Master s Thesis: Real-Time Object Shape Perception via Force/Torque Sensor

Size: px
Start display at page:

Download "Master s Thesis: Real-Time Object Shape Perception via Force/Torque Sensor"

Transcription

1 S. Rau TAMS-Oberseminar 1 / 25 MIN-Fakultät Fachbereich Informatik Master s Thesis: Real-Time Object Shape Perception via Force/Torque Sensor Current Status Stephan Rau Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik Technische Aspekte Multimodaler Systeme

2 S. Rau TAMS-Oberseminar 2 / 25 Table of Contents 1. Motivation Personal Interest Explore Environment Goal 2. Setup Hardware setup Tools 3. Heuristic 4. Approaches

3 Personal Interest... Motivation Setup Heuristic Approaches...raised by the TAMS Masterproject Intelligent Robotics... and IROS S. Rau TAMS-Oberseminar 3 / 25

4 S. Rau TAMS-Oberseminar 4 / 25 Explore Environment Importance of grasping objects Identifying object before grasping Good exploration yields good manipulation Methods: Vision,..., haptic exploration Haptic exploration is suitable in exploration scenarios with low visibility conditions as underwater, in foggy environments, with bad lighting conditions.

5 S. Rau TAMS-Oberseminar 5 / 25 Goal Model the shape of objects with force and torque sensor data Generate 3D model later used for: collision planning, grasping/manipulation, deburring...

6 S. Rau TAMS-Oberseminar 6 / 25 Hardware Setup - Mitsubishi PA-10 6-DOF - Sunrise M3207 F/T-Sensor - Drill chuck - Sphere fixed at/as the tip

7 S. Rau TAMS-Oberseminar 7 / 25 Tools ROS Simplifications for programming with robots Extensive use of tf package Reflexxes Motion Libraries Force and torque sensor readings OctoMap FK/IK solver for the PA10 provided by Norman Hendrich PA10_reflexxes ROS package provided by Norman Hendrich

8 Setup OctoMap 3D mapping framework based on octrees OctoMap library implements 3D occupancy grid mapping approach RViz display plugins octomap.github.io [HWB + 13] S. Rau TAMS-Oberseminar 8 / 25

9 S. Rau TAMS-Oberseminar 9 / 25 Setup Reflexxes Motion Libraries Real time (online) motion control New motions are calculated within one low-level control cycle (typically within one millisecond or less). [Krö11]

10 General Heuristic The end effector moves along x-axis and reacts in z-axis direction when force is encountered. y x z z x S. Rau TAMS-Oberseminar 10 / 25 x

11 S. Rau TAMS-Oberseminar 11 / 25 Approach 1 z x

12 S. Rau TAMS-Oberseminar 12 / 25 Approach 1

13 S. Rau TAMS-Oberseminar 13 / 25 Approach 2 z x 4cm

14 S. Rau TAMS-Oberseminar 14 / 25 Approach 2

15 S. Rau TAMS-Oberseminar 15 / 25 Approach 3 z x 4cm

16 S. Rau TAMS-Oberseminar 16 / 25 Approach 3

17 S. Rau TAMS-Oberseminar 17 / 25 Problems with Approaches 1-3 Risk of unwanted collision between object and PA10 Static >4cm parameter Slow execution of change in orientation The risk of collision between object and a link of a robotic arm without force sensitivity hardly preventable. New approach: Make >4cm vanish Aim for smooth movement execution along object

18 S. Rau TAMS-Oberseminar 18 / 25 Approach 4 - End effector link orientation is -F - Tip of robotic arm remains at contact location F F y F F x The rotation of the appropriate joint needs to be calculated.

19 S. Rau TAMS-Oberseminar 19 / 25 Approach 4 Put sphere as new tip Set frame in center of sphere Same orientation as last joint frame -> Z-axis points in same direction

20 S. Rau TAMS-Oberseminar 20 / 25 Approach 4 Procedure to calculate the rotation to make Z-axis point in -F direction: 1. Find acting point on sphere 2. Find rotation quaternion for appropriate joint 1.) x Fx/norm(F ) P = y = r Fy/norm(F ) z Fz/norm(F ) r = Radius of sphere F = Force vector acting on sphere P y F z

21 S. Rau TAMS-Oberseminar 21 / 25 Approach 4 2.) Find rotation quaternion for appropriate joint: 1. Rotation axis v = a b 2. Rotation angle θ = acos(norm(a) norm(b)) 3. Rotation matrix: Rodriguez rotation formula R = I + (sin θ)k + (1 cos θ)k 2 4. Extract quaternion from R a = (0, 0, 1) b = acting point on sphere K = cross-product-matrix of v I = 3x3 identity matrix 2 1 F

22 S. Rau TAMS-Oberseminar 22 / 25 Approach 4

23 S. Rau TAMS-Oberseminar 23 / 25 Approach 4 Heuristic to move along Object on y-axis: Force normal to tangent Use tangent in desired direction F y T y F F x T T x

24 S. Rau TAMS-Oberseminar 24 / 25 Approach 4 z 3 2 y 4 1 in -y direction: 1. : 2. : 3. : 4. : in y direction: 4. : 3. : 2. : 1. :

25 S. Rau TAMS-Oberseminar 25 / 25 References [HWB + 13] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard. OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, Software available at [Krö11] Torsten Kröger. Opening the door to new sensor-based robot applications the reflexxes motion libraries. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 1 4. IEEE, 2011.

Introduction to Robotics

Introduction to Robotics Jianwei Zhang zhang@informatik.uni-hamburg.de Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 05. July 2013 J. Zhang 1 Task-level

More information

Humanoid Robotics. Inverse Kinematics and Whole-Body Motion Planning. Maren Bennewitz

Humanoid Robotics. Inverse Kinematics and Whole-Body Motion Planning. Maren Bennewitz Humanoid Robotics Inverse Kinematics and Whole-Body Motion Planning Maren Bennewitz 1 Motivation Plan a sequence of configurations (vector of joint angle values) that let the robot move from its current

More information

Humanoid Robotics. Inverse Kinematics and Whole-Body Motion Planning. Maren Bennewitz

Humanoid Robotics. Inverse Kinematics and Whole-Body Motion Planning. Maren Bennewitz Humanoid Robotics Inverse Kinematics and Whole-Body Motion Planning Maren Bennewitz 1 Motivation Planning for object manipulation Whole-body motion to reach a desired goal configuration Generate a sequence

More information

Semantic Mapping and Reasoning Approach for Mobile Robotics

Semantic Mapping and Reasoning Approach for Mobile Robotics Semantic Mapping and Reasoning Approach for Mobile Robotics Caner GUNEY, Serdar Bora SAYIN, Murat KENDİR, Turkey Key words: Semantic mapping, 3D mapping, probabilistic, robotic surveying, mine surveying

More information

3D Collision Avoidance for Navigation in Unstructured Environments

3D Collision Avoidance for Navigation in Unstructured Environments 3D Collision Avoidance for Navigation in Unstructured Environments Armin Hornung Humanoid Robots Lab, University of Freiburg May 5, 2011 Motivation Personal robots are to operate in arbitrary complex environments:

More information

Introduction to Mobile Robotics Multi-Robot Exploration

Introduction to Mobile Robotics Multi-Robot Exploration Introduction to Mobile Robotics Multi-Robot Exploration Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras Exploration The approaches seen so far are purely passive. Given an unknown environment,

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Probabilistic Motion and Sensor Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Sensors for Mobile

More information

Robotics kinematics and Dynamics

Robotics kinematics and Dynamics Robotics kinematics and Dynamics C. Sivakumar Assistant Professor Department of Mechanical Engineering BSA Crescent Institute of Science and Technology 1 Robot kinematics KINEMATICS the analytical study

More information

Object Reconstruction

Object Reconstruction B. Scholz Object Reconstruction 1 / 39 MIN-Fakultät Fachbereich Informatik Object Reconstruction Benjamin Scholz Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich

More information

Search-based Planning Library SBPL. Maxim Likhachev Robotics Institute Carnegie Mellon University

Search-based Planning Library SBPL. Maxim Likhachev Robotics Institute Carnegie Mellon University Search-based Planning Library SBPL Maxim Likhachev Robotics Institute Carnegie Mellon University Outline Overview Few SBPL-based planners in details - 3D (x,y,θ) lattice-based planning for navigation (available

More information

Introduction to Robotics

Introduction to Robotics Jianwei Zhang zhang@informatik.uni-hamburg.de Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 04. April 2014 J. Zhang 1 General Information

More information

Three-dimensional Underwater Environment Reconstruction with Graph Optimization Using Acoustic Camera

Three-dimensional Underwater Environment Reconstruction with Graph Optimization Using Acoustic Camera Three-dimensional Underwater Environment Reconstruction with Graph Optimization Using Acoustic Camera Yusheng Wang 1, Yonghoon Ji 2, Hanwool Woo 1, Yusuke Tamura 1, Atsushi Yamashita 1, and Hajime Asama

More information

Autonomous Navigation of Nao using Kinect CS365 : Project Report

Autonomous Navigation of Nao using Kinect CS365 : Project Report Autonomous Navigation of Nao using Kinect CS365 : Project Report Samyak Daga Harshad Sawhney 11633 11297 samyakd@iitk.ac.in harshads@iitk.ac.in Dept. of CSE Dept. of CSE Indian Institute of Technology,

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

AN INCREMENTAL SLAM ALGORITHM FOR INDOOR AUTONOMOUS NAVIGATION

AN INCREMENTAL SLAM ALGORITHM FOR INDOOR AUTONOMOUS NAVIGATION 20th IMEKO TC4 International Symposium and 18th International Workshop on ADC Modelling and Testing Research on Electric and Electronic Measurement for the Economic Upturn Benevento, Italy, September 15-17,

More information

A 3D Representation of Obstacles in the Robot s Reachable Area Considering Occlusions

A 3D Representation of Obstacles in the Robot s Reachable Area Considering Occlusions A 3D Representation of Obstacles in the Robot s Reachable Area Considering Occlusions Angelika Fetzner, Christian Frese, Christian Frey Fraunhofer Institute of Optronics, System Technologies and Image

More information

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions.

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Path and Trajectory specification Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Specifying the desired motion to achieve a specified goal is often a

More information

Trajectory Optimization

Trajectory Optimization Trajectory Optimization Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Recap We heard about RRT*, a sampling-based planning in high-dimensional cost

More information

Multi Sensor Fusion in Robot Assembly Using Particle Filters

Multi Sensor Fusion in Robot Assembly Using Particle Filters Multi Sensor Fusion in Robot Assembly Using Particle Filters Ulrike Thomas, Sven Molkenstruck, René Iser, and Friedrich M. Wahl Technical University of Braunschweig Germany - 1/15 - Contents Introduction

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.1: 3D Geometry Jürgen Sturm Technische Universität München Points in 3D 3D point Augmented vector Homogeneous

More information

Introduction to Mobile Robotics Path Planning and Collision Avoidance

Introduction to Mobile Robotics Path Planning and Collision Avoidance Introduction to Mobile Robotics Path Planning and Collision Avoidance Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras 1 Motion Planning Latombe (1991): eminently necessary

More information

Reactive Planning on a Collaborative Robot for Industrial Applications

Reactive Planning on a Collaborative Robot for Industrial Applications Reactive Planning on a Collaborative Robot for Industrial Applications Gautier Dumonteil, Guido Manfredi, Michel Devy, Ambroise Confetti, Daniel Sidobre To cite this version: Gautier Dumonteil, Guido Manfredi,

More information

Navigation in Three-Dimensional Cluttered Environments for Mobile Manipulation

Navigation in Three-Dimensional Cluttered Environments for Mobile Manipulation Navigation in Three-Dimensional Cluttered Environments for Mobile Manipulation Armin Hornung Mike Phillips E. Gil Jones Maren Bennewitz Maxim Likhachev Sachin Chitta Abstract Collision-free navigation

More information

Design and Optimization of the Thigh for an Exoskeleton based on Parallel Mechanism

Design and Optimization of the Thigh for an Exoskeleton based on Parallel Mechanism Design and Optimization of the Thigh for an Exoskeleton based on Parallel Mechanism Konstantin Kondak, Bhaskar Dasgupta, Günter Hommel Technische Universität Berlin, Institut für Technische Informatik

More information

Lab 1 RVIZ and PYTHON with Simple Robot Manipulator Model

Lab 1 RVIZ and PYTHON with Simple Robot Manipulator Model Lab 1 RVIZ and PYTHON with Simple Robot Manipulator Model In this Lab we will learn how to use the RVIZ Robot Simulator and convert Quaternions to/from axis angle representation. We will use the Python

More information

Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots

Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots 15-887 Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots Maxim Likhachev Robotics Institute Carnegie Mellon University Two Examples Planning

More information

Grasping Known Objects with Aldebaran Nao

Grasping Known Objects with Aldebaran Nao CS365 Project Report Grasping Known Objects with Aldebaran Nao By: Ashu Gupta( ashug@iitk.ac.in) Mohd. Dawood( mdawood@iitk.ac.in) Department of Computer Science and Engineering IIT Kanpur Mentor: Prof.

More information

Mobile robots control architectures

Mobile robots control architectures 1 Mobile robots control architectures Dimitri Popov Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Department Informatik Integriertes Seminar Intelligent Robotics 10 1.

More information

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector Inverse Kinematics Given a desired position (p) & orientation (R) of the end-effector q ( q, q, q ) 1 2 n Find the joint variables which can bring the robot the desired configuration z y x 1 The Inverse

More information

Building Kinematic and Dynamic Models of Articulated Objects with Multi-Modal Interactive Perception

Building Kinematic and Dynamic Models of Articulated Objects with Multi-Modal Interactive Perception Building Kinematic and Dynamic Models of Articulated Objects with Multi-Modal Interactive Perception Roberto Martı n-martı n and Oliver Brock Robotics and Biology Laboratory Technische Universita t Berlin,

More information

IFAS Citrus Initiative Annual Research and Extension Progress Report Mechanical Harvesting and Abscission

IFAS Citrus Initiative Annual Research and Extension Progress Report Mechanical Harvesting and Abscission IFAS Citrus Initiative Annual Research and Extension Progress Report 2006-07 Mechanical Harvesting and Abscission Investigator: Dr. Tom Burks Priority Area: Robotic Harvesting Purpose Statement: The scope

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Discrete Filters and Particle Filters Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Probabilistic

More information

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný Serial Manipulator Statics Robotics Serial Manipulator Statics Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

EEE 187: Robotics Summary 2

EEE 187: Robotics Summary 2 1 EEE 187: Robotics Summary 2 09/05/2017 Robotic system components A robotic system has three major components: Actuators: the muscles of the robot Sensors: provide information about the environment and

More information

Force control of redundant industrial robots with an approach for singularity avoidance using extended task space formulation (ETSF)

Force control of redundant industrial robots with an approach for singularity avoidance using extended task space formulation (ETSF) Force control of redundant industrial robots with an approach for singularity avoidance using extended task space formulation (ETSF) MSc Audun Rønning Sanderud*, MSc Fredrik Reme**, Prof. Trygve Thomessen***

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics Ph.D. Antonio Marin-Hernandez Artificial Intelligence Department Universidad Veracruzana Sebastian Camacho # 5 Xalapa, Veracruz Robotics Action and Perception LAAS-CNRS 7, av du

More information

Navigation in Three-Dimensional Cluttered Environments for Mobile Manipulation

Navigation in Three-Dimensional Cluttered Environments for Mobile Manipulation Navigation in Three-Dimensional Cluttered Environments for Mobile Manipulation Armin Hornung Mike Phillips E. Gil Jones Maren Bennewitz Maxim Likhachev Sachin Chitta Abstract Navigation in cluttered environments

More information

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena CS 4758/6758: Robot Learning Spring 2010: Lecture 9 Why planning and control? Video Typical Architecture Planning 0.1 Hz Control 50 Hz Does it apply to all robots and all scenarios? Previous Lecture: Potential

More information

CS4610/CS5335: Homework 1

CS4610/CS5335: Homework 1 CS4610/CS5335: Homework 1 Out: 1/27/16, Due: 2/5/16 Please turn in this homework to Rob Platt via email on the due date. HW Q1 and Q2 should be submitted as a PDF. HW PA Q1-Q5 should be submitted in the

More information

Learning Object Models for Manipulation. Tucker Hermans

Learning Object Models for Manipulation. Tucker Hermans Learning Object Models for Manipulation Pushing: An Example Task Dif7icult to model dynamics Necessary object properties not directly observable Visual feedback control appears promising Learning Object

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Clustering Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann Clustering (1) Common technique for statistical data analysis (machine learning,

More information

Hierarchical Gaussian Processes for Robust and Accurate Map Building

Hierarchical Gaussian Processes for Robust and Accurate Map Building Hierarchical Gaussian Processes for Robust and Accurate Map Building Soohwan Kim, Jonghyuk Kim The Australian National University, Australia {soohwan.kim, jonghyuk.kim}@anu.edu.au Abstract This paper proposes

More information

Robot programming by demonstration

Robot programming by demonstration Robot programming by demonstration Denasi, A.; Verhaar, B.T.; Kostic, D.; Bruijnen, D.J.H.; Nijmeijer, H.; Warmerdam, T.P.H. Published in: Proceedings of the 1th Philips Conference on Applications of Control

More information

Robotics Tasks. CS 188: Artificial Intelligence Spring Manipulator Robots. Mobile Robots. Degrees of Freedom. Sensors and Effectors

Robotics Tasks. CS 188: Artificial Intelligence Spring Manipulator Robots. Mobile Robots. Degrees of Freedom. Sensors and Effectors CS 188: Artificial Intelligence Spring 2006 Lecture 5: Robot Motion Planning 1/31/2006 Dan Klein UC Berkeley Many slides from either Stuart Russell or Andrew Moore Motion planning (today) How to move from

More information

ROS-Industrial Basic Developer s Training Class. Southwest Research Institute

ROS-Industrial Basic Developer s Training Class. Southwest Research Institute ROS-Industrial Basic Developer s Training Class Southwest Research Institute 1 Session 3: Motion Control of Manipulators Southwest Research Institute 2 URDF: Unified Robot Description Format 3 URDF: Overview

More information

Robot Programming with Lisp

Robot Programming with Lisp 7. Coordinate Transformations, TF, ActionLib Institute for Artificial University of Bremen Outline Coordinate Transformations TF ActionLib 2 Outline Coordinate Transformations TF ActionLib 3 Poses in 3D

More information

Non-holonomic Planning

Non-holonomic Planning Non-holonomic Planning Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Recap We have learned about RRTs. q new q init q near q rand But the standard

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Introduction to Mobile Robotics SLAM Grid-based FastSLAM Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 The SLAM Problem SLAM stands for simultaneous localization

More information

Humanoid Manipulation

Humanoid Manipulation Humanoid Manipulation Tamim Asfour Institute for Anthropomatics, Computer Science Department, Humanoids and Intelligence Systems Lab (Prof. Dillmann) wwwiaim.ira.uka.de www.sfb588.uni-karlsruhe.de KIT

More information

How to cope with a closed industrial robot control: a practical implementation for a 6-dof articulated robot

How to cope with a closed industrial robot control: a practical implementation for a 6-dof articulated robot How to cope with a closed industrial robot control: a practical implementation for a 6-dof articulated robot Basilio Bona Tommaso Calvelli Dipartimento di Automatica e Informatica Politecnico di Torino

More information

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object.

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object. CENG 732 Computer Animation Spring 2006-2007 Week 4 Shape Deformation Animating Articulated Structures: Forward Kinematics/Inverse Kinematics This week Shape Deformation FFD: Free Form Deformation Hierarchical

More information

Using Algebraic Geometry to Study the Motions of a Robotic Arm

Using Algebraic Geometry to Study the Motions of a Robotic Arm Using Algebraic Geometry to Study the Motions of a Robotic Arm Addison T. Grant January 28, 206 Abstract In this study we summarize selected sections of David Cox, John Little, and Donal O Shea s Ideals,

More information

Assignment 3: Robot Design and Dynamics ME 328: Medical Robotics Stanford University w Autumn 2016

Assignment 3: Robot Design and Dynamics ME 328: Medical Robotics Stanford University w Autumn 2016 Assignment 3: Robot Design and Dynamics ME 328: Medical Robotics Stanford University w Autumn 2016 Due to submission box outside Okamura s office by :00 pm on Monday, October 2 (revised) Note: You can

More information

Computer Aided Engineering Applications

Computer Aided Engineering Applications Computer Aided Engineering Applications 1A.Geometric Modeling 1.1 Geometric modelling methods 1.2 Data representation 1.3 Modeling functions 1.4 Structure of a CAD system Engi 6928 - Fall 2014 1.Geometric

More information

View Planning for 3D Object Reconstruction with a Mobile Manipulator Robot

View Planning for 3D Object Reconstruction with a Mobile Manipulator Robot View Planning for 3D Object Reconstruction with a Mobile Manipulator Robot J. Irving Vasquez-Gomez, L. Enrique Sucar, Rafael Murrieta-Cid National Institute for Astrophysics, Optics and Electronics (INAOE),

More information

A Constrained Attitude Control Module for Small Satellites

A Constrained Attitude Control Module for Small Satellites A Constrained Attitude Control Module for Small Satellites Henri Kjellberg and E. Glenn Lightsey The University of Texas at Austin Small Satellite Conference Logan, Utah August 14, 2012 Motivation for

More information

Humanoid Robots Exercise Sheet 9 - Inverse reachability maps (IRM) and statistical testing

Humanoid Robots Exercise Sheet 9 - Inverse reachability maps (IRM) and statistical testing Prof. Dr. Maren Bennewitz M.Sc. Stefan Oßwald M.Sc. AbdElMoniem Bayoumi Bonn, 2 July 2015 Humanoid Robots Exercise Sheet 9 - Inverse reachability maps (IRM) and statistical testing Exercise 17 In this

More information

Efficient Surface and Feature Estimation in RGBD

Efficient Surface and Feature Estimation in RGBD Efficient Surface and Feature Estimation in RGBD Zoltan-Csaba Marton, Dejan Pangercic, Michael Beetz Intelligent Autonomous Systems Group Technische Universität München RGB-D Workshop on 3D Perception

More information

Introduction To Robotics (Kinematics, Dynamics, and Design)

Introduction To Robotics (Kinematics, Dynamics, and Design) Introduction To Robotics (Kinematics, Dynamics, and Design) SESSION # 5: Concepts & Defenitions Ali Meghdari, Professor School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567

More information

ROBOTICS (5 cfu) 09/02/2016. Last and first name Matricola Graduating

ROBOTICS (5 cfu) 09/02/2016. Last and first name Matricola Graduating ROBOTICS (5 cfu) 09/02/2016 Last and first name Matricola Graduating PART 1 - QUIZ (8 marks) 1. For a 3x3 matrix to be a rotation matrix, it should hold - each row vector has module 1 T F - the product

More information

Real-Time Navigation in 3D Environments Based on Depth Camera Data

Real-Time Navigation in 3D Environments Based on Depth Camera Data Real-Time Navigation in 3D Environments Based on Depth Camera Data Daniel Maier Armin Hornung Maren Bennewitz Abstract In this paper, we present an integrated approach for robot localization, obstacle

More information

Outline of today s lecture. Proseminar Roboter und Aktivmedien Mobile Service Robot TASER. Outline of today s lecture.

Outline of today s lecture. Proseminar Roboter und Aktivmedien Mobile Service Robot TASER. Outline of today s lecture. Proseminar Roboter und Aktivmedien Mobile Service Robot TASER Lecturer Lecturer Houxiang Houxiang Zhang Zhang TAMS, TAMS, Department Department of of Informatics Informatics University University of of

More information

Intern Presentation:

Intern Presentation: : Gripper Stereo and Assisted Teleoperation Stanford University December 13, 2010 Outline 1. Introduction 2. Hardware 3. Research 4. Packages 5. Conclusion Introduction Hardware Research Packages Conclusion

More information

Methods for Collision-Free Arm Teleoperation in Clutter Using Constraints from 3D Sensor Data

Methods for Collision-Free Arm Teleoperation in Clutter Using Constraints from 3D Sensor Data 213 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids). October 15-17, 213. Atlanta, GA Methods for Collision-Free Arm Teleoperation in Clutter Using Constraints from 3D Sensor Data

More information

Dynamics Analysis for a 3-PRS Spatial Parallel Manipulator-Wearable Haptic Thimble

Dynamics Analysis for a 3-PRS Spatial Parallel Manipulator-Wearable Haptic Thimble Dynamics Analysis for a 3-PRS Spatial Parallel Manipulator-Wearable Haptic Thimble Masoud Moeini, University of Hamburg, Oct 216 [Wearable Haptic Thimble,A Developing Guide and Tutorial,Francesco Chinello]

More information

Theory of Robotics and Mechatronics

Theory of Robotics and Mechatronics Theory of Robotics and Mechatronics Final Exam 19.12.2016 Question: 1 2 3 Total Points: 18 32 10 60 Score: Name: Legi-Nr: Department: Semester: Duration: 120 min 1 A4-sheet (double sided) of notes allowed

More information

Spatial R-C-C-R Mechanism for a Single DOF Gripper

Spatial R-C-C-R Mechanism for a Single DOF Gripper NaCoMM-2009-ASMRL28 Spatial R-C-C-R Mechanism for a Single DOF Gripper Rajeev Lochana C.G * Mechanical Engineering Department Indian Institute of Technology Delhi, New Delhi, India * Email: rajeev@ar-cad.com

More information

Approaches to Probabilistic Model Learning for Mobile Manipulation Robots

Approaches to Probabilistic Model Learning for Mobile Manipulation Robots Approaches to Probabilistic Model Learning for Mobile Manipulation Robots Jürgen Sturm University of Freiburg (now at Technical University of Munich) PhD Supervisor: Wolfram Burgard Motivation What could

More information

Robust Vision-Based Detection and Grasping Object for Manipulator using SIFT Keypoint Detector

Robust Vision-Based Detection and Grasping Object for Manipulator using SIFT Keypoint Detector Proceedings of the 2014 International Conference on Advanced Mechatronic Systems, Kumamoto, Japan, August 10-12, 2014 Robust Vision-Based Detection and Grasping Object for Manipulator using SIFT Keypoint

More information

Introduction to Mobile Robotics SLAM Landmark-based FastSLAM

Introduction to Mobile Robotics SLAM Landmark-based FastSLAM Introduction to Mobile Robotics SLAM Landmark-based FastSLAM Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Partial slide courtesy of Mike Montemerlo 1 The SLAM Problem

More information

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics CS 775: Advanced Computer Graphics Lecture 3 : Kinematics Traditional Cell Animation, hand drawn, 2D Lead Animator for keyframes http://animation.about.com/od/flashanimationtutorials/ss/flash31detanim2.htm

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2011-12 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Advanced Robotic Manipulation Handout CS327A (Spring 2017) Problem Set #4 Due Thurs, May 26 th Guidelines: This homework has both problem-solving and programming components. So please start early. In problems

More information

Generating and Learning from 3D Models of Objects through Interactions. by Kiana Alcala, Kathryn Baldauf, Aylish Wrench

Generating and Learning from 3D Models of Objects through Interactions. by Kiana Alcala, Kathryn Baldauf, Aylish Wrench Generating and Learning from 3D Models of Objects through Interactions by Kiana Alcala, Kathryn Baldauf, Aylish Wrench Abstract For our project, we plan to implement code on the robotic arm that will allow

More information

Path Planning Using 3D Grid Representation in Complex Environment

Path Planning Using 3D Grid Representation in Complex Environment Journal of Computational Information Systems 9: 18 (2013) 1 8 Available at http://www.jofcis.com Path Planning Using 3D Grid Representation in Complex Environment Biao ZHANG 1,, Masaru ADACHI 2, Qixin

More information

Local Search Methods. CS 188: Artificial Intelligence Fall Announcements. Hill Climbing. Hill Climbing Diagram. Today

Local Search Methods. CS 188: Artificial Intelligence Fall Announcements. Hill Climbing. Hill Climbing Diagram. Today CS 188: Artificial Intelligence Fall 2006 Lecture 5: Robot Motion Planning 9/14/2006 Local Search Methods Queue-based algorithms keep fallback options (backtracking) Local search: improve what you have

More information

Ch. 6: Trajectory Generation

Ch. 6: Trajectory Generation 6.1 Introduction Ch. 6: Trajectory Generation move the robot from Ti to Tf specify the path points initial + via + final points spatial + temporal constraints smooth motion; continuous function and its

More information

Sub-optimal Heuristic Search and its Application to Planning for Manipulation

Sub-optimal Heuristic Search and its Application to Planning for Manipulation Sub-optimal Heuristic Search and its Application to Planning for Manipulation Mike Phillips Slides adapted from Planning for Mobile Manipulation What planning tasks are there? robotic bartender demo at

More information

Algorithmic Robotics and Motion Planning

Algorithmic Robotics and Motion Planning Algorithmic Robotics and Motion Planning Spring 2018 Introduction Dan Halperin School of Computer Science Tel Aviv University Dolce & Gabbana 2018 handbag collection Today s lesson basic terminology fundamental

More information

3D Audio Perception System for Humanoid Robots

3D Audio Perception System for Humanoid Robots 3D Audio Perception System for Humanoid Robots Norbert Schmitz, Carsten Spranger, Karsten Berns University of Kaiserslautern Robotics Research Laboratory Kaiserslautern D-67655 {nschmitz,berns@informatik.uni-kl.de

More information

Introduction to Mobile Robotics Iterative Closest Point Algorithm. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras

Introduction to Mobile Robotics Iterative Closest Point Algorithm. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras Introduction to Mobile Robotics Iterative Closest Point Algorithm Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras 1 Motivation 2 The Problem Given: two corresponding point sets: Wanted: translation

More information

Manipulator trajectory planning

Manipulator trajectory planning Manipulator trajectory planning Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Czech Republic http://cmp.felk.cvut.cz/~hlavac Courtesy to

More information

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator Inverse Kinematics of 6 DOF Serial Manipulator Robotics Inverse Kinematics of 6 DOF Serial Manipulator Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics

More information

Real time 3D reconstruction of non-structured domestic environment for obstacle avoidance using multiple RGB-D cameras

Real time 3D reconstruction of non-structured domestic environment for obstacle avoidance using multiple RGB-D cameras Maig 2015 Màster universitari en Automàtica i Robòtica Jordi Magdaleno Maltas Treball de Fi de Màster Màster universitari en Automàtica i Robòtica Real time 3D reconstruction of non-structured domestic

More information

Scenario/Motivation. Introduction System Overview Surface Estimation Geometric Category and Model Applications Conclusions

Scenario/Motivation. Introduction System Overview Surface Estimation Geometric Category and Model Applications Conclusions Single View Categorization and Modelling Nico Blodow, Zoltan-Csaba Marton, Dejan Pangercic, Michael Beetz Intelligent Autonomous Systems Group Technische Universität München IROS 2010 Workshop on Defining

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Name Code Class Branch Page 1 INSTITUTE OF AERONAUTICAL ENGINEERING : ROBOTICS (Autonomous) Dundigal, Hyderabad - 500 0 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK : A7055 : IV B. Tech I Semester : MECHANICAL

More information

Robotics. SAAST Robotics Robot Arms

Robotics. SAAST Robotics Robot Arms SAAST Robotics 008 Robot Arms Vijay Kumar Professor of Mechanical Engineering and Applied Mechanics and Professor of Computer and Information Science University of Pennsylvania Topics Types of robot arms

More information

12.1 Quaternions and Rotations

12.1 Quaternions and Rotations Fall 2015 CSCI 420 Computer Graphics 12.1 Quaternions and Rotations Hao Li http://cs420.hao-li.com 1 Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera

More information

Task-Oriented Planning for Manipulating Articulated Mechanisms under Model Uncertainty. Venkatraman Narayanan and Maxim Likhachev

Task-Oriented Planning for Manipulating Articulated Mechanisms under Model Uncertainty. Venkatraman Narayanan and Maxim Likhachev Task-Oriented Planning for Manipulating Articulated Mechanisms under Model Uncertainty Venkatraman Narayanan and Maxim Likhachev Motivation Motivation A lot of household objects are ARTICULATED A lot of

More information

Humanoid Robotics. Projective Geometry, Homogeneous Coordinates. (brief introduction) Maren Bennewitz

Humanoid Robotics. Projective Geometry, Homogeneous Coordinates. (brief introduction) Maren Bennewitz Humanoid Robotics Projective Geometry, Homogeneous Coordinates (brief introduction) Maren Bennewitz Motivation Cameras generate a projected image of the 3D world In Euclidian geometry, the math for describing

More information

Members. Team Members. Advisor. Mentor. Tim Sonnen Joe Carter Marshall Townsend Brian Gift Nathan Park Kierra Ryan Qinlin Xu. Dr.

Members. Team Members. Advisor. Mentor. Tim Sonnen Joe Carter Marshall Townsend Brian Gift Nathan Park Kierra Ryan Qinlin Xu. Dr. Discover Bot 1 Members Team Members Advisor Tim Sonnen Joe Carter Marshall Townsend Brian Gift Nathan Park Kierra Ryan Qinlin Xu Dr. Joel Perry Mentor Sarah Willis 2 Project Goal To develop a single-user

More information

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering PR 5 Robot Dynamics & Control /8/7 PR 5: Robot Dynamics & Control Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering The Inverse Kinematics The determination of all possible

More information

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Computer Animation Fundamentals Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Lecture 21 6.837 Fall 2001 Conventional Animation Draw each frame of the animation great control

More information

Autonomous Navigation of Humanoid Using Kinect. Harshad Sawhney Samyak Daga 11633

Autonomous Navigation of Humanoid Using Kinect. Harshad Sawhney Samyak Daga 11633 Autonomous Navigation of Humanoid Using Kinect Harshad Sawhney 11297 Samyak Daga 11633 Motivation Humanoid Space Missions http://www.buquad.com Motivation Disaster Recovery Operations http://www.designnews.com

More information

Visual Perception for Robots

Visual Perception for Robots Visual Perception for Robots Sven Behnke Computer Science Institute VI Autonomous Intelligent Systems Our Cognitive Robots Complete systems for example scenarios Equipped with rich sensors Flying robot

More information

Notes on Measuring the Size of an Angle Radians and Degrees

Notes on Measuring the Size of an Angle Radians and Degrees Notes on Measuring the Size of an Angle Radians and Degrees The usual way to measure an angle is by using degrees but there is another way to measure an angle and that is by using what are called a radian

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 420 Computer Graphics Lecture 20 and Rotations Rotations Motion Capture [Angel Ch. 3.14] Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera parameters

More information

Hand. Desk 4. Panda research 5. Franka Control Interface (FCI) Robot Model Library. ROS support. 1 technical data is subject to change

Hand. Desk 4. Panda research 5. Franka Control Interface (FCI) Robot Model Library. ROS support. 1 technical data is subject to change TECHNICAL DATA 1, 2 Arm degrees of freedom 7 DOF payload 3 kg sensitivity joint torque sensors in all 7 axes maximum reach 855 mm joint position limits A1: -170/170, A2: -105/105, [ ] A3: -170/170, A4:

More information

Robotics. CSPP Artificial Intelligence March 10, 2004

Robotics. CSPP Artificial Intelligence March 10, 2004 Robotics CSPP 56553 Artificial Intelligence March 10, 2004 Roadmap Robotics is AI-complete Integration of many AI techniques Classic AI Search in configuration space (Ultra) Modern AI Subsumption architecture

More information