

Fuzzy based Multiple Dictionary Bag of Words for Image Classification Available online at www.sciencedirect.com Procedia Engineering 38 (2012 ) 2196 2206 International Conference on Modeling Optimisation and Computing Fuzzy based Multiple Dictionary Bag of Words for Image

More information

CS231A Section 6: Problem Set 3

CS231A Section 6: Problem Set 3 CS231A Section 6: Problem Set 3 Kevin Wong Review 6 -! 1 11/09/2012 Announcements PS3 Due 2:15pm Tuesday, Nov 13 Extra Office Hours: Friday 6 8pm Huang Common Area, Basement Level. Review 6 -! 2 Topics

More information

Visuelle Perzeption für Mensch- Maschine Schnittstellen

Visuelle Perzeption für Mensch- Maschine Schnittstellen Visuelle Perzeption für Mensch- Maschine Schnittstellen Vorlesung, WS 2009 Prof. Dr. Rainer Stiefelhagen Dr. Edgar Seemann Institut für Anthropomatik Universität Karlsruhe (TH) http://cvhci.ira.uka.de

More information

EECS490: Digital Image Processing. Lecture #23

EECS490: Digital Image Processing. Lecture #23 Lecture #23 Motion segmentation & motion tracking Boundary tracking Chain codes Minimum perimeter polygons Signatures Motion Segmentation P k Accumulative Difference Image Positive ADI Negative ADI (ADI)

More information

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37 Extended Contents List Preface... xi About the authors... xvii CHAPTER 1 Introduction 1 1.1 Overview... 1 1.2 Human and Computer Vision... 2 1.3 The Human Vision System... 4 1.3.1 The Eye... 5 1.3.2 The

More information

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit Augmented Reality VU Computer Vision 3D Registration (2) Prof. Vincent Lepetit Feature Point-Based 3D Tracking Feature Points for 3D Tracking Much less ambiguous than edges; Point-to-point reprojection

More information

Image Segmentation Using Wavelets

Image Segmentation Using Wavelets International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 Image Segmentation Using Wavelets Ratinder Kaur, V. K. Banga, Vipul Sharma Abstract-In our proposed technique

More information

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface , 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision

More information

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC COS 429: COMPUTER VISON Segmentation human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC Reading: Chapters 14, 15 Some of the slides are credited to:

More information

An evaluation of Nearest Neighbor Images to Classes versus Nearest Neighbor Images to Images Instructed by Professor David Jacobs Phil Huynh

An evaluation of Nearest Neighbor Images to Classes versus Nearest Neighbor Images to Images Instructed by Professor David Jacobs Phil Huynh An evaluation of Nearest Neighbor Images to Classes versus Nearest Neighbor Images to Images Instructed by Professor David Jacobs Phil Huynh Abstract In 2008, Boiman et al. announced in their work "In

More information

Prototype-based Intraclass Pose Recognition of Partial 3D Scans

Prototype-based Intraclass Pose Recognition of Partial 3D Scans Prototype-based Intraclass Pose Recognition of Partial 3D Scans Jacob MONTIEL Hamid LAGA Masayuki NAKAJIMA Graduate School of Information Science and Engineering, Tokyo Institute of Technology Global Edge

More information

Open-Curve Shape Correspondence Without Endpoint Correspondence

Open-Curve Shape Correspondence Without Endpoint Correspondence Open-Curve Shape Correspondence Without Endpoint Correspondence Theodor Richardson and Song Wang Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA richa268@cse.sc.edu,

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Shape Matching for Foliage Database Retrieval

Shape Matching for Foliage Database Retrieval >A book chapter template < 1 Shape Matching for Foliage Database Retrieval Haibin Ling 1 and David W. Jacobs 1 Dept. of Computer and Information Sciences, Information Science and Technology Center, Temple

More information

Local Features Tutorial: Nov. 8, 04

Local Features Tutorial: Nov. 8, 04 Local Features Tutorial: Nov. 8, 04 Local Features Tutorial References: Matlab SIFT tutorial (from course webpage) Lowe, David G. Distinctive Image Features from Scale Invariant Features, International

More information

Combining Appearance and Topology for Wide

Combining Appearance and Topology for Wide Combining Appearance and Topology for Wide Baseline Matching Dennis Tell and Stefan Carlsson Presented by: Josh Wills Image Point Correspondences Critical foundation for many vision applications 3-D reconstruction,

More information

Shape Matching and Object Recognition Using Dissimilarity Measures with Hungarian Algorithm

Shape Matching and Object Recognition Using Dissimilarity Measures with Hungarian Algorithm Shape Matching and Object Recognition Using Dissimilarity Measures with Hungarian Algorithm 1 D. Chitra, T. Manigandan, 3 N. Devarajan 1 Government College of Technology Coimbatore, TamilNadu, India School

More information

Lecture 4, Part 2: The SKS Algorithm

Lecture 4, Part 2: The SKS Algorithm Lecture 4, Part 2: The SKS Algorithm Wesley Snyder, Ph.D. UWA, CSSE NCSU, ECE Lecture 4, Part 2: The SKS Algorithm p. 1/2 The SKS Algorithm 2-d shape recognition algorithm which uses the philosophy of

More information

Lecture 6: Multimedia Information Retrieval Dr. Jian Zhang

Lecture 6: Multimedia Information Retrieval Dr. Jian Zhang Lecture 6: Multimedia Information Retrieval Dr. Jian Zhang NICTA & CSE UNSW COMP9314 Advanced Database S1 2007 jzhang@cse.unsw.edu.au Reference Papers and Resources Papers: Colour spaces-perceptual, historical

More information

Shape representation by skeletonization. Shape. Shape. modular machine vision system. Feature extraction shape representation. Shape representation

Shape representation by skeletonization. Shape. Shape. modular machine vision system. Feature extraction shape representation. Shape representation Shape representation by skeletonization Kálmán Palágyi Shape It is a fundamental concept in computer vision. It can be regarded as the basis for high-level image processing stages concentrating on scene

More information

Chamfer matching. More on template matching. Distance transform example. Computing the distance transform. Shape based matching.

Chamfer matching. More on template matching. Distance transform example. Computing the distance transform. Shape based matching. Chamfer matching Given: binary image, B, of edge and local feature locations binary edge template, T, of shape we want to match More on template matching Shape based matching Let D be an array in registration

More information

Chapter 11 Representation & Description

Chapter 11 Representation & Description Chain Codes Chain codes are used to represent a boundary by a connected sequence of straight-line segments of specified length and direction. The direction of each segment is coded by using a numbering

More information

Feature description. IE PŁ M. Strzelecki, P. Strumiłło

Feature description. IE PŁ M. Strzelecki, P. Strumiłło Feature description After an image has been segmented the detected region needs to be described (represented) in a form more suitable for further processing. Representation of an image region can be carried

More information

Reinforcement Matching Using Region Context

Reinforcement Matching Using Region Context Reinforcement Matching Using Region Context Hongli Deng 1 Eric N. Mortensen 1 Linda Shapiro 2 Thomas G. Dietterich 1 1 Electrical Engineering and Computer Science 2 Computer Science and Engineering Oregon

More information

CS 231A Computer Vision (Winter 2014) Problem Set 3

CS 231A Computer Vision (Winter 2014) Problem Set 3 CS 231A Computer Vision (Winter 2014) Problem Set 3 Due: Feb. 18 th, 2015 (11:59pm) 1 Single Object Recognition Via SIFT (45 points) In his 2004 SIFT paper, David Lowe demonstrates impressive object recognition

More information

ANIMATING ANIMAL MOTION

ANIMATING ANIMAL MOTION ANIMATING ANIMAL MOTION FROM STILL Xuemiao Xu, Liang Wan, Xiaopei Liu, Tien-Tsin Wong, Liansheng Wnag, Chi-Sing Leung (presented by Kam, Hyeong Ryeol) CONTENTS 0 Abstract 1 Introduction 2 Related Work

More information

Motion Estimation and Optical Flow Tracking

Motion Estimation and Optical Flow Tracking Image Matching Image Retrieval Object Recognition Motion Estimation and Optical Flow Tracking Example: Mosiacing (Panorama) M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 Example 3D Reconstruction

More information

Robot vision review. Martin Jagersand

Robot vision review. Martin Jagersand Robot vision review Martin Jagersand What is Computer Vision? Computer Graphics Three Related fields Image Processing: Changes 2D images into other 2D images Computer Graphics: Takes 3D models, renders

More information

Announcements. Computer Vision I. Motion Field Equation. Revisiting the small motion assumption. Visual Tracking. CSE252A Lecture 19.

Announcements. Computer Vision I. Motion Field Equation. Revisiting the small motion assumption. Visual Tracking. CSE252A Lecture 19. Visual Tracking CSE252A Lecture 19 Hw 4 assigned Announcements No class on Thursday 12/6 Extra class on Tuesday 12/4 at 6:30PM in WLH Room 2112 Motion Field Equation Measurements I x = I x, T: Components

More information