Noise power spectrum and modulation transfer function analysis of breast tomosynthesis imaging

Size: px
Start display at page:

Download "Noise power spectrum and modulation transfer function analysis of breast tomosynthesis imaging"

Transcription

1 Noise power spectrum and modulation transfer function analysis of breast tomosynthesis imaging Weihua Zhou a, Linlin Cong b, Xin Qian c, Yueh Z. Lee d, Jianping Lu c,e, Otto Zhou c,e, *Ying Chen a,b a Dept. of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL62901; b Biomedical Engineering Graduate Program, Southern Illinois University, Carbondale, IL 62901; c Dept. of Physics and Astronomy, and Curriculum in Applied Sciences and Engineering, The University of North Carolina, Chapel Hill, NC 27599; d Dept. of Radiology, The University of North Carolina, Chapel Hill, NC 27599; e Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC * Corresponding author The recent commercialization of digital breast tomosynthesis systems realizes the clinical applications of this novel three-dimensional imaging technology. The total dosage of breast tomosynthesis for single patient is comparable to that of the traditional mammography. This paper presents our continuous work on image quality analysis for the optimization of a new multi-beam breast tomosynthesis system based on carbon nanotube X-ray emission technology. Several tomosynthesis reconstruction algorithms were implemented to reconstruct the phantom data. Noise power spectrum and modulation transfer function were investigated to evaluate the image quality. Keywords: digital breast tomosynthesis (DBT), noise power spectrum (NPS), modulation transfer function (MTF), back projection (BP), filtered back-projection (FBP) I Introduction Breast tomosynthesis imaging improves early breast cancer detection by providing three-dimensional information of the breast object [1-3]. It acquires a few limited-angle projection images and then reconstructs the internal structures of the object. Compared to mammography, this technology overcomes the ambiguities caused by overlapping tissues. The total dosage is comparable to that of the traditional mammography [1]. It is promising to challenge the current mammography screening routine [3, 4]. A lot of attentions from both academia and manufactures have been accumulated to digital breast tomosynthesis technology. In USA, FDA has issued its approval to Hologic s DBT system [5]. Breast tomosynthesis has been used for screening in Massachusetts General Hospital [6] V. 1 (p.1 of 9) / Color: No / Format: Letter / Date: 1/11/2013 5:14:26 PM

2 The current DBT prototype systems reutilize the design of traditional mammography system in which the X-ray tube rotates along a partial iso-centric arc path. It has the advantages of decreasing the cost of system upgrade and operators training, but the motion blur may reduce the image quality [7]. A parallel multi-beam digital breast tomosynthesis system, invented by Zhou et al [8-10], has great potentials to remove the motion blur. It adopts carbon-nano tubes as X-ray emitters, fixes multiple X-ray tubes along the line which is parallel to the detector surface, and controls the emission of the X-ray signal by an electronic switch. This design eliminates the motion blur caused by the rotation of the X-ray tube in the current commercially available digital breast tomosynthesis systems. It can also decrease the total time of acquiring projection images, thereafter reduces the awaiting time of patients. In SPIE 2009 and 2010 [7, 11, 12 ], we reported our preliminary results of image reconstruction and image quality investigation with the multi-beam breast tomosynthesis system. The investigations suggested that this new system is capable of providing three-dimensional internal structural distribution of objects. Evaluation based on image quality analysis in spatial domain showed that different image reconstruction algorithms and imaging configurations can influence the system performance. It has been demonstrated that frequency-domain based image quality measurement methodologies have a lot of advantages [13, 14]. Since real object can be decomposed into sine waves with different amplitudes, frequencies and phases, frequency domain methods are flexible to predict the system response by single analysis [13]. MTF (f) and NPS (f) are frequently selected as the merits to characterize the performance of medical systems [15, 16]. This paper presents our work on further investigation of image quality with the new multi-beam DBT prototype system. Both noise power spectrum (NPS) and modulation transfer function (MTF) were evaluated for several representative reconstruction algorithms and imaging configurations. II Material and Methods A new DBT prototype system was built up by our collaborators [8, 10]. The system has 31 X-ray beam sources evenly distributed with 1 0 separations. A digital flat-panel detector with the pixel pitch of 140 um was integrated into the prototype system. The image size is The total exposure level was 80 mas. Figure 1 shows the parallel imaging geometry of the investigated breast tomosynthesis imaging system. The X-ray tubes are aligned along Y direction. The distance from X-ray source plane to the detector plane (SID) is mm V. 1 (p.2 of 9) / Color: No / Format: Letter / Date: 1/11/2013 5:14:26 PM

3 X-ray Tubes 1 0 z x SID y θ O Object Detector (b) Figure 1. Parallel breast tomosynthesis imaging geometry. Two representative image reconstruction algorithms, including back projection (BP) [17] and filtered back projection (FBP) [18-20], were investigated in this paper. BP algorithm calculates the shift amount of each pixel on the reconstructed planes to reconstruct the object. FBP applies filters to reduce out-of-plane artifacts. An investigation about the noise and signal propagation of FBP with a flat panel partial isocentric DBT system was reported by Zhao et. al. [20]. Our implementation uses four filters: ramp filter, Hanning filter, slice profile filter, Gaussian filter [19, 21]. Gaussian filter is a low-pass filter which is intended to suppress the noise. It changes the appearance of high-frequency components. In this paper, we investigated FBP algorithm with two versions: full version with all above four filters was called as FBP ; a version without Gaussian filter was called as FBP_nogaussian. A. Measurement of NPS(f) For NPS analysis, noise propagation was investigated by acquiring the projection images of a breast tissue equivalent phantom with the DBT prototype system. In order to mimic the equivalent distribution of attenuation and scatter radiation in breast tissues, the phantom, 40 mm thick, was placed on the surface cover of the detector. For each reconstruction algorithm, all the slice images with 1 mm plane spacing were reconstructed to cover the entire breast phantom. In NPS calculation [2, 14], regions of interest (ROIs) with the size of pixels were cut from the reconstructed planes at the same height above the detector. Each ROI was evenly divided into 8 blocks with a size of pixels. For each block, a line curve fitting through the ensemble-averaged NPS estimate was used to obtain an approximation to the greatest slope of the true NPS. Finally, we extracted the frequency components from each block and formed the smoothened NPS curves. B. Measurement of MTF(f) V. 1 (p.3 of 9) / Color: No / Format: Letter / Date: 1/11/2013 5:14:26 PM

4 The modulation transform function can be divided into two parts [2, 14]. One is the projection MTF, ProjMTF(f), and it comes from the imaging system. Generally it is used to evaluate the hardware including the X-ray focal spot and detector. The conventional MTF measurement can be transplanted to investigate projection MTF. The another MTF component is reconstruction MTF (ReconMTF(f)). It characterizes signal propagation in different reconstruction models and imaging configurations, for example, view angular range and number of projection images. In this paper we tested ReconMTF(f). In our ReconMTF(f) measurement, 9 impulses, evenly located inside one pixel, were computer simulated with the imaging configuration of the prototype system. Figure 2 shows the impulse locations inside the pixel. All the impulses were placed in a plane that is 45.0 mm above the detector. Ray-tracing method was used to generate the projection images [2]. The images were then reconstructed P 1 P 2 P P 4 P 5 P P 7 P 8 P 9 Figure 2. Locations of simulated impulses for ReconMTF(f) measurement. In ReconMTF(f) calculation, the reconstructed slices were selected and Fourier transform of the reconstruction planes were calculated to extract frequency components and form the MTF curves. Two groups of ReconMTF(f) were reported: (1) the ReconMTF(f) when total view angle ranges and number of projection image change; (2) the ReconMTF(f) on the planes with different Z distances. III Results A. Results of NPS (f) Measurement NPS curves along both X and Y directions with the parallel imaging configuration and different reconstruction algorithms were shown in Figure 3. In X direction (Figure 3(c) and 3(e)), two FBP versions have the similar appearances. In Y direction (Figure 3(b), 3(d), and 3(f) ), the full-version FBP shows high-frequency drop-off compared to FBP_nogaussian due to applied Gaussian filter V. 1 (p.4 of 9) / Color: No / Format: Letter / Date: 1/11/2013 5:14:26 PM

5 (a) (b) (c) (d) (e) Figure 3. NPS curves of the parallel DBT prototype system. (a) X direction of BP. (b) Y direction of BP. (c) X direction of FBP. (d) Y direction of FBP. (e) X direction of FBP_nogaussian. (f) Y direction of FBP_nogaussian. (f) V. 1 (p.5 of 9) / Color: No / Format: Letter / Date: 1/11/2013 5:14:26 PM

6 B. Results of MTF(f) Measurement Figure 4 shows the ReconMTF(f) with different view angle (VA) ranges and number of projection image (Proj). There is no obvious difference in BP. In two FBP versions, the four imaging configurations were clustered into three groups. (a) (b) (c) Figure 4. Reconstruction MTF curves with different imaging configurations and reconstruction algorithms. (a) BP. (b) FBP. (c) FBP_nogaussian. Figure 5 shows the ReconMTF(f) on different reconstructed planes. The in-plane location is 45.0 mm above the detector. + means the Z distance is higher than the in-plane distance. As shown in Figure 5, when the plane is farther away from the plane where the impulse is, ReconMTF(f) decreases V. 1 (p.6 of 9) / Color: No / Format: Letter / Date: 1/11/2013 5:14:26 PM

7 (a) (b) (c) Figure 5. Reconstruction MTF curves with different imaging configuration and reconstruction algorithms. (a) BP. (b) FBP. (c) FBP_nogaussian. IV Conclusions This work presents our continuous effort to optimize the tomosynthesis imaging configuration and reconstruction algorithms with a novel nanotechnology enabled multi-beam DBT prototype system. Image quality analysis of MTF and NPS is essential to evaluate the signal and noise properties. Physical measurements and computer simulations were performed in this paper to evaluate image quality for the new parallel imaging system and representative algorithms. Results showed that the MTF and NPS analysis on the reconstructed plane can be used to serve as the foundations for the optimization of imaging configurations and reconstruction for breast tomosynthesis imaging V. 1 (p.7 of 9) / Color: No / Format: Letter / Date: 1/11/2013 5:14:26 PM

8 Acknowledgement This work is supported by NIH/NCI R01 CA A1. We acknowledge Jian Fang and Shiyu Xu at the Biomedical Imaging Lab of Southern Illinois University Carbondale for data collection and related work. We appreciate Andrew Tucker at North Carolina State University for his kind help of acquiring tomosynthesis datasets. REFERENCE [1] Dobbins, J.T., Godfrey, D.J., Digital X-ray tomosynthesis: current state of the art and clinical potential, Phys. Med. Biol. 48, (2003). [2] Chen, Y., Digital breast tomosynthesis (DBT) - a novel imaging technology to improve early breast cancer detection: implementation, comparison and optimization, Ph.D. dissertation, Duke University (2007). [3] Chen, Y., Breast Tomosynthesis, book chapter, in Physics of Mammographic Imaging, ed. M. Markey, Taylor & Francis, 2011(Accepted). [4] Park, J.M., Franken, E.A., Garg, M., Fajardo, L.L., Niklason, L.T., Breast tomosynthesis: present considerations and future applications, Radiographics. 2007;27(Suppl 1): S (2007). [5] Hologic Inc. "Hologic Receives FDA Approval for First 3-D Digital Mammography (Breast Tomosynthesis) System". Accessed on December 20, [6] Massachusetts General Hospital. "Massachusetts General Hospital is first in the nation to do mammography screening using 3D breast tomosynthesis". Accessed on December 20, [7] Chen, Y., Zhou, W., Yang, G., Lu, J.P., and Zhou, O., Breast tomosynthesis reconstruction with a multi-beam x-ray source, Proc. SPIE 7258, (2009). [8] Zhang, J., Yang, G., Lu, J.P., Zhou, O., Multiplexing radiography using a carbon nanotube based x-ray source, Applied Physics Letter 89, (2006). [9] Lalush, D.S., Quan, E., Rajaram, R., Zhang, J., Lu, J.P., Zhou, O., Tomosynthesis reconstruction from multi-beam x-ray sources, Proceedings of 2006 IEEE International Symposium on Biomedical Imaging, (2006). [10] Yang, G., Rajaram, Cao, G., Sultana, S., Liu, Z., Lalush, D., Lu, J.P., Zhou, O., Stationary digital breast tomosynthesis system with a multi-beam field emission x-ray source array, Proc. SPIE 6913, 69131A (2008). [11] Zhou, W., Xin, Q., Lu, J.P., Zhou, O., Chen, Y., Multi-beam X-ray source breast tomosynthesis reconstruction with different algorithms, Proc. SPIE, 7622H.1-8 (2010). [12] Balla, A., Zhou, W., Chen, Y., Impulse Response Characterization of Breast Tomosynthesis Reconstruction with Parallel Imaging Configurations, Proc. SPIE, 76225K.1-8 (2010) V. 1 (p.8 of 9) / Color: No / Format: Letter / Date: 1/11/2013 5:14:26 PM

9 [13] Nishikawa, R.M., "The fundamentals of MTF, Wiener spectra, and DQE". Accessed on September 28, [14] Chen, Y., Zhou, W., Dobbins, J.T., Fourier-Domain Methods for Optimization of Tomosynthesis (NEQ), book chapter, in Tomosynthesis Imaging, ed. I. Reiser and S. Glick, Taylor & Francis, (2011) (Accepted). [15] Samei, E., Ranger, N.T., Dobbins, J.T., Chen, Y., "Intercomparison of methods for image quality characterization. I. Modulation transfer function". Med. Phys. 33(5): (2006). [16] Dobbins, J.T., Samei, E., Ranger, N.T., Chen, Y., "Intercomparison of methods for image quality characterization. II. Noise power spectrum. Med. Phys. 33(5): (2006). [17] Chen, Y., Lo, J.Y., Dobbins, J.T., Importance of point-by-point back projection (BP) correction for isocentric motion in digital breast tomosynthesis: Relevance to morphology of microcalcifications, Med. Phys. 34(10), (2007). [18] Mertelemeier, T., Orman, J., Haerer, W., Dudam, M.K., Optimizing filtered backprojection reconstruction for a breast tomosynthesis prototype device, Proc. SPIE 6142, (2006). [19] Lauritsch, G. and Haerer, W., A theoretical framework for filtered back-projection in tomosynthesis, Proc. SPIE 3338, (1998). [20] Zhao, B., Zhao, W., "Three-dimensional linear system analysis for breast tomosynthesis". Med. Phys. 35(12): (2008). [21] Cong, L., Zhou, W., Chen, Y., Effects of slice thickness filter in filtered backprojection reconstruction with parallel breast tomosynthesis imaging configuration, Proc. IEEE-International Symposium on Intelligent Biological Medicine(2011) V. 1 (p.9 of 9) / Color: No / Format: Letter / Date: 1/11/2013 5:14:26 PM

Breast tomosynthesis reconstruction with a multi-beam x-ray source

Breast tomosynthesis reconstruction with a multi-beam x-ray source Breast tomosynthesis reconstruction with a multi-beam x-ray source Ying Chen *a,b, Weihua Zhou a, Guang Yang c, Xin Qian c, Jianping Lu c,d, and Otto Zhou a Dept. of Electrical and Computer Engineering,

More information

Evaluation of Back Projection Methods for Breast Tomosynthesis Image Reconstruction

Evaluation of Back Projection Methods for Breast Tomosynthesis Image Reconstruction DOI 10.1007/s10278-014-9736-6 Evaluation of Back Projection Methods for Breast Tomosynthesis Image Reconstruction Weihua Zhou & Jianping Lu & Otto Zhou & Ying Chen # Society for Imaging Informatics in

More information

Carbondale, IL USA; University of North Carolina Chapel Hill, NC USA; USA; ABSTRACT

Carbondale, IL USA; University of North Carolina Chapel Hill, NC USA; USA; ABSTRACT Pre-computed backprojection based penalized-likelihood (PPL) reconstruction with an edge-preserved regularizer for stationary Digital Breast Tomosynthesis Shiyu Xu a, Christy Redmon Inscoe b, Jianping

More information

Acknowledgments and financial disclosure

Acknowledgments and financial disclosure AAPM 2012 Annual Meeting Digital breast tomosynthesis: basic understanding of physics principles James T. Dobbins III, Ph.D., FAAPM Director, Medical Physics Graduate Program Ravin Advanced Imaging Laboratories

More information

Simulation of Mammograms & Tomosynthesis imaging with Cone Beam Breast CT images

Simulation of Mammograms & Tomosynthesis imaging with Cone Beam Breast CT images Simulation of Mammograms & Tomosynthesis imaging with Cone Beam Breast CT images Tao Han, Chris C. Shaw, Lingyun Chen, Chao-jen Lai, Xinming Liu, Tianpeng Wang Digital Imaging Research Laboratory (DIRL),

More information

Methodology of NEQ (f) analysis for optimization and comparison of digital breast tomosynthesis acquisition techniques and reconstruction algorithms

Methodology of NEQ (f) analysis for optimization and comparison of digital breast tomosynthesis acquisition techniques and reconstruction algorithms Methodology of NEQ (f) analysis for optimization and comparison of digital breast tomosynthesis acquisition techniques and reconstruction algorithms Ying Chen a,b, Joseph Y. Lo a,b,c,d, Nicole T. Ranger

More information

Image reconstruction and imaging configuration optimization with a novel nanotechnology enabled breast tomosynthesis multi-beam X-ray system

Image reconstruction and imaging configuration optimization with a novel nanotechnology enabled breast tomosynthesis multi-beam X-ray system Southern Illinois University Carbondale OpenSIUC Dissertations Theses and Dissertations 8-1-2012 Image reconstruction and imaging configuration optimization with a novel nanotechnology enabled breast tomosynthesis

More information

TITLE: Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods

TITLE: Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods AD Award Number: W81XWH-06-1-0462 TITLE: Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods PRINCIPAL INVESTIGATOR: Ying Chen, Ph.D. James T. Dobbins III,

More information

Background 8/2/2011. Development of Breast Models for Use in Simulation of Breast Tomosynthesis and CT Breast Imaging. Stephen J.

Background 8/2/2011. Development of Breast Models for Use in Simulation of Breast Tomosynthesis and CT Breast Imaging. Stephen J. Development of Breast Models for Use in Simulation of Breast Tomosynthesis and CT Breast Imaging Stephen J. Glick* J. Michael O Connor**, Clay Didier**, Mini Das*, * University of Massachusetts Medical

More information

Generalized Filtered Backprojection for Digital Breast Tomosynthesis Reconstruction

Generalized Filtered Backprojection for Digital Breast Tomosynthesis Reconstruction Generalized Filtered Backprojection for Digital Breast Tomosynthesis Reconstruction Klaus Erhard a, Michael Grass a, Sebastian Hitziger b, Armin Iske b and Tim Nielsen a a Philips Research Europe Hamburg,

More information

Investigating Oblique Reconstructions with Super-Resolution in Digital Breast Tomosynthesis

Investigating Oblique Reconstructions with Super-Resolution in Digital Breast Tomosynthesis Investigating Oblique Reconstructions with Super-Resolution in Digital Breast Tomosynthesis Raymond J. Acciavatti, Stewart B. Mein, and Andrew D.A. Maidment University of Pennsylvania, Department of Radiology,

More information

Background. Outline. Radiographic Tomosynthesis: Image Quality and Artifacts Reduction 1 / GE /

Background. Outline. Radiographic Tomosynthesis: Image Quality and Artifacts Reduction 1 / GE / Radiographic Tomosynthesis: Image Quality and Artifacts Reduction Baojun Li, Ph.D Department of Radiology Boston University Medical Center 2012 AAPM Annual Meeting Background Linear Trajectory Tomosynthesis

More information

4/19/2016. Deborah Thames R.T. (R)(M)(QM) Theory & Technology and advancement in 3D imaging DBT

4/19/2016. Deborah Thames R.T. (R)(M)(QM) Theory & Technology and advancement in 3D imaging DBT Deborah Thames R.T. (R)(M)(QM) Theory & Technology and advancement in 3D imaging DBT 1 Three manufacturers approved for Tomo Hologic and GE, and Siemens Why 2D Digital Mammography 2D FFDM it appears to

More information

Design Considerations in Optimizing a Breast Tomosynthesis System

Design Considerations in Optimizing a Breast Tomosynthesis System Design Considerations in Optimizing a Breast Tomosynthesis System Andrew Smith, Ph.D., Vice President - Imaging Science, Hologic Introduction Breast tomosynthesis, also referred to as three-dimensional

More information

Statistical iterative reconstruction using fast optimization transfer algorithm with successively increasing factor in Digital Breast Tomosynthesis

Statistical iterative reconstruction using fast optimization transfer algorithm with successively increasing factor in Digital Breast Tomosynthesis Statistical iterative reconstruction using fast optimization transfer algorithm with successively increasing factor in Digital Breast omosynthesis Shiyu Xu a and Zhenxi Zhang b and Ying Chen a,* a Department

More information

Effective detective quantum efficiency (edqe) and effective noise equivalent quanta (eneq) for system optimization purposes in digital mammography

Effective detective quantum efficiency (edqe) and effective noise equivalent quanta (eneq) for system optimization purposes in digital mammography Effective detective quantum efficiency (edqe) and effective noise equivalent quanta (eneq) for system optimization purposes in digital mammography Elena Salvagnini a,b, Hilde Bosmans a, Lara Struelens

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Gaussian frequency blending algorithm with Matrix Inversion Tomosynthesis (MITS) and iltered Back Projection (BP) for better digital breast tomosynthesis reconstruction Ying Chen a,b, Joseph Y. Lo a,b,c,d,

More information

Task-based Assessment of X-ray Breast Imaging Systems Using Insilico

Task-based Assessment of X-ray Breast Imaging Systems Using Insilico 55 th : Virtual Tools for Validation of X-ray Breast Imaging Systems Task-based Assessment of X-ray Breast Imaging Systems Using Insilico Modeling Tools Rongping Zeng Division of Imaging and Applied Mathematics

More information

Quality control phantoms and protocol for a tomography system

Quality control phantoms and protocol for a tomography system Quality control phantoms and protocol for a tomography system Lucía Franco 1 1 CT AIMEN, C/Relva 27A O Porriño Pontevedra, Spain, lfranco@aimen.es Abstract Tomography systems for non-destructive testing

More information

Power Spectrum Analysis of an Anthropomorphic Breast Phantom Compared to Patient Data in 2D Digital Mammography and Breast Tomosynthesis

Power Spectrum Analysis of an Anthropomorphic Breast Phantom Compared to Patient Data in 2D Digital Mammography and Breast Tomosynthesis Power Spectrum Analysis of an Anthropomorphic Breast Phantom Compared to Patient Data in 2D Digital Mammography and Breast Tomosynthesis Lesley Cockmartin 1,*, Predrag R. Bakic 2, Hilde Bosmans 1, Andrew

More information

Assessment of 3D performance metrics. X-ray based Volumetric imaging systems: Fourier-based imaging metrics. The MTF in CT

Assessment of 3D performance metrics. X-ray based Volumetric imaging systems: Fourier-based imaging metrics. The MTF in CT Assessment of 3D performance metrics D and 3D Metrics of Performance Towards Quality Index: Volumetric imaging systems X-ray based Volumetric imaging systems: CBCT/CT Tomosynthesis Samuel Richard and Ehsan

More information

Validation of a digital mammography image simulation chain with automated scoring of CDMAM images

Validation of a digital mammography image simulation chain with automated scoring of CDMAM images Validation of a digital mammography image simulation chain with automated scoring of CDMAM images Mary Yip 1, Abdulaziz Alsager 2, Emma Lewis 1, Kevin Wells 1, and Kenneth C. Young 3 1 Centre for Vision,

More information

8/2/2016. Measures the degradation/distortion of the acquired image (relative to an ideal image) using a quantitative figure-of-merit

8/2/2016. Measures the degradation/distortion of the acquired image (relative to an ideal image) using a quantitative figure-of-merit Ke Li Assistant Professor Department of Medical Physics and Department of Radiology School of Medicine and Public Health, University of Wisconsin-Madison This work is partially supported by an NIH Grant

More information

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D.

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Applied Science Laboratory, GE Healthcare Technologies 1 Image Generation Reconstruction of images from projections. textbook reconstruction advanced

More information

A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis

A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis Yiheng Zhang, a Heang-Ping Chan, Berkman Sahiner, Jun Wei, Mitchell M. Goodsitt, Lubomir M. Hadjiiski, Jun

More information

Automated Image Analysis Software for Quality Assurance of a Radiotherapy CT Simulator

Automated Image Analysis Software for Quality Assurance of a Radiotherapy CT Simulator Automated Image Analysis Software for Quality Assurance of a Radiotherapy CT Simulator Andrew J Reilly Imaging Physicist Oncology Physics Edinburgh Cancer Centre Western General Hospital EDINBURGH EH4

More information

Enhancement Image Quality of CT Using Single Slice Spiral Technique

Enhancement Image Quality of CT Using Single Slice Spiral Technique Enhancement Image Quality of CT Using Single Slice Spiral Technique Doaa. N. Al Sheack 1 and Dr.Mohammed H. Ali Al Hayani 2 1 2 Electronic and Communications Engineering Department College of Engineering,

More information

Developments in Dimensional Metrology in X-ray Computed Tomography at NPL

Developments in Dimensional Metrology in X-ray Computed Tomography at NPL Developments in Dimensional Metrology in X-ray Computed Tomography at NPL Wenjuan Sun and Stephen Brown 10 th May 2016 1 Possible factors influencing XCT measurements Components Influencing variables Possible

More information

Detector Noise evaluation by means of Continue Wavelet Transform. Comparison with Fourier Transform methods

Detector Noise evaluation by means of Continue Wavelet Transform. Comparison with Fourier Transform methods Detector Noise evaluation by means of Continue Wavelet Transform. Comparison with Fourier Transform methods Poster No.: C-0215 Congress: ECR 2014 Type: Scientific Exhibit Authors: N. Kalyvas 1, S. Angelakis

More information

Limitations of Projection Radiography. Stereoscopic Breast Imaging. Limitations of Projection Radiography. 3-D Breast Imaging Methods

Limitations of Projection Radiography. Stereoscopic Breast Imaging. Limitations of Projection Radiography. 3-D Breast Imaging Methods Stereoscopic Breast Imaging Andrew D. A. Maidment, Ph.D. Chief, Physics Section Department of Radiology University of Pennsylvania Limitations of Projection Radiography Mammography is a projection imaging

More information

Advanced Image Reconstruction Methods for Photoacoustic Tomography

Advanced Image Reconstruction Methods for Photoacoustic Tomography Advanced Image Reconstruction Methods for Photoacoustic Tomography Mark A. Anastasio, Kun Wang, and Robert Schoonover Department of Biomedical Engineering Washington University in St. Louis 1 Outline Photoacoustic/thermoacoustic

More information

Digital Tomosynthesis for Target Localization

Digital Tomosynthesis for Target Localization Digital Tomosynthesis for Target Localization Fang-Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q-L Wu Duke University Medical Center Acknowledgements Duke Radiation Oncology faculty and

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

1. Deployment of a framework for drawing a correspondence between simple figure of merits (FOM) and quantitative imaging performance in CT.

1. Deployment of a framework for drawing a correspondence between simple figure of merits (FOM) and quantitative imaging performance in CT. Progress report: Development of assessment and predictive metrics for quantitative imaging in chest CT Subaward No: HHSN6801000050C (4a) PI: Ehsan Samei Reporting Period: month 1-18 Deliverables: 1. Deployment

More information

Unique Features of the GE Senoclaire Tomosynthesis System. Tyler Fisher, M.S., DABR Therapy Physics, Inc.

Unique Features of the GE Senoclaire Tomosynthesis System. Tyler Fisher, M.S., DABR Therapy Physics, Inc. Unique Features of the GE Senoclaire Tomosynthesis System Tyler Fisher, M.S., DABR Therapy Physics, Inc. Conflict of Interest Disclosure I have no conflicts to disclose. Learning Objectives Overview of

More information

Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube

Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube T. Donath* a, F. Pfeiffer a,b, O. Bunk a, W. Groot a, M. Bednarzik a, C. Grünzweig a, E. Hempel c, S. Popescu c, M. Hoheisel

More information

Certificate Extension II 8/1/2016. Certification Extension Process for Digital Breast Tomosynthesis and Medical Physicists Role

Certificate Extension II 8/1/2016. Certification Extension Process for Digital Breast Tomosynthesis and Medical Physicists Role Certification Extension Process for Digital Breast Tomosynthesis and Medical Physicists Role Kish Chakrabarti, Ph.D., FAAPM Division of Mammography Quality Standards Center for Devices and Radiological

More information

Translational Computed Tomography: A New Data Acquisition Scheme

Translational Computed Tomography: A New Data Acquisition Scheme 2nd International Symposium on NDT in Aerospace 2010 - We.1.A.3 Translational Computed Tomography: A New Data Acquisition Scheme Theobald FUCHS 1, Tobias SCHÖN 2, Randolf HANKE 3 1 Fraunhofer Development

More information

Towards full-body X-ray images

Towards full-body X-ray images Towards full-body X-ray images Christoph Luckner 1,2, Thomas Mertelmeier 2, Andreas Maier 1, Ludwig Ritschl 2 1 Pattern Recognition Lab, FAU Erlangen-Nuernberg 2 Siemens Healthcare GmbH, Forchheim christoph.luckner@fau.de

More information

Image quality of microcalcifications in digital breast tomosynthesis: Effects of projection-view distributions

Image quality of microcalcifications in digital breast tomosynthesis: Effects of projection-view distributions Image quality of microcalcifications in digital breast tomosynthesis: Effects of projection-view distributions Yao Lu, a) Heang-Ping Chan, Jun Wei, Mitch Goodsitt, Paul L. Carson, and Lubomir Hadjiiski

More information

Z-MOTION. Universal Digital Radiographic System Z-MOTION. Control-X Medical CONTROL-X MEDICAL

Z-MOTION. Universal Digital Radiographic System Z-MOTION. Control-X Medical CONTROL-X MEDICAL Control-X Medical Z-MOTION Compact design, low ceiling height requirement Motorized and manual movement capability Wide motion / SID range Best-in-class image quality Flexible connectivity to PACS systems

More information

Improvement of Efficiency and Flexibility in Multi-slice Helical CT

Improvement of Efficiency and Flexibility in Multi-slice Helical CT J. Shanghai Jiaotong Univ. (Sci.), 2008, 13(4): 408 412 DOI: 10.1007/s12204-008-0408-x Improvement of Efficiency and Flexibility in Multi-slice Helical CT SUN Wen-wu 1 ( ), CHEN Si-ping 2 ( ), ZHUANG Tian-ge

More information

Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT

Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT Benedikt Lorch 1, Martin Berger 1,2, Joachim Hornegger 1,2, Andreas Maier 1,2 1 Pattern Recognition Lab, FAU Erlangen-Nürnberg

More information

Radon Transform and Filtered Backprojection

Radon Transform and Filtered Backprojection Radon Transform and Filtered Backprojection Jørgen Arendt Jensen October 13, 2016 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering Center for Fast Ultrasound Imaging Department

More information

DEVELOPMENT OF CONE BEAM TOMOGRAPHIC RECONSTRUCTION SOFTWARE MODULE

DEVELOPMENT OF CONE BEAM TOMOGRAPHIC RECONSTRUCTION SOFTWARE MODULE Rajesh et al. : Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation DEVELOPMENT OF CONE BEAM TOMOGRAPHIC RECONSTRUCTION SOFTWARE MODULE Rajesh V Acharya, Umesh Kumar, Gursharan

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu X-ray Projection Imaging Computed Tomography Digital X-ray

More information

Development and Evaluation of 2D and 3D Image Quality Metrics. Simon Nicholas Murphy. Graduate Program in Medical Physics Duke University

Development and Evaluation of 2D and 3D Image Quality Metrics. Simon Nicholas Murphy. Graduate Program in Medical Physics Duke University Development and Evaluation of 2D and 3D Image Quality Metrics by Simon Nicholas Murphy Graduate Program in Medical Physics Duke University Date: Approved: Ehsan Samei, Supervisor James T. Dobbins, III

More information

Detection of microcalcification clusters by 2D-mammography and narrow and wide angle digital breast tomosynthesis

Detection of microcalcification clusters by 2D-mammography and narrow and wide angle digital breast tomosynthesis Detection of microcalcification clusters by 2D-mammography and narrow and wide angle digital breast tomosynthesis Andria Hadjipanteli a, Premkumar Elangovan b, Padraig T Looney a, Alistair Mackenzie a,

More information

DUAL energy X-ray radiography [1] can be used to separate

DUAL energy X-ray radiography [1] can be used to separate IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 1, FEBRUARY 2006 133 A Scatter Correction Using Thickness Iteration in Dual-Energy Radiography S. K. Ahn, G. Cho, and H. Jeon Abstract In dual-energy

More information

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION Frank Dong, PhD, DABR Diagnostic Physicist, Imaging Institute Cleveland Clinic Foundation and Associate Professor of Radiology

More information

10/9/2018. Deborah Thames BSRS RT (R)(M)(QM) Theory & Technology and advancement in 3D imaging DBT

10/9/2018. Deborah Thames BSRS RT (R)(M)(QM) Theory & Technology and advancement in 3D imaging DBT Deborah Thames BSRS RT (R)(M)(QM) Theory & Technology and advancement in 3D imaging DBT 1 Mammography Five FFDM approved for Tomo Hologic, Ge Senoclair and GE Pristina, Siemens, and Fujifilm 2 Why 2D Digital

More information

Spectral analysis of non-stationary CT noise

Spectral analysis of non-stationary CT noise Spectral analysis of non-stationary CT noise Kenneth M. Hanson Los Alamos Scientific Laboratory Int. Symposium and Course on Computed Tomography, Las Vegas, April 7-11, 1980 This presentation available

More information

Shiyu Xu a, Henri Schurz b, Ying Chen a,c, Abstract

Shiyu Xu a, Henri Schurz b, Ying Chen a,c, Abstract Parameter Optimization of relaxed Ordered Subsets Pre-computed Back Projection (BP) based Penalized-Likelihood (OS-PPL) Reconstruction in Limited-angle X-ray Tomography Shiyu Xu a, Henri Schurz b, Ying

More information

C-arm Tomographic Imaging Technique for Nephrolithiasis and Detection of Kidney Stones

C-arm Tomographic Imaging Technique for Nephrolithiasis and Detection of Kidney Stones C-arm Tomographic Imaging Technique for Nephrolithiasis and Detection of Kidney Stones Nuhad A. Malalla, Ying Chen * Abstract in this paper, we investigated a C-arm tomographic technique as a new three

More information

Intraoperative Prostate Tracking with Slice-to-Volume Registration in MR

Intraoperative Prostate Tracking with Slice-to-Volume Registration in MR Intraoperative Prostate Tracking with Slice-to-Volume Registration in MR Sean Gill a, Purang Abolmaesumi a,b, Siddharth Vikal a, Parvin Mousavi a and Gabor Fichtinger a,b,* (a) School of Computing, Queen

More information

Digital breast tomosynthesis: comparison of different methods to calculate patient doses

Digital breast tomosynthesis: comparison of different methods to calculate patient doses Digital breast tomosynthesis: comparison of different methods to calculate patient doses Poster No.: C-2220 Congress: ECR 2011 Type: Scientific Paper Authors: A. Jacobs 1, L. Cockmartin 1, D. R. Dance

More information

Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis

Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis Stefan C. Saur 1, Hatem Alkadhi 2, Luca Regazzoni 1, Simon Eugster 1, Gábor Székely 1, Philippe Cattin 1,3 1 Computer Vision

More information

Tomographic Reconstruction

Tomographic Reconstruction Tomographic Reconstruction 3D Image Processing Torsten Möller Reading Gonzales + Woods, Chapter 5.11 2 Overview Physics History Reconstruction basic idea Radon transform Fourier-Slice theorem (Parallel-beam)

More information

Computed Tomography. Principles, Design, Artifacts, and Recent Advances. Jiang Hsieh THIRD EDITION. SPIE PRESS Bellingham, Washington USA

Computed Tomography. Principles, Design, Artifacts, and Recent Advances. Jiang Hsieh THIRD EDITION. SPIE PRESS Bellingham, Washington USA Computed Tomography Principles, Design, Artifacts, and Recent Advances THIRD EDITION Jiang Hsieh SPIE PRESS Bellingham, Washington USA Table of Contents Preface Nomenclature and Abbreviations xi xv 1 Introduction

More information

Linköping University Post Print A MONTE CARLO-BASED MODEL FOR SIMULATION OF DIGITAL CHEST TOMOSYNTHESIS

Linköping University Post Print A MONTE CARLO-BASED MODEL FOR SIMULATION OF DIGITAL CHEST TOMOSYNTHESIS Linköping University Post Print A MONTE CARLO-BASED MODEL FOR SIMULATION OF DIGITAL CHEST TOMOSYNTHESIS Gustaf Ullman, David R. Dance, Michael Sandborg, Gudrun Alm Carlsson, Angelica Svalkvist and Magnus

More information

TomoTherapy Related Projects. An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram

TomoTherapy Related Projects. An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram TomoTherapy Related Projects An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram Development of A Novel Image Guidance Alternative for Patient Localization

More information

Characterization of preliminary breast tomosynthesis data: Noise and power spectra analysis

Characterization of preliminary breast tomosynthesis data: Noise and power spectra analysis University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2004 Characterization of preliminary breast tomosynthesis data: Noise and power spectra analysis Madhusmita

More information

Synthesized 2D Mammographic Imaging

Synthesized 2D Mammographic Imaging Synthesized 2D Mammographic Imaging Theory and Clinical Performance Synthesized 2D Mammographic Imaging Theory and Clinical Performance Andrew Smith, Ph.D., Vice President, Image Research Hologic, Inc.,

More information

MEDICAL IMAGING 2nd Part Computed Tomography

MEDICAL IMAGING 2nd Part Computed Tomography MEDICAL IMAGING 2nd Part Computed Tomography Introduction 2 In the last 30 years X-ray Computed Tomography development produced a great change in the role of diagnostic imaging in medicine. In convetional

More information

Financial disclosure. Onboard imaging modality for IGRT

Financial disclosure. Onboard imaging modality for IGRT Tetrahedron Beam Computed Tomography Based On Multi-Pixel X- Ray Source and Its Application in Image Guided Radiotherapy Tiezhi Zhang, Ph.D. Advanced X-ray imaging Lab Financial disclosure Patent royalty

More information

Partial Volume Simulation in Software Breast Phantoms

Partial Volume Simulation in Software Breast Phantoms Partial Volume Simulation in Software Breast Phantoms Feiyu Chen, David Pokrajac, Xiquan Shi, Fengshan Liu, Andrew D.A. Maidment a, Predrag R. Bakic a Delaware State University, 1200 N DuPont Hwy, Dover

More information

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH 3/27/212 Advantages of SPECT SPECT / CT Basic Principles Dr John C. Dickson, Principal Physicist UCLH Institute of Nuclear Medicine, University College London Hospitals and University College London john.dickson@uclh.nhs.uk

More information

Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT

Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT Evaluation of Spectrum Mismatching using Spectrum Binning Approach for Statistical Polychromatic Reconstruction in CT Qiao Yang 1,4, Meng Wu 2, Andreas Maier 1,3,4, Joachim Hornegger 1,3,4, Rebecca Fahrig

More information

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook Stony Brook University The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. Alll Rigghht tss

More information

Central Slice Theorem

Central Slice Theorem Central Slice Theorem Incident X-rays y f(x,y) R x r x Detected p(, x ) The thick line is described by xcos +ysin =R Properties of Fourier Transform F [ f ( x a)] F [ f ( x)] e j 2 a Spatial Domain Spatial

More information

Iterative and analytical reconstruction algorithms for varying-focal-length cone-beam

Iterative and analytical reconstruction algorithms for varying-focal-length cone-beam Home Search Collections Journals About Contact us My IOPscience Iterative and analytical reconstruction algorithms for varying-focal-length cone-beam projections This content has been downloaded from IOPscience.

More information

7/13/2015 EVALUATION OF NONLINEAR RECONSTRUCTION METHODS. Outline. This is a decades-old challenge

7/13/2015 EVALUATION OF NONLINEAR RECONSTRUCTION METHODS. Outline. This is a decades-old challenge EVALUATION OF NONLINEAR RECONSTRUCTION METHODS Kyle J. Myers, Ph.D. Director, Division of Imaging, Diagnostics, and Software Reliability Office of Science and Engineering Laboratories, CDRH, FDA 2 Outline

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Estimating breast thickness for dual-energy subtraction in contrastenhanced digital mammography using calibration phantoms Kristen C. Lau 1, Young Joon Kwon, Moez Karim Aziz, Raymond J. Acciavatti, Andrew

More information

CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0

CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0 Revised 10/10 COURSE SYLLABUS TM 220 COMPUTED TOMOGRAPHY PHYSICS CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0 CATALOG COURSE DESCRIPTION: This course is one of a three course set in whole body Computed

More information

GE s Revolution CT MATLAB III: CT. Kathleen Chen March 20, 2018

GE s Revolution CT MATLAB III: CT. Kathleen Chen March 20, 2018 GE s Revolution CT MATLAB III: CT Kathleen Chen chens18@rpi.edu March 20, 2018 https://www.zmescience.com/medicine/inside-human-body-real-time-gifs-demo-power-ct-scan/ Reminders Make sure you have MATLAB

More information

RECENTLY APPROVED GE FFDM DBT TESTING PROCEDURES.

RECENTLY APPROVED GE FFDM DBT TESTING PROCEDURES. RECENTLY APPROVED GE FFDM DBT TESTING PROCEDURES. S. G U R U P R A S A D, P H. D., D A B R, E M E R I T U S, M AT H E W H A L L M. S. N O RT H S H O R E U N I V E R S I T Y H E A LT H S Y S T E M A N D

More information

8/2/2016. Acknowledgement. Common Clinical Questions. Presumption Images are Good Enough to accurately answer clinical questions

8/2/2016. Acknowledgement. Common Clinical Questions. Presumption Images are Good Enough to accurately answer clinical questions Image Quality Assessment using Model Observers: Clinical Implementation and Practical Considerations Shuai Leng, PhD Associate Professor, Department of Radiology Mayo Clinic, Rochester MN Acknowledgement

More information

A prototype table-top inverse-geometry volumetric CT system

A prototype table-top inverse-geometry volumetric CT system A prototype table-top inverse-geometry volumetric CT system Taly Gilat Schmidt a Department of Radiology, Stanford University, Stanford, California 94305 Josh Star-Lack NexRay, Inc., Los Gatos, California

More information

Medical Imaging BMEN Spring 2016

Medical Imaging BMEN Spring 2016 Name Medical Imaging BMEN 420-501 Spring 2016 Homework #4 and Nuclear Medicine Notes All questions are from the introductory Powerpoint (based on Chapter 7) and text Medical Imaging Signals and Systems,

More information

Extracting and Mathematical Identifying Form of Stationary Noise in X-ray Images

Extracting and Mathematical Identifying Form of Stationary Noise in X-ray Images Original Paper Forma, 29, S37 S43, 2014 Extracting and Mathematical Identifying Form of Stationary Noise in X-ray Images Akihiro Sugiura 1,2, Kiyoko Yokoyama 1, Hiroki Takada 3,Akiko Ihori 2, Naruomi Yasuda

More information

Investigation of the effect of varying scatter-toprimary ratios on nodule contrast in chest tomosynthesis

Investigation of the effect of varying scatter-toprimary ratios on nodule contrast in chest tomosynthesis Investigation of the effect of varying scatter-toprimary ratios on nodule contrast in chest tomosynthesis Angelica Svalkvist, Gustaf Ullman, Markus Håkansson, David Dance, Michael Sandborg, Gudrun Alm

More information

Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging

Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging Joint Research With Trond Varslot Marcel Jackowski Shengying Li and Klaus Mueller Ultrasound Detection

More information

Disclosure 7/24/2014. Validation of Monte Carlo Simulations For Medical Imaging Experimental validation and the AAPM Task Group 195 Report

Disclosure 7/24/2014. Validation of Monte Carlo Simulations For Medical Imaging Experimental validation and the AAPM Task Group 195 Report Validation of Monte Carlo Simulations For Medical Imaging Experimental validation and the AAPM Task Group 195 Report Ioannis Sechopoulos, Ph.D., DABR Diagnostic Imaging Physics Lab Department of Radiology

More information

High-resolution X-ray CT Inspection of Honeycomb Composites Using Planar Computed Tomography Technology

High-resolution X-ray CT Inspection of Honeycomb Composites Using Planar Computed Tomography Technology 2nd International Symposium on NDT in Aerospace 2010 - We.4.B.4 High-resolution X-ray CT Inspection of Honeycomb Composites Using Planar Computed Tomography Technology Tong LIU, Andrew A. MALCOLM, and

More information

An approximate cone beam reconstruction algorithm for gantry-tilted CT

An approximate cone beam reconstruction algorithm for gantry-tilted CT An approximate cone beam reconstruction algorithm for gantry-tilted CT Ming Yan a, Cishen Zhang ab, Hongzhu Liang a a School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore;

More information

Beam Attenuation Grid Based Scatter Correction Algorithm for. Cone Beam Volume CT

Beam Attenuation Grid Based Scatter Correction Algorithm for. Cone Beam Volume CT 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic Beam Attenuation Grid Based Scatter Correction Algorithm for More Info at Open Access Database

More information

Spatial Resolution Properties in Penalized-Likelihood Reconstruction of Blurred Tomographic Data

Spatial Resolution Properties in Penalized-Likelihood Reconstruction of Blurred Tomographic Data Spatial Resolution Properties in Penalized-Likelihood Reconstruction of Blurred Tomographic Data Wenying Wang, Grace J. Gang and J. Webster Stayman Department of Biomedical Engineering, Johns Hopkins University,

More information

LED holographic imaging by spatial-domain diffraction computation of. textured models

LED holographic imaging by spatial-domain diffraction computation of. textured models LED holographic imaging by spatial-domain diffraction computation of textured models Ding-Chen Chen, Xiao-Ning Pang, Yi-Cong Ding, Yi-Gui Chen, and Jian-Wen Dong* School of Physics and Engineering, and

More information

Digital Scatter Removal in Mammography to enable Patient Dose Reduction

Digital Scatter Removal in Mammography to enable Patient Dose Reduction Digital Scatter Removal in Mammography to enable Patient Dose Reduction Mary Cocker Radiation Physics and Protection Oxford University Hospitals NHS Trust Chris Tromans, Mike Brady University of Oxford

More information

GPU implementation for rapid iterative image reconstruction algorithm

GPU implementation for rapid iterative image reconstruction algorithm GPU implementation for rapid iterative image reconstruction algorithm and its applications in nuclear medicine Jakub Pietrzak Krzysztof Kacperski Department of Medical Physics, Maria Skłodowska-Curie Memorial

More information

Joint ICTP-TWAS Workshop on Portable X-ray Analytical Instruments for Cultural Heritage. 29 April - 3 May, 2013

Joint ICTP-TWAS Workshop on Portable X-ray Analytical Instruments for Cultural Heritage. 29 April - 3 May, 2013 2455-5 Joint ICTP-TWAS Workshop on Portable X-ray Analytical Instruments for Cultural Heritage 29 April - 3 May, 2013 Lecture NoteBasic principles of X-ray Computed Tomography Diego Dreossi Elettra, Trieste

More information

Application of Tatian s Method to Slanted-Edge MTF Measurement

Application of Tatian s Method to Slanted-Edge MTF Measurement Application of s Method to Slanted-Edge MTF Measurement Peter D. Burns Eastman Kodak Company, Rochester, NY USA 465-95 ABSTRACT The 33 method for the measurement of the spatial frequency response () of

More information

8/7/2017. Disclosures. MECT Systems Overview and Quantitative Opportunities. Overview. Computed Tomography (CT) CT Numbers. Polyenergetic Acquisition

8/7/2017. Disclosures. MECT Systems Overview and Quantitative Opportunities. Overview. Computed Tomography (CT) CT Numbers. Polyenergetic Acquisition Quantitative Multi-Energy Computed Tomography: Imaging and Therapy Advancements Disclosures MECT Systems Overview and Quantitative Opportunities The speaker receives research funding from GE Healthcare

More information

Suitability of a new alignment correction method for industrial CT

Suitability of a new alignment correction method for industrial CT Suitability of a new alignment correction method for industrial CT Matthias Elter 1, Nicole Maass 1, Peter Koch 2 1 Siemens AG, Healthcare Sector, Erlangen, Germany, e-mail: matthias.elter@siemens.com,

More information

A Method for Producing Simulated Mammograms: Observer Study

A Method for Producing Simulated Mammograms: Observer Study A Method for Producing Simulated Mammograms: Observer Study Payam Seifi M.Sc. Michael R. Chinander Ph.D. Robert M. Nishikawa Ph.D., FAAPM Carl J. Vyborny Translational Laboratory for Breast Imaging Research

More information

Non-Stationary CT Image Noise Spectrum Analysis

Non-Stationary CT Image Noise Spectrum Analysis Non-Stationary CT Image Noise Spectrum Analysis Michael Balda, Björn J. Heismann,, Joachim Hornegger Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen Siemens Healthcare, Erlangen michael.balda@informatik.uni-erlangen.de

More information

Scaling Calibration in the ATRACT Algorithm

Scaling Calibration in the ATRACT Algorithm Scaling Calibration in the ATRACT Algorithm Yan Xia 1, Andreas Maier 1, Frank Dennerlein 2, Hannes G. Hofmann 1, Joachim Hornegger 1,3 1 Pattern Recognition Lab (LME), Friedrich-Alexander-University Erlangen-Nuremberg,

More information

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT Simulation Imaging Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT imaging Goal: Achieve image quality that allows to perform the task at hand (diagnostic

More information

HIGH-SPEED THEE-DIMENSIONAL TOMOGRAPHIC IMAGING OF FRAGMENTS AND PRECISE STATISTICS FROM AN AUTOMATED ANALYSIS

HIGH-SPEED THEE-DIMENSIONAL TOMOGRAPHIC IMAGING OF FRAGMENTS AND PRECISE STATISTICS FROM AN AUTOMATED ANALYSIS 23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16-20 APRIL 2007 HIGH-SPEED THEE-DIMENSIONAL TOMOGRAPHIC IMAGING OF FRAGMENTS AND PRECISE STATISTICS FROM AN AUTOMATED ANALYSIS P. Helberg 1,

More information

Modern CT system generations Measurement of attenuation

Modern CT system generations Measurement of attenuation CT reconstruction repetition & hints Reconstruction in CT and hints to the assignments Jørgen Arendt Jensen October 4, 16 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering

More information