8/2/2016. Acknowledgement. Common Clinical Questions. Presumption Images are Good Enough to accurately answer clinical questions

Size: px
Start display at page:

Download "8/2/2016. Acknowledgement. Common Clinical Questions. Presumption Images are Good Enough to accurately answer clinical questions"

Transcription

1 Image Quality Assessment using Model Observers: Clinical Implementation and Practical Considerations Shuai Leng, PhD Associate Professor, Department of Radiology Mayo Clinic, Rochester MN Acknowledgement Lifeng Yu, PhD Chris Favazza, PhD Cynthia McCollough, PhD Baiyu Chen, PhD Chi Ma, PhD Yi Zhang, PhD NIH Funding Support R01 EB U01 EB Common Clinical Questions How much can IR reduce dose? What is the lowest dose for this patient? What is the optimal scanning protocol? Presumption Images are Good Enough to accurately answer clinical questions 1

2 Image Quality Assessment Standard Physical Metrics Contrast Noise CNR MTF NPS Limitations for assessing non-linear algorithms IR or non-linear denoising algorithms Contrast Dependent MTF Fessler and Rogers, TMI, 1996 Li et al, Med. Phys Chen et al, Med. Phys Yu et al, Med. Phys Limitation of CNR All three have similar noise: HU FBP 400 ma IR 200 ma IR 100 ma McCollough et al. Degradation of CT Low-Contrast Spatial Resolution Due to the Use of Iterative Reconstruction and Reduced Dose Levels Radiology (2015) Task-based Image Quality Assessment Human observer Labor intensive and costly Intra- and Inter- observer variability Model observer Composite image quality metric Relevant to the clinical imaging task Simulates human observer 2

3 Clinical Implementation of Model Observer Diagnostic Task Image generation: signal and background Phantom and ROI selections. Model observer type Test statistics and Figure of merit Compare to human observer performance * Eckstein et al, A practical Guide to Model observers for visual detection in synthetic and natural noise images. Handbook of Medical Imaging (Ch 10), 2000 * Barrett and Myers, Foundations of Image Science, 2004 * Vaishnav et al, Objective assessment of image quality and dose reduction in CT iterative reconstruction, Med. Phys * Verdun et al, Image quality in CT: From physical measurements to model observers, Phys. Med Diagnostic Task Detection Low contrast detection Low contrast Detection and Localization Classification Shape, Texture Estimation Quantification, e.g. lung nodule volume Yu et al. Med. Phys Leng et al. Med. Phys Richard et al, Med. Phys Zhang et al,. PMB, 2014 Chen et al,. SPIE 2014 Image Generation: Phantoms Physical phantoms are used in most studies Needed to recon on scanners to assess the non-linearity of commercial algorithms not available for simulations. Ma et al, JMI, 2016 Yu et al, Med. Phys Yu et al, RSNA 2014 Wilson et al. Med. Phys Popescu et al, Med. Phys

4 Knowledge of Noise 8/2/2016 Image Generation Scan with relevant protocols and dose levels Reconstructed with algorithms to be investigated Leng et al. Med. Phys Observer Model Types of Models Full Hotelling Channelized-Hotelling None Sum of Channel ROI Best Channel Channelized-SNR Channelized-NPW NPW NPW-HVS Knowledge of Signal Full * Eckstein et al, A practical Guide to Model observers for visual detection in synthetic and natural noise images. Handbook of Medical Imaging (Ch 10), 2000 NPWEi Non-prewhitening matched filter model observer with eye filter and internal noise (NPWEi)* *Burgess et al., JOSA A Opt Image Sci Vis 14, (1997). Multiple recent studies in CT Boedeker and McNitt-Gray, PMB, 2007 Richard et al, Med. Phys Gang et al, Med. Phys Richard et al, Med. Phys Chen et al, Med. Phys Li et al, Med. Phys Image quality NPS MTF: contrast dependent in IR Observer - Internal noise (N i ) - Eye filter (E) Object - Task function (W) 4

5 Channel Output Channel Template /2/2016 Channelized Hotelling Observer (CHO) A linear model observer with a scalar response t ω To mimic the existence of spatial frequency selective channels in human visual processing. Multiple recent studies in CT g N CHO c n 1 1 ω CHO Sc g sc n g cn g bc Barrett, HH, J Yao, JP Rolland and KJ Myers (1993). Proc Natl Acad Sci U S A 90(21): Wunderlich and Noo, PMB, 2008 Yu et al, Med. Phys Leng et al, Med. Phys Popescu and Myers, Med. Phys Zhang et al, PMB, 2014 Ma et al, JMI, 2016 Model Development: Channel Type Band Pass: Gabor Laguerre-Gauss: Diff. of Gaussians Abby and Barrett, 1995 Eckstein et al, 1998 Test Statistics Calculation covariance matrix S c g s - g b Template ω CHO Sc g sc g bc Channel Index Multiply: Channel Index Test Statistics: 1 t ω CHO g c N n 1 n g cn 5

6 100 2AFC trials 8/2/2016 Localization Task Apply template at each possible location Final test statistics: highest value at all possible locations (1,1) (1,n) max (n,1) (n,n) 1 Whitaker et al, Opt. Exp. 2008; Gifford et al, TMI, 2005 Leng et al, Med. Phys Popescu and Myers, Med. Phys Figure of Merit Percent correct (Pc) For MAFC tasks Area under ROC curve Detectability index Figure of Merit Area under LROC curve True positive: ROC: Correct detection LROC: Correct detection & Correct localization FROC, EFROC Popescu, Med. Phys Wunderlich et al, IEEE TMI, 2012 Leng et al, Med. Phys

7 Validation with Human Observer Model observer usually outperforms human observer Internal noise added to final test variable. final + a * s( bg ) * rand(-1,1) Internal noise added to channel responses. N n=1 w n (g cn + n ) Zhang et al, Evaluation of internal noise methods for Hotelling observer models, Med. Phys Validation with Human Observer Human Observer vs Model Observer A LROC CTDI vol (mgy) Pearson Correlation Coefficients: for 3mm and 5 mm lesions Leng et al, RSNA Validation with Human Observer Bland-Altman plot comparing human and model observer performance Mean of percent correct * Yu et al, Med. Phys

8 Practical Considerations Fourier domain vs spatial domain Number of images 2D/3D observers Homogeneous and heterogeneous background Fourier Domain vs Spatial Domain Fourier-domain implementations (e.g. NPWEi) Fewer scans required Assumption required: locally linear and shift-invariant Spatial-domain implementations (e.g. CHO) No linear-shift-invariant assumption Larger number of images required to get a good estimation of image statistics Studies comparing Fourier-domain and spatial domain implementations. Solomon et al, SPIE 2015 Chen et al, SPIE 2016 Fourier (NPWEi) vs spatial (CHO) 8

9 Fourier (NPWEi) vs spatial (CHO) * Chen et al, SPIE 2016 Practical Considerations Fourier domain vs spatial domain Number of images/scans Single-slice vs Multi-slice observers Homogeneous and heterogeneous background Number of Samples Theoretical work on the estimation of bias and variance. The goodness of correlations depends on the number of repeated scans used in the training and testing. Clinical CT Labor and machine usage limitations. Important to quantify the statistics associated with limited but reasonable number of repeated scans. Conceptual plot from Barrett and Myers, P 972; Resubstitution method Gallas et al. SPIE Barrett and Myers 2004, Wunderlich et al. TMI 2009, 9

10 Area under ROC curve (Az) vs Scan # Az calculated using subsets of 10 to 100 scans. Ma et al,. J Med Imaging Dependence on Number of Channels Ma et al,. J Med Imaging Dependence on Object Size and Contrast Minimum number of repeated scans increased when the radiation dose level decreased, object size and contrast level decreased (more challenging tasks) Ma et al,. J Med Imaging

11 Average Pixel Correlation Detectability Index Mean Pixel Correlation 8/2/2016 Repeat scan reduction: Increase images/scan N = number of scans 1 Slice: N = Slices: N = 50 3 Slices: N = 33 : : n Slices: N = 100/n Favazza et al, AAPM, 2015 Repeat scan reduction: Increase images/scan Slice Separation (mm) Favazza et al, AAPM, 2015 Repeat scan reduction: Increase images/scan single slice value stand. dev. Detectability index: 2 slice locations 100 training images Separation of 2 nd slice image data (mm) Favazza et al, AAPM,

12 Signal-present Signal-absent 8/2/2016 Number of Scans Needed Example 6 mm cylindrical object (small) 10 HU contrast (low contrast) 60 mas (low dose) 20 channels Each Scan 6 Every 1cm (6 cm) 60 images 10 scans Practical Considerations Fourier domain vs spatial domain Number of images/scans Single-slice vs Multi-slice observers Homogeneous and heterogeneous background Multi-slice CHO Multi-slice CHO to incorporate multi-slice viewing model during clinical reading 2D static viewing Multi-slice viewing Ensemble average Yu et al, RSNA

13 Model Observers: MS_CHO Single-slice preprocessing Integrate decision variables from multiple slices g 1 g c1 =U T g 1 T λ 1 =ω CHO1 g c1 g 2 g c2 =U T g 2 T λ 2 =ω CHO2 g c2 λ z T λ = ω zho λ z where ω zho = K z 1 Δλ z g N g cn =U T g N T λ N =ω CHON g cn Multi-slice integration Single-slice pre-processing Plastisa et al, JOSA, 2011 Ba et al, SPIE 2015 Yu et al, RSNA 2015 Ba et al, JMI 2016 Correlation between Human and MS_CHO Lesion size Ba et al, SPIE 2015 Ba et al, JMI 2016 Yu et al, RSNA 2015 Practical Considerations Fourier domain vs spatial domain Number of images/scans Single-slice vs Multi-slice observers Homogeneous and heterogeneous background 13

14 Phantom Patient 8/2/2016 3D Printing Phantoms Solomon et al, SPIE, 2014 Leng et al, JMI, 2016 Michael. A. Miller and G. Hutchins, IEEE NSSC 2007, M26-28 Yoo, T., Hamilton, T. et al, IEEE ISBMI, 2011, D Printing Phantoms Phantom Patient Phantom Patient Leng et al, Construction of realistic phantoms from patient images and a commercial three-dimensional printer. Journal of Medical Imaging 3(3), (2016) Lesion Insertion Image based method 1 Projection based method 2 Patient projections Previously segmented lesion Forwardproject Desired insertion location Patient projections w/ inserted lesions Lesion projections Reconstruct on a CT scanner CT images 1. Solomen and Samei. PMB ;59(21): Chen et al.. Med Phys. 42, 7034 (2015). 14

15 Projection-domain lesion insertion Chen et al., Acad. Radiol Ma et al., SPIE Sample Applications Samei and Richard, Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology, Med. Phys Sample Applications Li et al, Statistical model based iterative reconstruction in clinical CT systems. Part III. Task-based kv/mas optimization for radiation dose reduction. Med. Phys

16 Sample Applications Gang et al, Task-driven image acquisition and reconstruction in cone-beam CT. PMB, 2015 Standardize Protocols in Large Practice Standardize Protocols in Large Practice Stage 1: FBP Standardize Protocols with physical IQ metrics Stage 2: IR Standardize Protocols with task-based image quality metrics Default setting resulted in 60-75% dose reduction How does IR perform? What is the appropriate amount of dose reduction? Favazza et al, A cross-platform survey of CT image quality and dose from routine abdomen protocols and a method to systematically standardize image quality, PMB,

17 Image noise vs Tube Current Noise(25%-33% dose) Noise(100% dose) C Favazza et al, Low-Contrast Detectability Vs. Dose for CT Images Reconstructed Using FBP and IR: Assessment with a Model Observer. SU-G (Sunday, July 31, 2016) AUC vs Tube Current Object 4: 25 HU Contrast 4.8 mm diameter IR STD 25% dose FBP 100% dose -Δ18% AUC 50% dose 78% dose 100% dose 25% dose 33% dose 18% AUC Reduction AUC vs Tube Current Object 4: 25 HU Contrast 4.8 mm diameter IR STD 78% dose FBP 100% dose AUC 78% dose 100% dose 17

18 Summary Multiple studies showed correlation and validation with human observers Methods have been investigated to make model observer studies more practical Various applications have used model observers for taskbased image quality assessment, especially in iterative reconstruction Studies with textured background, 3D (peudo-3d) observers are actively investigated 18

Correlation between Model and Human Observer Performance on a Lesion Shape Discrimination Task in CT

Correlation between Model and Human Observer Performance on a Lesion Shape Discrimination Task in CT Correlation between Model and Human Observer Performance on a Lesion Shape Discrimination Task in CT Yi Zhang, Shuai Leng, Lifeng Yu and Cynthia McCollough Department of Radiology Mayo Clinic, Rochester

More information

8/2/2016. Measures the degradation/distortion of the acquired image (relative to an ideal image) using a quantitative figure-of-merit

8/2/2016. Measures the degradation/distortion of the acquired image (relative to an ideal image) using a quantitative figure-of-merit Ke Li Assistant Professor Department of Medical Physics and Department of Radiology School of Medicine and Public Health, University of Wisconsin-Madison This work is partially supported by an NIH Grant

More information

Assessment of 3D performance metrics. X-ray based Volumetric imaging systems: Fourier-based imaging metrics. The MTF in CT

Assessment of 3D performance metrics. X-ray based Volumetric imaging systems: Fourier-based imaging metrics. The MTF in CT Assessment of 3D performance metrics D and 3D Metrics of Performance Towards Quality Index: Volumetric imaging systems X-ray based Volumetric imaging systems: CBCT/CT Tomosynthesis Samuel Richard and Ehsan

More information

Performance Evaluation of CT Systems

Performance Evaluation of CT Systems 8/2/206 Performance Evaluation of CT Systems AAPM Task Group 233 Foundations, Methods, and Prospects Ehsan Samei Duke University Medical Center Disclosures Research grant: NIH R0 EB00838 Research grant:

More information

Limits of Dose Reduction in CT: How low is too low? Acknowledgement. Disclosures 8/2/2012

Limits of Dose Reduction in CT: How low is too low? Acknowledgement. Disclosures 8/2/2012 8/2/22 Limits of Dose Reduction in CT: How low is too low? Ehsan Samei Duke University Acknowledgement Disclosures Research grant: NIH Research grant: DHS Research grant: RSNA, QIBA Research grant: General

More information

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION Frank Dong, PhD, DABR Diagnostic Physicist, Imaging Institute Cleveland Clinic Foundation and Associate Professor of Radiology

More information

7/13/2015 EVALUATION OF NONLINEAR RECONSTRUCTION METHODS. Outline. This is a decades-old challenge

7/13/2015 EVALUATION OF NONLINEAR RECONSTRUCTION METHODS. Outline. This is a decades-old challenge EVALUATION OF NONLINEAR RECONSTRUCTION METHODS Kyle J. Myers, Ph.D. Director, Division of Imaging, Diagnostics, and Software Reliability Office of Science and Engineering Laboratories, CDRH, FDA 2 Outline

More information

1. Deployment of a framework for drawing a correspondence between simple figure of merits (FOM) and quantitative imaging performance in CT.

1. Deployment of a framework for drawing a correspondence between simple figure of merits (FOM) and quantitative imaging performance in CT. Progress report: Development of assessment and predictive metrics for quantitative imaging in chest CT Subaward No: HHSN6801000050C (4a) PI: Ehsan Samei Reporting Period: month 1-18 Deliverables: 1. Deployment

More information

Task-based Assessment of X-ray Breast Imaging Systems Using Insilico

Task-based Assessment of X-ray Breast Imaging Systems Using Insilico 55 th : Virtual Tools for Validation of X-ray Breast Imaging Systems Task-based Assessment of X-ray Breast Imaging Systems Using Insilico Modeling Tools Rongping Zeng Division of Imaging and Applied Mathematics

More information

Disclosures 7/21/2014. AAPM 2014 Challenges and opportunities in assessment of image quality

Disclosures 7/21/2014. AAPM 2014 Challenges and opportunities in assessment of image quality 7/2/24 AAPM 24 Challenges and opportunities in assessment of image quality Ehsan Samei Department of Radiology Duke University Medical Center Disclosures Research grant: NIH R EB838 Research grant: General

More information

8/1/2017. Current Technology: Energy Integrating Detectors. Principles, Pitfalls and Progress in Photon-Counting-Detector Technology.

8/1/2017. Current Technology: Energy Integrating Detectors. Principles, Pitfalls and Progress in Photon-Counting-Detector Technology. Photon Counting Detectors and Their Applications in Medical Imaging Principles, Pitfalls and Progress in Photon-Counting-Detector Technology Taly Gilat Schmidt, PhD Associate Professor Department of Biomedical

More information

Background. Outline. Radiographic Tomosynthesis: Image Quality and Artifacts Reduction 1 / GE /

Background. Outline. Radiographic Tomosynthesis: Image Quality and Artifacts Reduction 1 / GE / Radiographic Tomosynthesis: Image Quality and Artifacts Reduction Baojun Li, Ph.D Department of Radiology Boston University Medical Center 2012 AAPM Annual Meeting Background Linear Trajectory Tomosynthesis

More information

Evaluation of Penalty Design in Penalized Maximum- likelihood Image Reconstruction for Lesion Detection

Evaluation of Penalty Design in Penalized Maximum- likelihood Image Reconstruction for Lesion Detection Evaluation of Penalty Design in Penalized Maximum- likelihood Image Reconstruction for Lesion Detection Li Yang, Andrea Ferrero, Rosalie J. Hagge, Ramsey D. Badawi, and Jinyi Qi Supported by NIBIB under

More information

AIDR 3D Iterative Reconstruction:

AIDR 3D Iterative Reconstruction: Iterative Reconstruction: Integrated, Automated and Adaptive Dose Reduction Erin Angel, PhD Manager, Clinical Sciences, CT Canon Medical Systems USA Iterative Reconstruction 1 Since the introduction of

More information

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT Simulation Imaging Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT imaging Goal: Achieve image quality that allows to perform the task at hand (diagnostic

More information

Patient Specific Imaging Phantoms Using 3D Printing

Patient Specific Imaging Phantoms Using 3D Printing Patient Specific Imaging Phantoms Using 3D Printing Shuai Leng, PhD Professor, Dept. of Radiology Mayo Clinic, Rochester MN, 55905 Phantom Imaging phantom, or simply phantom, is a specially designed object

More information

Optimisation of Toshiba Aquilion ONE Volume Imaging

Optimisation of Toshiba Aquilion ONE Volume Imaging Optimisation of Toshiba Aquilion ONE Volume Imaging Jane Edwards, RPRSG Royal Free London NHS Foundation Trust Dr Mufudzi Maviki, Plymouth Hospitals NHS Trust Background In 2011/12 Radiology at RFH was

More information

Acknowledgments and financial disclosure

Acknowledgments and financial disclosure AAPM 2012 Annual Meeting Digital breast tomosynthesis: basic understanding of physics principles James T. Dobbins III, Ph.D., FAAPM Director, Medical Physics Graduate Program Ravin Advanced Imaging Laboratories

More information

Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT

Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT Benedikt Lorch 1, Martin Berger 1,2, Joachim Hornegger 1,2, Andreas Maier 1,2 1 Pattern Recognition Lab, FAU Erlangen-Nürnberg

More information

Adaptive detection mechanisms in globally statistically nonstationary-oriented noise

Adaptive detection mechanisms in globally statistically nonstationary-oriented noise Zhang et al. Vol. 23, No. 7/July 2006/J. Opt. Soc. Am. A 1549 Adaptive detection mechanisms in globally statistically nonstationary-oriented noise Yani Zhang, Craig K. Abbey, and Miguel P. Eckstein Vision

More information

Background 8/2/2011. Development of Breast Models for Use in Simulation of Breast Tomosynthesis and CT Breast Imaging. Stephen J.

Background 8/2/2011. Development of Breast Models for Use in Simulation of Breast Tomosynthesis and CT Breast Imaging. Stephen J. Development of Breast Models for Use in Simulation of Breast Tomosynthesis and CT Breast Imaging Stephen J. Glick* J. Michael O Connor**, Clay Didier**, Mini Das*, * University of Massachusetts Medical

More information

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Protocol optimization

More information

AAPM Standard of Practice: CT Protocol Review Physicist

AAPM Standard of Practice: CT Protocol Review Physicist AAPM Standard of Practice: CT Protocol Review Physicist Dianna Cody, Ph.D., DABR, FAAPM U.T.M.D. Anderson Cancer Center September 11, 2014 2014 Texas Radiation Regulatory Conference Goals Understand purpose

More information

CT vs. VolumeScope: image quality and dose comparison

CT vs. VolumeScope: image quality and dose comparison CT vs. VolumeScope: image quality and dose comparison V.N. Vasiliev *a, A.F. Gamaliy **b, M.Yu. Zaytsev b, K.V. Zaytseva ***b a Russian Sci. Center of Roentgenology & Radiology, 86, Profsoyuznaya, Moscow,

More information

Computed Tomography Imaging: CT Protocol Management. Caveat 8/3/2017

Computed Tomography Imaging: CT Protocol Management. Caveat 8/3/2017 Computed Tomography Imaging: CT Protocol Management Mark P. Supanich, Ph.D., DABR AAPM Annual Meeting 3 rd August, 2017 Slides at: goo.gl/k8n8jf Rush is an academic health system comprising Rush University

More information

Agenda : Lung Density Breakout Session

Agenda : Lung Density Breakout Session Agenda : Lung Density Breakout Session 1. : Mathew Fuld and Bernice Hoppel 2. Automatic Exposure Control (AEC) Evaluation : Sean Fain Round 4 Project 3. Dose reduction effects on emphysema metrics : Philip

More information

Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies

Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies g Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies Presented by Adam Kesner, Ph.D., DABR Assistant Professor, Division of Radiological Sciences,

More information

CT Protocol Review: Practical Tips for the Imaging Physicist Physicist

CT Protocol Review: Practical Tips for the Imaging Physicist Physicist CT Protocol Review: Practical Tips for the Imaging Physicist Physicist Dianna Cody, Ph.D., DABR, FAAPM U.T.M.D. Anderson Cancer Center August 8, 2013 AAPM Annual Meeting Goals Understand purpose and importance

More information

Learning Objectives. Outline. Lung Cancer Workshop VIII 8/2/2012. Nicholas Petrick 1. Methodologies for Evaluation of Effects of CAD On Users

Learning Objectives. Outline. Lung Cancer Workshop VIII 8/2/2012. Nicholas Petrick 1. Methodologies for Evaluation of Effects of CAD On Users Methodologies for Evaluation of Effects of CAD On Users Nicholas Petrick Center for Devices and Radiological Health, U.S. Food and Drug Administration AAPM - Computer Aided Detection in Diagnostic Imaging

More information

Implementation and evaluation of a protocol management system for automated review of CT protocols

Implementation and evaluation of a protocol management system for automated review of CT protocols JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 5, 2016 Implementation and evaluation of a protocol management system for automated review of CT protocols Joshua Grimes, Shuai Leng, a Yi

More information

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH 3/27/212 Advantages of SPECT SPECT / CT Basic Principles Dr John C. Dickson, Principal Physicist UCLH Institute of Nuclear Medicine, University College London Hospitals and University College London john.dickson@uclh.nhs.uk

More information

Practical considerations for noise power spectra estimation for clinical CT scanners

Practical considerations for noise power spectra estimation for clinical CT scanners Washington University School of Medicine Digital Commons@Becker Open Access Publications 2016 Practical considerations for noise power spectra estimation for clinical CT scanners Steven Dolly Washington

More information

Acknowledgments. Nesterov s Method for Accelerated Penalized-Likelihood Statistical Reconstruction for C-arm Cone-Beam CT.

Acknowledgments. Nesterov s Method for Accelerated Penalized-Likelihood Statistical Reconstruction for C-arm Cone-Beam CT. June 5, Nesterov s Method for Accelerated Penalized-Likelihood Statistical Reconstruction for C-arm Cone-Beam CT Adam S. Wang, J. Webster Stayman, Yoshito Otake, Gerhard Kleinszig, Sebastian Vogt, Jeffrey

More information

7/31/ D Cone-Beam CT: Developments and Applications. Disclosure. Outline. I have received research funding from NIH and Varian Medical System.

7/31/ D Cone-Beam CT: Developments and Applications. Disclosure. Outline. I have received research funding from NIH and Varian Medical System. 4D Cone-Beam CT: Developments and Applications Lei Ren, PhD, DABR Department of Radiation Oncology Duke University Medical Center Disclosure I have received research funding from NIH and Varian Medical

More information

A noise power spectrum study of a new model-based iterative reconstruction system: Veo 3.0

A noise power spectrum study of a new model-based iterative reconstruction system: Veo 3.0 JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 5, 2016 A noise power spectrum study of a new model-based iterative reconstruction system: Veo 3.0 Guang Li, 1 Xinming Liu, 1 Cristina T.

More information

Reconstruction of CT Images from Sparse-View Polyenergetic Data Using Total Variation Minimization

Reconstruction of CT Images from Sparse-View Polyenergetic Data Using Total Variation Minimization 1 Reconstruction of CT Images from Sparse-View Polyenergetic Data Using Total Variation Minimization T. Humphries and A. Faridani Abstract Recent work in CT image reconstruction has seen increasing interest

More information

Evaluation of 1D, 2D and 3D nodule size estimation by radiologists for spherical and non-spherical nodules through CT thoracic phantom imaging

Evaluation of 1D, 2D and 3D nodule size estimation by radiologists for spherical and non-spherical nodules through CT thoracic phantom imaging Evaluation of 1D, 2D and 3D nodule size estimation by radiologists for spherical and non-spherical nodules through CT thoracic phantom imaging Nicholas Petrick, Hyun J. Grace Kim, David Clunie, Kristin

More information

Acknowledgments. High Performance Cone-Beam CT of Acute Traumatic Brain Injury

Acknowledgments. High Performance Cone-Beam CT of Acute Traumatic Brain Injury A. Sisniega et al. (presented at RSNA 214) High Performance Cone-Beam CT of Acute Traumatic Brain Injury A. Sisniega 1 W. Zbijewski 1, H. Dang 1, J. Xu 1 J. W. Stayman 1, J. Yorkston 2, N. Aygun 3 V. Koliatsos

More information

Ch. 4 Physical Principles of CT

Ch. 4 Physical Principles of CT Ch. 4 Physical Principles of CT CLRS 408: Intro to CT Department of Radiation Sciences Review: Why CT? Solution for radiography/tomography limitations Superimposition of structures Distinguishing between

More information

Spiral ASSR Std p = 1.0. Spiral EPBP Std. 256 slices (0/300) Kachelrieß et al., Med. Phys. 31(6): , 2004

Spiral ASSR Std p = 1.0. Spiral EPBP Std. 256 slices (0/300) Kachelrieß et al., Med. Phys. 31(6): , 2004 Spiral ASSR Std p = 1.0 Spiral EPBP Std p = 1.0 Kachelrieß et al., Med. Phys. 31(6): 1623-1641, 2004 256 slices (0/300) Advantages of Cone-Beam Spiral CT Image quality nearly independent of pitch Increase

More information

F3-A5: Toward Model-Based Reconstruction in Scanned Baggage Security Applications

F3-A5: Toward Model-Based Reconstruction in Scanned Baggage Security Applications F3-A5: Toward Model-Based Reconstruction in Scanned Baggage Security Applications Abstract While traditional direct reconstruction algorithms such as filtered back projection depend on the analytic inversion

More information

The Near Future in Cardiac CT Image Reconstruction

The Near Future in Cardiac CT Image Reconstruction SCCT 2010 The Near Future in Cardiac CT Image Reconstruction Marc Kachelrieß Institute of Medical Physics (IMP) Friedrich-Alexander Alexander-University Erlangen-Nürnberg rnberg www.imp.uni-erlangen.de

More information

NEQ and Task in Dual-Energy Imaging: From Cascaded Systems Analysis to Human Observer Performance

NEQ and Task in Dual-Energy Imaging: From Cascaded Systems Analysis to Human Observer Performance Best Student Paper Award NEQ and Task in Dual-Energy Imaging: From Cascaded Systems Analysis to Human Observer Performance Samuel Richard, a Jeffrey H. Siewerdsen, a,b and Daniel J. Tward b a Department

More information

X-ray imaging optimization using virtual phantoms and computerized observer modelling

X-ray imaging optimization using virtual phantoms and computerized observer modelling INSTITUTE OF PHYSICS PUBLISHING Phys. Med. Biol. 51 (2006) 4289 4310 PHYSICS IN MEDICINE AND BIOLOGY doi:10.1088/0031-9155/51/17/011 X-ray imaging optimization using virtual phantoms and computerized observer

More information

Non-Stationary CT Image Noise Spectrum Analysis

Non-Stationary CT Image Noise Spectrum Analysis Non-Stationary CT Image Noise Spectrum Analysis Michael Balda, Björn J. Heismann,, Joachim Hornegger Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen Siemens Healthcare, Erlangen michael.balda@informatik.uni-erlangen.de

More information

and computerized observer models. The X-ray imaging parameters are optimized so as to

and computerized observer models. The X-ray imaging parameters are optimized so as to 1 Chapter 22 Optimization of X-ray Radiographic Imaging Birsen Yazici, Il-Young Son, An Jin Synopsis This chapter presents x-ray image quality optimization techniques using digital phantom images and computerized

More information

GPU implementation for rapid iterative image reconstruction algorithm

GPU implementation for rapid iterative image reconstruction algorithm GPU implementation for rapid iterative image reconstruction algorithm and its applications in nuclear medicine Jakub Pietrzak Krzysztof Kacperski Department of Medical Physics, Maria Skłodowska-Curie Memorial

More information

MEDICAL EQUIPMENT: COMPUTED TOMOGRAPHY. Prof. Yasser Mostafa Kadah

MEDICAL EQUIPMENT: COMPUTED TOMOGRAPHY. Prof. Yasser Mostafa Kadah MEDICAL EQUIPMENT: COMPUTED TOMOGRAPHY Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook X-Ray Computed Tomography in Biomedical Engineering, by Robert Cierniak, Springer, 211 Computed Tomography

More information

Limited View Angle Iterative CT Reconstruction

Limited View Angle Iterative CT Reconstruction Limited View Angle Iterative CT Reconstruction Sherman J. Kisner 1, Eri Haneda 1, Charles A. Bouman 1, Sondre Skatter 2, Mikhail Kourinny 2, Simon Bedford 3 1 Purdue University, West Lafayette, IN, USA

More information

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D.

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Applied Science Laboratory, GE Healthcare Technologies 1 Image Generation Reconstruction of images from projections. textbook reconstruction advanced

More information

QIBA PET Amyloid BC March 11, Agenda

QIBA PET Amyloid BC March 11, Agenda QIBA PET Amyloid BC March 11, 2016 - Agenda 1. QIBA Round 6 Funding a. Deadlines b. What projects can be funded, what cannot c. Discussion of projects Mechanical phantom and DRO Paul & John? Any Profile

More information

Precision of Iodine Quantification in Hepatic CT: Effects of Iterative Reconstruction With Various Imaging Parameters

Precision of Iodine Quantification in Hepatic CT: Effects of Iterative Reconstruction With Various Imaging Parameters Medical Physics and Informatics Original Research Iterative Reconstruction Algorithms in Hepatic CT Medical Physics and Informatics Original Research Baiyu Chen 1,2 Daniele Marin 3 Samuel Richard 2,3,4

More information

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM Contour Assessment for Quality Assurance and Data Mining Tom Purdie, PhD, MCCPM Objective Understand the state-of-the-art in contour assessment for quality assurance including data mining-based techniques

More information

An Acquisition Geometry-Independent Calibration Tool for Industrial Computed Tomography

An Acquisition Geometry-Independent Calibration Tool for Industrial Computed Tomography 4th International Symposium on NDT in Aerospace 2012 - Tu.3.A.3 An Acquisition Geometry-Independent Calibration Tool for Industrial Computed Tomography Jonathan HESS *, Patrick KUEHNLEIN *, Steven OECKL

More information

STATISTICAL positron emission tomography (PET) image

STATISTICAL positron emission tomography (PET) image IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 9, SEPTEMBER 2004 1057 Accurate Estimation of the Fisher Information Matrix for the PET Image Reconstruction Problem Quanzheng Li, Student Member, IEEE,

More information

RADIOMICS: potential role in the clinics and challenges

RADIOMICS: potential role in the clinics and challenges 27 giugno 2018 Dipartimento di Fisica Università degli Studi di Milano RADIOMICS: potential role in the clinics and challenges Dr. Francesca Botta Medical Physicist Istituto Europeo di Oncologia (Milano)

More information

A simple method for low-contrast detectability, image quality and dose optimisation with CT iterative reconstruction algorithms and model observers

A simple method for low-contrast detectability, image quality and dose optimisation with CT iterative reconstruction algorithms and model observers Bellesi et al. European Radiology Experimental (2017) 1:18 DOI 10.1186/s41747-017-0023-4 European Radiology Experimental ORIGINAL ARTICLE A simple method for low-contrast detectability, image quality and

More information

Application of Tatian s Method to Slanted-Edge MTF Measurement

Application of Tatian s Method to Slanted-Edge MTF Measurement Application of s Method to Slanted-Edge MTF Measurement Peter D. Burns Eastman Kodak Company, Rochester, NY USA 465-95 ABSTRACT The 33 method for the measurement of the spatial frequency response () of

More information

Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT

Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT Qiao Yang 1,4, Meng Wu 2, Andreas Maier 1,3,4, Joachim Hornegger 1,3,4, Rebecca Fahrig

More information

Scaling Calibration in the ATRACT Algorithm

Scaling Calibration in the ATRACT Algorithm Scaling Calibration in the ATRACT Algorithm Yan Xia 1, Andreas Maier 1, Frank Dennerlein 2, Hannes G. Hofmann 1, Joachim Hornegger 1,3 1 Pattern Recognition Lab (LME), Friedrich-Alexander-University Erlangen-Nuremberg,

More information

DUE to beam polychromacity in CT and the energy dependence

DUE to beam polychromacity in CT and the energy dependence 1 Empirical Water Precorrection for Cone-Beam Computed Tomography Katia Sourbelle, Marc Kachelrieß, Member, IEEE, and Willi A. Kalender Abstract We propose an algorithm to correct for the cupping artifact

More information

Michael Speiser, Ph.D.

Michael Speiser, Ph.D. IMPROVED CT-BASED VOXEL PHANTOM GENERATION FOR MCNP MONTE CARLO Michael Speiser, Ph.D. Department of Radiation Oncology UT Southwestern Medical Center Dallas, TX September 1 st, 2012 CMPWG Workshop Medical

More information

NIH Public Access Author Manuscript J Nucl Med Technol. Author manuscript; available in PMC 2013 December 09.

NIH Public Access Author Manuscript J Nucl Med Technol. Author manuscript; available in PMC 2013 December 09. NIH Public Access Author Manuscript Published in final edited form as: J Nucl Med Technol. 2013 December ; 41(4):. doi:10.2967/jnmt.113.131904. Effect of Varying Number of OSEM Subsets on PET Lesion Detectability

More information

Limitations of Projection Radiography. Stereoscopic Breast Imaging. Limitations of Projection Radiography. 3-D Breast Imaging Methods

Limitations of Projection Radiography. Stereoscopic Breast Imaging. Limitations of Projection Radiography. 3-D Breast Imaging Methods Stereoscopic Breast Imaging Andrew D. A. Maidment, Ph.D. Chief, Physics Section Department of Radiology University of Pennsylvania Limitations of Projection Radiography Mammography is a projection imaging

More information

Spatial Resolution Properties in Penalized-Likelihood Reconstruction of Blurred Tomographic Data

Spatial Resolution Properties in Penalized-Likelihood Reconstruction of Blurred Tomographic Data Spatial Resolution Properties in Penalized-Likelihood Reconstruction of Blurred Tomographic Data Wenying Wang, Grace J. Gang and J. Webster Stayman Department of Biomedical Engineering, Johns Hopkins University,

More information

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems.

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems. Slide 1 Technical Aspects of Quality Control in Magnetic Resonance Imaging Slide 2 Compliance Testing of MRI Systems, Ph.D. Department of Radiology Henry Ford Hospital, Detroit, MI Slide 3 Compliance Testing

More information

Estimating 3D Respiratory Motion from Orbiting Views

Estimating 3D Respiratory Motion from Orbiting Views Estimating 3D Respiratory Motion from Orbiting Views Rongping Zeng, Jeffrey A. Fessler, James M. Balter The University of Michigan Oct. 2005 Funding provided by NIH Grant P01 CA59827 Motivation Free-breathing

More information

CT: Physics Principles & Equipment Design

CT: Physics Principles & Equipment Design CT: Physics Principles & Equipment Design James Kofler, Ph.D Radiology Mayo Clinic Rochester, MN June 27, 2012 Disclosures Nothing to disclose Learning Objectives Understand fundamental concepts of - CT

More information

Iterative Reconstructions: The Impact on Dose and Image Quality

Iterative Reconstructions: The Impact on Dose and Image Quality Shane Foley: IPR, Chicago 2016 Iterative Reconstructions: The Impact on Dose and Image Quality Shane Foley, PhD Radiography and Diagnostic Imaging School of Medicine University College Dublin. Radagrafaíocht

More information

Cluster-oriented Detection of Microcalcifications in Simulated Low-Dose Mammography

Cluster-oriented Detection of Microcalcifications in Simulated Low-Dose Mammography Cluster-oriented Detection of Microcalcifications in Simulated Low-Dose Mammography Hartmut Führ 1, Oliver Treiber 1, Friedrich Wanninger 2 GSF Forschungszentrum für Umwelt und Gesundheit 1 Institut für

More information

Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data

Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data Christopher M Rank 1, Thorsten Heußer 1, Andreas Wetscherek 1, and Marc Kachelrieß 1 1 German Cancer

More information

QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV-AD)

QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV-AD) 5 QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV-AD) Stage: Consensus When referencing this document, please use the following format: QIBA CT Volumetry Technical Committee. CT Tumor Volume

More information

Spectral analysis of non-stationary CT noise

Spectral analysis of non-stationary CT noise Spectral analysis of non-stationary CT noise Kenneth M. Hanson Los Alamos Scientific Laboratory Int. Symposium and Course on Computed Tomography, Las Vegas, April 7-11, 1980 This presentation available

More information

Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis

Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis Stefan C. Saur 1, Hatem Alkadhi 2, Luca Regazzoni 1, Simon Eugster 1, Gábor Székely 1, Philippe Cattin 1,3 1 Computer Vision

More information

Outline. Outline 7/24/2014. Fast, near real-time, Monte Carlo dose calculations using GPU. Xun Jia Ph.D. GPU Monte Carlo. Clinical Applications

Outline. Outline 7/24/2014. Fast, near real-time, Monte Carlo dose calculations using GPU. Xun Jia Ph.D. GPU Monte Carlo. Clinical Applications Fast, near real-time, Monte Carlo dose calculations using GPU Xun Jia Ph.D. xun.jia@utsouthwestern.edu Outline GPU Monte Carlo Clinical Applications Conclusions 2 Outline GPU Monte Carlo Clinical Applications

More information

Measurement of Skin Dose

Measurement of Skin Dose Measurement of Skin Dose Sources of Uncertainty Kenneth A. Fetterly, Ph.D. William Pavlicek, Ph.D. Dan Bednarek, PhD 2014 AAPM Annual Meeting, Austin Texas 2013 MFMER slide-1 Purpose 1. Present a framework

More information

Noise power spectrum and modulation transfer function analysis of breast tomosynthesis imaging

Noise power spectrum and modulation transfer function analysis of breast tomosynthesis imaging Noise power spectrum and modulation transfer function analysis of breast tomosynthesis imaging Weihua Zhou a, Linlin Cong b, Xin Qian c, Yueh Z. Lee d, Jianping Lu c,e, Otto Zhou c,e, *Ying Chen a,b a

More information

Diagnostic quality of time-averaged ECG-gated CT data

Diagnostic quality of time-averaged ECG-gated CT data Diagnostic quality of time-averaged ECG-gated CT data Almar Klein a, Luuk J. Oostveen b, Marcel J.W. Greuter c, Yvonne Hoogeveen b, Leo J. Schultze Kool b, Cornelis H. Slump a and W. Klaas Jan Renema b

More information

Philips SPECT/CT Systems

Philips SPECT/CT Systems Philips SPECT/CT Systems Ling Shao, PhD Director, Imaging Physics & System Analysis Nuclear Medicine, Philips Healthcare June 14, 2008 *Presented SNM08 Categorical Seminar - Quantitative SPECT and PET

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

Advanced Image Reconstruction Methods for Photoacoustic Tomography

Advanced Image Reconstruction Methods for Photoacoustic Tomography Advanced Image Reconstruction Methods for Photoacoustic Tomography Mark A. Anastasio, Kun Wang, and Robert Schoonover Department of Biomedical Engineering Washington University in St. Louis 1 Outline Photoacoustic/thermoacoustic

More information

Penalized-Likelihood Reconstruction for Sparse Data Acquisitions with Unregistered Prior Images and Compressed Sensing Penalties

Penalized-Likelihood Reconstruction for Sparse Data Acquisitions with Unregistered Prior Images and Compressed Sensing Penalties Penalized-Likelihood Reconstruction for Sparse Data Acquisitions with Unregistered Prior Images and Compressed Sensing Penalties J. W. Stayman* a, W. Zbijewski a, Y. Otake b, A. Uneri b, S. Schafer a,

More information

Characterization of a Time-of-Flight PET Scanner based on Lanthanum Bromide

Characterization of a Time-of-Flight PET Scanner based on Lanthanum Bromide 2005 IEEE Nuclear Science Symposium Conference Record M04-8 Characterization of a Time-of-Flight PET Scanner based on Lanthanum Bromide J. S. Karp, Senior Member, IEEE, A. Kuhn, Member, IEEE, A. E. Perkins,

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

CT Iterative Reconstruction Techniques

CT Iterative Reconstruction Techniques RECENT ADVANCES IN CT RADIATION DOSE REDUCTION TECHNIQUES CT Iterative Reconstruction Techniques Kalpana Kanal, PhD, FSCBTMR, FACR, FAAPM University of Washington Seattle, WA SCBT-MR 2017 Nashville, Tennessee

More information

8/2/2017. Disclosure. Philips Healthcare (Cleveland, OH) provided the precommercial

8/2/2017. Disclosure. Philips Healthcare (Cleveland, OH) provided the precommercial 8//0 AAPM0 Scientific Symposium: Emerging and New Generation PET: Instrumentation, Technology, Characteristics and Clinical Practice Aug Wednesday 0:4am :pm Solid State Digital Photon Counting PET/CT Instrumentation

More information

Iterative CT Reconstruction Using Curvelet-Based Regularization

Iterative CT Reconstruction Using Curvelet-Based Regularization Iterative CT Reconstruction Using Curvelet-Based Regularization Haibo Wu 1,2, Andreas Maier 1, Joachim Hornegger 1,2 1 Pattern Recognition Lab (LME), Department of Computer Science, 2 Graduate School in

More information

Generalized Filtered Backprojection for Digital Breast Tomosynthesis Reconstruction

Generalized Filtered Backprojection for Digital Breast Tomosynthesis Reconstruction Generalized Filtered Backprojection for Digital Breast Tomosynthesis Reconstruction Klaus Erhard a, Michael Grass a, Sebastian Hitziger b, Armin Iske b and Tim Nielsen a a Philips Research Europe Hamburg,

More information

QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV-AD)

QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV-AD) 5 QIBA Profile: CT Tumor Volume Change for Advanced Disease (CTV-AD) Stage 3: Technically Confirmed June 22, 2018 When referencing this document, please use the following format: QIBA CT Volumetry Technical

More information

Validation of a digital mammography image simulation chain with automated scoring of CDMAM images

Validation of a digital mammography image simulation chain with automated scoring of CDMAM images Validation of a digital mammography image simulation chain with automated scoring of CDMAM images Mary Yip 1, Abdulaziz Alsager 2, Emma Lewis 1, Kevin Wells 1, and Kenneth C. Young 3 1 Centre for Vision,

More information

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Outline High Spectral and Spatial Resolution MR Imaging (HiSS) What it is How to do it Ways to use it HiSS for Radiation

More information

Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system

Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system 3 rd October 2008 11 th Topical Seminar on Innovative Particle and Radiation

More information

Empirical cupping correction: A first-order raw data precorrection for cone-beam computed tomography

Empirical cupping correction: A first-order raw data precorrection for cone-beam computed tomography Empirical cupping correction: A first-order raw data precorrection for cone-beam computed tomography Marc Kachelrieß, a Katia Sourbelle, and Willi A. Kalender Institute of Medical Physics, University of

More information

TITLE: Computer Aided Detection of Breast Masses in Digital Tomosynthesis

TITLE: Computer Aided Detection of Breast Masses in Digital Tomosynthesis AD Award Number: W81XWH-05-1-0293 TITLE: Computer Aided Detection of Breast Masses in Digital Tomosynthesis PRINCIPAL INVESTIGATOR: Swatee Singh Joseph Lo Ph.D. CONTRACTING ORGANIZATION: Duke University

More information

Human linear template with mammographic backgrounds estimated with a genetic algorithm

Human linear template with mammographic backgrounds estimated with a genetic algorithm Castella et al. Vol. 24, No. 12/December 2007/J. Opt. Soc. Am. A B1 Human linear template with mammographic backgrounds estimated with a genetic algorithm Cyril Castella, 1 Craig K. Abbey, 2 Miguel P.

More information

Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon

Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon WHITE PAPER Introduction Introducing an image guidance system based on Cone Beam CT (CBCT) and a mask immobilization

More information

A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties

A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties Steven Dolly 1, Eric Ehler 1, Yang Lou 2, Mark Anastasio 2, Hua Li 2 (1) University

More information

Comparison of 3D PET data bootstrap resampling methods for numerical observer studies

Comparison of 3D PET data bootstrap resampling methods for numerical observer studies 2005 IEEE Nuclear Science Symposium Conference Record M07-218 Comparison of 3D PET data bootstrap resampling methods for numerical observer studies C. Lartizien, I. Buvat Abstract Bootstrap methods have

More information

Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT. AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD

Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT. AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD 1 Outline q Introduction q Imaging performances in 4D-CBCT Image

More information

CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0

CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0 Revised 10/10 COURSE SYLLABUS TM 220 COMPUTED TOMOGRAPHY PHYSICS CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0 CATALOG COURSE DESCRIPTION: This course is one of a three course set in whole body Computed

More information