Ch. 4 Physical Principles of CT

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Ch. 4 Physical Principles of CT"

Transcription

1 Ch. 4 Physical Principles of CT CLRS 408: Intro to CT Department of Radiation Sciences Review: Why CT? Solution for radiography/tomography limitations Superimposition of structures Distinguishing between structures with similar densities Used in radiation therapy planning instead of traditional fluoroscopy Used to show anatomy with NM functional imaging and for attenuation correction in fusion studies Review: Why CT? Eliminates superimposition Improves image contrast (reduces scatter) Detects small differences in tissue contrast Shows cross-sectional anatomy are subject to digital post-processing to produce 3D images 1

2 CT Process Beam of well-collimated x-rays transmitted thru cross-section of pt Beam geometry = size & shape of beam emanating from x-ray tube and passing thru pt to strike a set of detectors that collects radiation Attenuation data CT Process Transmitted radiation strikes detectors that can measure small differences Data received from detectors processed by digital computer * To produce a CT image 1. Systematically collect transmission values and send to computer 2. Determine linear attenuation coefficients (µ) 3. Convert µ to CT number for each pixel 4. Assign gray level to pixel, according to CT # I = I o e -µx 2

3 Physical Principles (i.e. physics & math) 1. Data Acquisition 2. Image Data Processing 3. Display / store / communicate the results Physical Principles: 1) Data Acquisition Systematic collection of information to produce the CT image 1. Slice-by-slice (Image A) 2. Volume acquisition (Image B) Image A Image B Data Acquisition Slice-by-slice Data collected thru different beam geometries Steps: X-ray tube rotates around pt Collects data from 1 st slice Tube stops Pt moves Next slice is scanned Repeated until entire area of interest is scanned 3

4 Data Acquisition Volume acquisition Data collected thru spiral/helical CT geometry Single-slice spiral/helical CT (SSCT): X-ray tube rotates around pt Traces spiral/helical path to scan entire volume of tissue Patient holds a single breath Multi-slice spiral/helical CT (MSCT) Improve the volume coverage speed performance Generate multiple slices per one revolution of x-ray tube Data Acquisition 1 st step: Scanning X-ray tube and detectors rotate around pt to collect views Detectors measure the radiation transmitted thru patient from various locations Relative transmission values= intensity at source (I O ) log( ) intensity at detector (I) Physical Principles: 2) Determine Attenuation Coefficients Attenuation: reduction in intensity of beam as it passes through an object CT reconstruction is based on attenuation of the structures in the path of the beam computer 4

5 Attenuation in CT In homogeneous beam all photons have the same energy A.K.A. monochromatic or monoenergetic beam Hounsfield used in initial experiments Homogenous beam (monochromatic / monoenergetic) Attenuation in CT In a heterogeneous beam photons have different energies A.K.A. polychromatic beam Modern CT Heterogenous beam (polychromatic) Attenuation in CT Because CT has heterogeneous beam: 1. Effective atomic density (# of atoms/volume) 2. Atomic number (lead, copper, calcium) 3. Radiation photon energy of beam low energy high energy This differential attenuation of body tissues produces the various shades of gray in a diagnostic image 5

6 What is a linear attenuation coefficient (µ)? Quantitative measurement indicating amount of attenuation that has occurred with unit of per centimeter (linear) Degree of attenuation for each voxel determined by the CT computer Result of absorption and scattering X-rays can be attenuated photoelectric effect X-Rays can be attenuated and scattered by the Compton effect * CT & Energy Dependence Attenuation (µ t ) is dependent on energy of x-ray beam The higher the energy of the beam, the less the µ t CT uses high kv technique ( ) Reduces dependence of µ on photon energy Reduces contrast at bone/soft tissue Produces high # of photons reaching detector (flux) DSCT uses high and low kv sources Images from KJR Lambert-Beer Law Describes what happens to photons as they travel through the tissues Based on homogenous beam I = I o e -µx 6

7 I = I o e -µx I - transmitted intensity (what reaches detector) I o - original intensity (what leaves tube) e - Euler s constant/base of natural logarithm (2.718) µ - linear attenuation coefficient x - thickness of object We know I, I o, e and x So we (the computer!) can solve for µ Lambert-Beer Law True for homogeneous = intensity or kv does not change Necessary to make heterogeneous beam in CT approximate a homogeneous beam to satisfy the equation Formula is modified to measure number (N) of photons that exit the tissue instead of intensity (I) N = N o e -µx *** we still use this formula to determine µ THIS is more realistic! Instead of determining one µ for radiation passing through pt, it is subdivided to provide calculated µ s for many segments along the path: N = N o e - µx N 0 µ 1 µ 2 µ 3 µ 4 µ 5 µ 6 µ 7 µ 8 µ 9 µ 10 N N = N 0 e -(µ 1 + µ 2 + µ 3 + µ 4 + µ 5 + µ 6 + µ 10 ) x 7

8 Physical Principles: 3) Convert to CT Numbers A.K.A. Hounsfield Unit Each pixel in reconstructed image is assigned a CT number, based on attenuation coefficient (µ) CT number related to µ of water: µ t -µ w CT# = µ w K µ t = µ of tissue µ w = µ of water K = scaling factor CT Numbers µ CT # = t -µ w µ w K 1000 CT numbers form a scale Hounsfield scale has K = CT number of water is 0 Scanners are calibrated so CT number of water is always valued at 0 water air bone CT Numbers Shades of gray are assigned to CT Numbers Baseline is water assigned value of 0 Cortical bone is most dense values to Air is least dense values to Every shade of gray in between is assigned a unique CT Number 8

9 Examples of CT Numbers Examples of CT Numbers Calculating CT # s If µ bone = 0.38, µ water = 0.19, µ air = 0 µ CT# = t -µ µ w w K CT # of bone = x 1000 = CT # of water = x 1000 = CT # of air = 9

10 Calculating CT # s If µ bone = 0.38, µ water = 0.19, µ air = 0 µ CT# = t -µ µ w w K CT # of bone = x 1000 = CT # of water = x = 0 CT # of air = x 1000 = Physical Principles: 4) Image Display bone 0 water air Image Data Processing Raw data data received from the detectors Undergo preprocessing corrections made and reformatting of the data occurs Scan data represent attenuation readings Converted into digital image characterized by CT # Accomplished by mathematical procedures reconstruction algorithms Reconstructed image Displayed for viewing and sent for storage/pacs 10

11 Image Display and Manipulation Display resolution Windowing Image format FOV Matrix size Pixel size Bit depth Display (Monitor) Resolution Related to size of matrix # of rows and columns the monitor can display 64 x x x 2048 We already know how to calculate the # of pixels in each matrix. Windowing Image includes range of CT # s to 1000 (or some variation) Can adjust window width and window level of image to display different gray scale values for different tissue types Appears white Appears black 11

12 Window Width (WW) Range of CT #s that are displayed as shades of gray CT# as a group Long scale / low contrast Controls displayed image contrast Window Level (WL) Determines CT # that will be the center of WW Controls image brightness Determined by tissue density that occurs most frequently within an anatomic structure WW and WL Top: 1000 Top: 0 Bottom: Bottom: Appears white Top: 500 Bottom: -500 WW = 2000 WW = 1000 WL = 0 WL = WW = 1000 WL = Appears black 12

13 Windowing Pixel Size Related to FOV and matrix size Pixel size (mm) = FOV (mm) matrix size Calculate pixel size: FOV = 20 cm and matrix size is 256 x 256 Pixel size (mm) = 200 mm 256 mm =.78 mm We know this already! Voxel Volume Voxel 3 dimensional height, width, depth Calculated by multiplying pixel dimensions by the slice thickness Pixel =.5 mm by.5 mm; slice thickness = 3 mm: Voxel volume =.5 x.5 x 3 =.75 mm 3 13

14 Technological Considerations Ultimate goal produce high-quality CT images with minimal radiation Does it work quickly/efficiently? Are the images high quality? Is the patient comfortable? Is minimal radiation dose used? Data Flow in CT Advantages of CT 1. Excellent low-contrast resolution Highly collimated beam used to take images of a cross-sectional slice of the patient More sensitive radiation detectors are used to measure the radiation transmitted through the slice CT offers best low contrast resolution compared with radiography, nuclear medicine, and ultrasonography, but not MRI 2. Image manipulation (WW/WL) Contrast scale can be varied to suit the needs of the observer 3. Single breath hold, faster processing Volume data acquisition in single breath rather than slice-by-slice Improvements in 3D imaging, multiplanar image reformation, and other applications 14

15 Advantages of CT 4. Newer techniques/procedures Quantitative CT, High spatial resolution CT, SPECT/CT, PET/CT, Perfusion CT, Dynamic CT, CT simulation for radiation therapy treatment planning, etc 5. Digital manipulation/reconstruction With image processing algorithms, image can be modified to enhance its information content or analyzed to obtain information about shape / texture of lesions 6. 3D Imaging Imaging intended to enhance image information content Improve diagnostic interpretation skills of the radiologist Limitations of CT 1. Less detailed spatial resolution in lp/mm compared with radiography 2. Increased radiation dose for similar anatomy 3. Some anatomy still difficult to image Soft tissues are surrounded by large amounts of bone (posterior fossa, spinal cord, pituitary, interpetrous space) causing artifacts 4. Artifacts Metallic objects on/in pt produces streak artifacts on CT images Also creates other artifacts not common to radiography 5. Limited in slice orientation The End 15

CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0

CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0 Revised 10/10 COURSE SYLLABUS TM 220 COMPUTED TOMOGRAPHY PHYSICS CLASS HOURS: 4 CREDIT HOURS: 4 LABORATORY HOURS: 0 CATALOG COURSE DESCRIPTION: This course is one of a three course set in whole body Computed

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 4 Computed Tomography Lucas C. Parra, parra@ccny.cuny.edu some slides inspired by lecture notes of Andreas H. Hilscher at Columbia University.

More information

TEP Hounsfield units. Related topics Attenuation coefficient, Hounsfield units

TEP Hounsfield units. Related topics Attenuation coefficient, Hounsfield units Hounsfield units TEP Related topics Attenuation coefficient, Hounsfield units Principle Depending on the type of CT scanner and the settings, the result of a CT scan of the same material can be different

More information

Computer-Tomography II: Image reconstruction and applications

Computer-Tomography II: Image reconstruction and applications Computer-Tomography II: Image reconstruction and applications Prof. Dr. U. Oelfke DKFZ Heidelberg Department of Medical Physics (E040) Im Neuenheimer Feld 280 69120 Heidelberg, Germany u.oelfke@dkfz.de

More information

INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1. Modifications for P551 Fall 2013 Medical Physics Laboratory

INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1. Modifications for P551 Fall 2013 Medical Physics Laboratory INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1 Modifications for P551 Fall 2013 Medical Physics Laboratory Introduction Following the introductory lab 0, this lab exercise the student through

More information

CT vs. VolumeScope: image quality and dose comparison

CT vs. VolumeScope: image quality and dose comparison CT vs. VolumeScope: image quality and dose comparison V.N. Vasiliev *a, A.F. Gamaliy **b, M.Yu. Zaytsev b, K.V. Zaytseva ***b a Russian Sci. Center of Roentgenology & Radiology, 86, Profsoyuznaya, Moscow,

More information

Loma Linda University Medical Center Dept. of Radiation Medicine

Loma Linda University Medical Center Dept. of Radiation Medicine Loma Linda University Medical Center Dept. of Radiation Medicine and Northern Illinois University Dept. of Physics and Dept. of Computer Science Presented by George Coutrakon, PhD NIU Physics Dept. Collaborators

More information

LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT Lab Manual: 0

LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT Lab Manual: 0 LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT Lab Manual: 0 Introduction This lab demonstration explores the physics and technology of Computed Tomography (CT) and guides the student and instructor

More information

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D.

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Applied Science Laboratory, GE Healthcare Technologies 1 Image Generation Reconstruction of images from projections. textbook reconstruction advanced

More information

Medical Imaging Projects

Medical Imaging Projects NSF REU MedIX Summer 2006 Medical Imaging Projects Daniela Stan Raicu, PhD http://facweb.cs.depaul.edu/research draicu@cs.depaul.edu Outline Medical Informatics Imaging Modalities Computed Tomography Medical

More information

Medical Images Analysis and Processing

Medical Images Analysis and Processing Medical Images Analysis and Processing - 25642 Emad Course Introduction Course Information: Type: Graduated Credits: 3 Prerequisites: Digital Image Processing Course Introduction Reference(s): Insight

More information

CT Systems and their standards

CT Systems and their standards CT Systems and their standards Stephen Brown Engineering Measurement 11 th April 2012 Industrial X-ray computed tomography: The future of co-ordinate metrology? Burleigh Court, Loughborough University

More information

icatvision Quick Reference

icatvision Quick Reference icatvision Quick Reference Navigating the i-cat Interface This guide shows how to: View reconstructed images Use main features and tools to optimize an image. REMINDER Images are displayed as if you are

More information

Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis

Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis Contrast Enhancement with Dual Energy CT for the Assessment of Atherosclerosis Stefan C. Saur 1, Hatem Alkadhi 2, Luca Regazzoni 1, Simon Eugster 1, Gábor Székely 1, Philippe Cattin 1,3 1 Computer Vision

More information

CT Basics: Image Processing and Reconstruction Module 4

CT Basics: Image Processing and Reconstruction Module 4 Module 4 For educational and institutional use. This transcript is licensed for noncommercial, educational inhouse or online educational course use only in educational and corporate institutions. Any broadcast,

More information

Application of 450 kv Computed Tomography to Engine Blocks with Steel Liners

Application of 450 kv Computed Tomography to Engine Blocks with Steel Liners Application of 450 kv Computed Tomography to Engine Blocks with Steel Liners Charles R. Smith, Kevin Holt BIR, Inc. Uwe Bischoff, Bernd Georgi, Ferdinand Hansen, Frank Jeltsch Volkswagen Commercial Vehicles

More information

DICOM. Supplement 188 Multi-Energy CT Imaging. DICOM Working Group 21 Computed Tomography

DICOM. Supplement 188 Multi-Energy CT Imaging. DICOM Working Group 21 Computed Tomography DICOM Supplement 188 Multi-Energy CT Imaging DICOM Working Group 21 Computed Tomography Rationale Short introduction of Multi Energy (ME) s Overview: Imaging techniques, including scanning, reconstruction,

More information

SYSTEM LINEARITY LAB MANUAL: 2 Modifications for P551 Fall 2013 Medical Physics Laboratory

SYSTEM LINEARITY LAB MANUAL: 2 Modifications for P551 Fall 2013 Medical Physics Laboratory SYSTEM LINEARITY LAB MANUAL: 2 Modifications for P551 Fall 2013 Medical Physics Laboratory Introduction In this lab exercise, you will investigate the linearity of the DeskCAT scanner by making measurements

More information

Philips SPECT/CT Systems

Philips SPECT/CT Systems Philips SPECT/CT Systems Ling Shao, PhD Director, Imaging Physics & System Analysis Nuclear Medicine, Philips Healthcare June 14, 2008 *Presented SNM08 Categorical Seminar - Quantitative SPECT and PET

More information

Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system

Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system 3 rd October 2008 11 th Topical Seminar on Innovative Particle and Radiation

More information

Energy resolved X-ray diffraction Cl. J.Kosanetzky, G.Harding, U.Neitzel

Energy resolved X-ray diffraction Cl. J.Kosanetzky, G.Harding, U.Neitzel Proc. Of SPIE Vol 0626, Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems(PACS IV) for Medical Applications IV, ed. S J Dwyer/R H Schneider (Jan 1986)

More information

An Iterative Approach to the Beam Hardening Correction in Cone Beam CT (Proceedings)

An Iterative Approach to the Beam Hardening Correction in Cone Beam CT (Proceedings) Marquette University e-publications@marquette Biomedical Engineering Faculty Research and Publications Engineering, College of 1-1-1999 An Iterative Approach to the Beam Hardening Correction in Cone Beam

More information

CT: Physics Principles & Equipment Design

CT: Physics Principles & Equipment Design CT: Physics Principles & Equipment Design James Kofler, Ph.D Radiology Mayo Clinic Rochester, MN June 27, 2012 Disclosures Nothing to disclose Learning Objectives Understand fundamental concepts of - CT

More information

[PDR03] RECOMMENDED CT-SCAN PROTOCOLS

[PDR03] RECOMMENDED CT-SCAN PROTOCOLS SURGICAL & PROSTHETIC DESIGN [PDR03] RECOMMENDED CT-SCAN PROTOCOLS WORK-INSTRUCTIONS DOCUMENT (CUSTOMER) RECOMMENDED CT-SCAN PROTOCOLS [PDR03_V1]: LIVE 1 PRESCRIBING SURGEONS Patient-specific implants,

More information

Fits you like no other

Fits you like no other Fits you like no other BrightView X and XCT specifications The new BrightView X system is a fully featured variableangle camera that is field-upgradeable to BrightView XCT without any increase in room

More information

Simulation of Mammograms & Tomosynthesis imaging with Cone Beam Breast CT images

Simulation of Mammograms & Tomosynthesis imaging with Cone Beam Breast CT images Simulation of Mammograms & Tomosynthesis imaging with Cone Beam Breast CT images Tao Han, Chris C. Shaw, Lingyun Chen, Chao-jen Lai, Xinming Liu, Tianpeng Wang Digital Imaging Research Laboratory (DIRL),

More information

Beam Attenuation Grid Based Scatter Correction Algorithm for. Cone Beam Volume CT

Beam Attenuation Grid Based Scatter Correction Algorithm for. Cone Beam Volume CT 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic Beam Attenuation Grid Based Scatter Correction Algorithm for More Info at Open Access Database

More information

Effects of the difference in tube voltage of the CT scanner on. dose calculation

Effects of the difference in tube voltage of the CT scanner on. dose calculation Effects of the difference in tube voltage of the CT scanner on dose calculation Dong Joo Rhee, Sung-woo Kim, Dong Hyeok Jeong Medical and Radiological Physics Laboratory, Dongnam Institute of Radiological

More information

REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO

REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO Abstract C.S. Levin, Y-C Tai, E.J. Hoffman, M. Dahlbom, T.H. Farquhar UCLA School of Medicine Division

More information

Emission Computed Tomography Notes

Emission Computed Tomography Notes Noll (24) ECT Notes: Page 1 Emission Computed Tomography Notes Introduction Emission computed tomography (ECT) is the CT applied to nuclear medicine. There are two varieties of ECT: 1. SPECT single-photon

More information

Metal Streak Artifacts in X-ray Computed Tomography: A Simulation Study

Metal Streak Artifacts in X-ray Computed Tomography: A Simulation Study Metal Streak Artifacts in X-ray Computed Tomography: A Simulation Study B. De Man, J. Nuyts, P. Dupont, G. Marchal and P. Suetens Medical Image Computing, ESAT-PSI, K.U.Leuven, B-3000 Leuven, Belgium Department

More information

A Comparative Study of Two Methods for the Correction of Beam Hardening Artifacts in X-ray Computed Tomography

A Comparative Study of Two Methods for the Correction of Beam Hardening Artifacts in X-ray Computed Tomography A Comparative Study of Two Methods for the Correction of Beam Hardening Artifacts in X-ray Computed Tomography by Maryam Khalid Alarfaj submitted to Oregon State University in partial fulfillment of the

More information

Basic Radiation Oncology Physics

Basic Radiation Oncology Physics Basic Radiation Oncology Physics T. Ganesh, Ph.D., DABR Chief Medical Physicist Fortis Memorial Research Institute Gurgaon Acknowledgment: I gratefully acknowledge the IAEA resources of teaching slides

More information

Joint CI-JAI advanced accelerator lecture series Imaging and detectors for medical physics Lecture 1: Medical imaging

Joint CI-JAI advanced accelerator lecture series Imaging and detectors for medical physics Lecture 1: Medical imaging Joint CI-JAI advanced accelerator lecture series Imaging and detectors for medical physics Lecture 1: Medical imaging Dr Barbara Camanzi barbara.camanzi@stfc.ac.uk Course layout Day AM 09.30 11.00 PM 15.30

More information

Photon counting spectral CT versus conventional CT: comparative evaluation for breast imaging application

Photon counting spectral CT versus conventional CT: comparative evaluation for breast imaging application Physics in Medicine & Biology Photon counting spectral CT versus conventional CT: comparative evaluation for breast imaging application To cite this article: Polad M Shikhaliev and Shannon G Fritz 2011

More information

Computed tomography of simple objects. Related topics. Principle. Equipment TEP Beam hardening, artefacts, and algorithms

Computed tomography of simple objects. Related topics. Principle. Equipment TEP Beam hardening, artefacts, and algorithms Related topics Beam hardening, artefacts, and algorithms Principle The CT principle is demonstrated with the aid of simple objects. In the case of very simple targets, only a few images need to be taken

More information

SPECT QA and QC. Bruce McBride St. Vincent s Hospital Sydney.

SPECT QA and QC. Bruce McBride St. Vincent s Hospital Sydney. SPECT QA and QC Bruce McBride St. Vincent s Hospital Sydney. SPECT QA and QC What is needed? Why? How often? Who says? QA and QC in Nuclear Medicine QA - collective term for all the efforts made to produce

More information

HIP IMPLANT METAL ARTIFACT REDUCTION FOR PELVIC CT SCANS

HIP IMPLANT METAL ARTIFACT REDUCTION FOR PELVIC CT SCANS ARTUR SOSSIN HIP IMPLANT METAL ARTIFACT REDUCTION FOR PELVIC CT SCANS Master s Thesis Examiners: Professor Hannu Eskola, Jarkko Ojala, Lic. Sci. (Tech.) Examiners and topic approved by the Faculty Council

More information

Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation

Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation Idris A. Elbakri and Jeffrey A. Fessler Electrical Engineering and Computer Science

More information

CALCULATION AND MEASUREMENT OF EXPOSURE BUILDUP FACTORS FOR X-RAY RADIOGRAPHY

CALCULATION AND MEASUREMENT OF EXPOSURE BUILDUP FACTORS FOR X-RAY RADIOGRAPHY CALCULATION AND MEASUREMENT OF EXPOSURE BUILDUP FACTORS FOR X-RAY RADIOGRAPHY Taher 1. Aljundi and Joseph N. Gray Center for Nondestructive Evaluation Iowa State University Ames, Iowa 50011 INTRODUCTION

More information

Developments in Monte Carlo Methods for Medical Imaging Review of Anatomical Models of Human Anatomy

Developments in Monte Carlo Methods for Medical Imaging Review of Anatomical Models of Human Anatomy Developments in Monte Carlo Methods for Medical Imaging Review of Anatomical Models of Human Anatomy Wesley E. Bolch, PhD, PE, DABHP, FHPS, FAAPM Department of Biomedical Engineering University of Florida,

More information

Simplified statistical image reconstruction algorithm for polyenergetic X-ray CT. y i Poisson I i (E)e R } where, b i

Simplified statistical image reconstruction algorithm for polyenergetic X-ray CT. y i Poisson I i (E)e R } where, b i implified statistical image reconstruction algorithm for polyenergetic X-ray C omesh rivastava, tudent member, IEEE, and Jeffrey A. Fessler, enior member, IEEE Abstract In X-ray computed tomography (C),

More information

Non-Stationary CT Image Noise Spectrum Analysis

Non-Stationary CT Image Noise Spectrum Analysis Non-Stationary CT Image Noise Spectrum Analysis Michael Balda, Björn J. Heismann,, Joachim Hornegger Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen Siemens Healthcare, Erlangen michael.balda@informatik.uni-erlangen.de

More information

Measurement of Skin Dose

Measurement of Skin Dose Measurement of Skin Dose Sources of Uncertainty Kenneth A. Fetterly, Ph.D. William Pavlicek, Ph.D. Dan Bednarek, PhD 2014 AAPM Annual Meeting, Austin Texas 2013 MFMER slide-1 Purpose 1. Present a framework

More information

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION Frank Dong, PhD, DABR Diagnostic Physicist, Imaging Institute Cleveland Clinic Foundation and Associate Professor of Radiology

More information

Quantitative Attenuation Correction for PET/CT Using Iterative Reconstruction of Low-Dose Dual-Energy CT

Quantitative Attenuation Correction for PET/CT Using Iterative Reconstruction of Low-Dose Dual-Energy CT Quantitative Attenuation Correction for PET/CT Using Iterative Reconstruction of Low-Dose Dual-Energy CT Paul E. Kinahan, Senior Member, IEEE, Jeffrey A. Fessler, Senior Member, IEEE, Adam M. Alessio,

More information

Chapter 3 Set Redundancy in Magnetic Resonance Brain Images

Chapter 3 Set Redundancy in Magnetic Resonance Brain Images 16 Chapter 3 Set Redundancy in Magnetic Resonance Brain Images 3.1 MRI (magnetic resonance imaging) MRI is a technique of measuring physical structure within the human anatomy. Our proposed research focuses

More information

A dedicated tool for PET scanner simulations using FLUKA

A dedicated tool for PET scanner simulations using FLUKA A dedicated tool for PET scanner simulations using FLUKA P. G. Ortega FLUKA meeting June 2013 1 Need for in-vivo treatment monitoring Particles: The good thing is that they stop... Tumour Normal tissue/organ

More information

Corso di laurea in Fisica A.A Fisica Medica 5 SPECT, PET

Corso di laurea in Fisica A.A Fisica Medica 5 SPECT, PET Corso di laurea in Fisica A.A. 2007-2008 Fisica Medica 5 SPECT, PET Step 1: Inject Patient with Radioactive Drug Drug is labeled with positron (β + ) emitting radionuclide. Drug localizes

More information

DUAL-ENERGY CT IN PROTON THERAPY

DUAL-ENERGY CT IN PROTON THERAPY 10/31/17 DUAL-ENERGY CT IN PROTON THERAPY Isabel Almeida, MAASTRO Clinic 7th NCS Lustrum Symposium 1 10/31/17 http://zonptc.bouwwebcam.nl https://www.youtube.com/watch?v=3vvvf5bqn7g Range uncertainties

More information

Analysis of Dose Calculation Accuracy in Cone Beam Computed Tomography with Various Amount of Scattered Photon Contamination

Analysis of Dose Calculation Accuracy in Cone Beam Computed Tomography with Various Amount of Scattered Photon Contamination International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2017, 6, 233-251 http://www.scirp.org/journal/ijmpcero ISSN Online: 2168-5444 ISSN Print: 2168-5436 Analysis of Dose

More information

Index. aliasing artifacts and noise in CT images, 200 measurement of projection data, nondiffracting

Index. aliasing artifacts and noise in CT images, 200 measurement of projection data, nondiffracting Index Algebraic equations solution by Kaczmarz method, 278 Algebraic reconstruction techniques, 283-84 sequential, 289, 293 simultaneous, 285-92 Algebraic techniques reconstruction algorithms, 275-96 Algorithms

More information

Introduction to Medical Image Processing

Introduction to Medical Image Processing Introduction to Medical Image Processing Δ Essential environments of a medical imaging system Subject Image Analysis Energy Imaging System Images Image Processing Feature Images Image processing may be

More information

Convolution-Based Truncation Correction for C-Arm CT using Scattered Radiation

Convolution-Based Truncation Correction for C-Arm CT using Scattered Radiation Convolution-Based Truncation Correction for C-Arm CT using Scattered Radiation Bastian Bier 1, Chris Schwemmer 1,2, Andreas Maier 1,3, Hannes G. Hofmann 1, Yan Xia 1, Joachim Hornegger 1,2, Tobias Struffert

More information

Nuclear Medicine Imaging Systems

Nuclear Medicine Imaging Systems Nuclear Medicine Imaging Systems Position estimation based on 2-D centroid calculation called Anger logic or Anger camera PMT signal Posi/on op/cal photons Scin/lla/on gamma-ray Collimator Analogies with

More information

Prostate Detection Using Principal Component Analysis

Prostate Detection Using Principal Component Analysis Prostate Detection Using Principal Component Analysis Aamir Virani (avirani@stanford.edu) CS 229 Machine Learning Stanford University 16 December 2005 Introduction During the past two decades, computed

More information

Superior Imaging on the Go

Superior Imaging on the Go Superior Imaging on the Go About Samsung Samsung Electronics Co., Ltd. is a global leader in technology, opening new possibilities for people everywhere. Through relentless innovation and discovery, we

More information

Introduction to Medical Imaging. Lecture 6: X-Ray Computed Tomography. CT number (in HU) = Overview. Klaus Mueller

Introduction to Medical Imaging. Lecture 6: X-Ray Computed Tomography. CT number (in HU) = Overview. Klaus Mueller Overview Introduction to Medical Imaging Lecture 6: X-Ray Computed Tomography Scanning: rotate source-detector pair around the patient Klaus Mueller data Computer Science Department Stony Brook University

More information

X-Ray fluorescence and Raman spectroscopy

X-Ray fluorescence and Raman spectroscopy X-Ray fluorescence and Raman spectroscopy Advanced physics laboratory (nd part) 4CFU Catalini Letizia, De Angelis Giulia Vittoria, Piselli Verdiana Abstract In this paper we report about two different

More information

Digital phantoms for the evaluation of a software used for an automatic analysis of the Winston-Lutz test in image guided radiation therapy

Digital phantoms for the evaluation of a software used for an automatic analysis of the Winston-Lutz test in image guided radiation therapy Author manuscript, published in "Medical Imaging 008: Physics of Medical Imaging, San Diego, CA, USA : United States (008)" DOI : 10.1117/1.768668 Digital phantoms for the evaluation of a software used

More information

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti Monte Carlo methods in proton beam radiation therapy Harald Paganetti Introduction: Proton Physics Electromagnetic energy loss of protons Distal distribution Dose [%] 120 100 80 60 40 p e p Ionization

More information

Outline. Monte Carlo Radiation Transport Modeling Overview (MCNP5/6) Monte Carlo technique: Example. Monte Carlo technique: Introduction

Outline. Monte Carlo Radiation Transport Modeling Overview (MCNP5/6) Monte Carlo technique: Example. Monte Carlo technique: Introduction Monte Carlo Radiation Transport Modeling Overview () Lecture 7 Special Topics: Device Modeling Outline Principles of Monte Carlo modeling Radiation transport modeling with Utilizing Visual Editor (VisEd)

More information

Cone-beam computed tomography with a flat-panel imager: Initial performance characterization

Cone-beam computed tomography with a flat-panel imager: Initial performance characterization Cone-beam computed tomography with a flat-panel imager: Initial performance characterization D. A. Jaffray a) and J. H. Siewerdsen Department of Radiation Oncology, William Beaumont Hospital, Royal Oak,

More information

Artifacts in Spiral X-ray CT Scanners: Problems and Solutions

Artifacts in Spiral X-ray CT Scanners: Problems and Solutions Artifacts in Spiral X-ray CT Scanners: Problems and Solutions Mehran Yazdi, and Luc Beaulieu International Science Index, Electrical and Computer Engineering waset.org/publication/12966 Abstract Artifact

More information

GE Healthcare. Agile Ultrasound. The Next Revolution in Ultrasound Imaging

GE Healthcare. Agile Ultrasound. The Next Revolution in Ultrasound Imaging Agile Ultrasound The Next Revolution in Ultrasound Imaging Abstract Diagnostic use of ultrasound has greatly expanded over the past couple of decades because it offers many advantages as an imaging modality.

More information

ImPACT. Information Leaflet No. 1: CT Scanner Acceptance Testing

ImPACT. Information Leaflet No. 1: CT Scanner Acceptance Testing ImPACT Information Leaflet No. 1: CT Scanner Acceptance Testing Version 1.02, 18/05/01 CONTENTS: 1. SCOPE OF LEAFLET 2. GENERAL PRINCIPLES OF ACCEPTANCE AND COMMISSIONING 2.1 PHANTOMS 2.2 EXPOSURE AND

More information

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks Du-Yih Tsai, Masaru Sekiya and Yongbum Lee Department of Radiological Technology, School of Health Sciences, Faculty of

More information

Detection & Classification of Lung Nodules Using multi resolution MTANN in Chest Radiography Images

Detection & Classification of Lung Nodules Using multi resolution MTANN in Chest Radiography Images The International Journal Of Engineering And Science (IJES) ISSN (e): 2319 1813 ISSN (p): 2319 1805 Pages 98-104 March - 2015 Detection & Classification of Lung Nodules Using multi resolution MTANN in

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Skull Segmentation of MR images based on texture features for attenuation correction in PET/MR

Skull Segmentation of MR images based on texture features for attenuation correction in PET/MR Skull Segmentation of MR images based on texture features for attenuation correction in PET/MR CHAIBI HASSEN, NOURINE RACHID ITIO Laboratory, Oran University Algeriachaibih@yahoo.fr, nourine@yahoo.com

More information

Attenuation Coefficients for Layered Ceiling and Floor Shields in PET/CT Clinics

Attenuation Coefficients for Layered Ceiling and Floor Shields in PET/CT Clinics Attenuation Coefficients for Layered Ceiling and Floor Shields in PET/CT Clinics Robert L. Metzger and Kenneth A. Van Riper Radiation Safety Engineering, Inc 3245 North Washington Street, Chandler, AZ

More information

Preface. Med. Phys. 35(9), , Mechanical QA. Radiation Survey Mechanical tests Light radiation Table, Collimator, Gantry Jaws.

Preface. Med. Phys. 35(9), , Mechanical QA. Radiation Survey Mechanical tests Light radiation Table, Collimator, Gantry Jaws. AAPM-SAM-2012-Das (1) Beam Data Collection and Commissioning for Linear Accelerators: Technical Considerations and Recommendations Preface Indra J. Das, PhD, FAAPM, FACR, FASTRO Department of Radiation

More information

Figure 1: Derivation of Bragg s Law

Figure 1: Derivation of Bragg s Law What is Bragg s Law and why is it Important? Bragg s law refers to a simple equation derived by English physicists Sir W. H. Bragg and his son Sir W. L. Bragg in 1913. This equation explains why the faces

More information

Magnetic Resonance Elastography (MRE) of Liver Disease

Magnetic Resonance Elastography (MRE) of Liver Disease Magnetic Resonance Elastography (MRE) of Liver Disease Authored by: Jennifer Dolan Fox, PhD VirtualScopics Inc. jennifer_fox@virtualscopics.com 1-585-249-6231 1. Overview of MRE Imaging MRE is a magnetic

More information

Methods for Quantitative Characterization of Large-Scale High Energy Computed Tomography Systems

Methods for Quantitative Characterization of Large-Scale High Energy Computed Tomography Systems More Info at Open Access Database www.ndt.net/?id=16704 Methods for Quantitative Characterization of Large-Scale High Energy Computed Tomography Systems Michael BÖHNEL 1, Andreas GRUBER 2, Nils REIMS 1,

More information

Biomedical Image Processing

Biomedical Image Processing Biomedical Image Processing Jason Thong Gabriel Grant 1 2 Motivation from the Medical Perspective MRI, CT and other biomedical imaging devices were designed to assist doctors in their diagnosis and treatment

More information

Digital Imaging and Communications in Medicine (DICOM) Supplement 188: Multi-energy CT Images

Digital Imaging and Communications in Medicine (DICOM) Supplement 188: Multi-energy CT Images Supplement 188: Multi-energy CT Images Page 1 2 4 6 Digital Imaging and Communications in Medicine (DICOM) 8 Supplement 188: Multi-energy CT Images 10 12 14 16 18 20 Prepared by: 22 DICOM Standards Committee,

More information

CT imaging using energy-sensitive photon-counting detectors. Disclosure. Vision 20/20 paper

CT imaging using energy-sensitive photon-counting detectors. Disclosure. Vision 20/20 paper CT imaging using energy-sensitive photon-counting detectors Katsuyuki Ken Taguchi, Ph.D. ktaguchi@jhmi.edu Division of Medical Imaging Physics Department of Radiology Johns Hopkins University No financial

More information

Symbia T Series System Specifications Answers for life.

Symbia T Series System Specifications Answers for life. www.siemens.com/mi System Specifications Answers for life. 2 Diagnostic Excellence Today s healthcare institutions have increasingly diverse patient needs, greater budget limitations and the need for higher

More information

Diffusion Mapping with FireVoxel Quick Start Guide

Diffusion Mapping with FireVoxel Quick Start Guide Diffusion Mapping with FireVoxel Quick Start Guide Medical image analysis tool developed by Artem Mikheev and Henry Rusinek Radiology Department, NYU School of Medicine Original version prepared by Jinyu

More information

Development and quantitative assessment of a beam hardening correction model for preclinical micro-ct

Development and quantitative assessment of a beam hardening correction model for preclinical micro-ct University of Iowa Iowa Research Online Theses and Dissertations Fall 2012 Development and quantitative assessment of a beam hardening correction model for preclinical micro-ct Sucheta Mohapatra University

More information

Volume Ray Casting Neslisah Torosdagli

Volume Ray Casting Neslisah Torosdagli Volume Ray Casting Neslisah Torosdagli Overview Light Transfer Optical Models Math behind Direct Volume Ray Casting Demonstration Transfer Functions Details of our Application References What is Volume

More information

Photon Dose Algorithms and Physics Data Modeling in modern RTP

Photon Dose Algorithms and Physics Data Modeling in modern RTP Photon Dose Algorithms and Physics Data Modeling in modern RTP Niko Papanikolaou, PhD Professor and Director of Medical Physics University of Texas Health Science Center of San Antonio Cancer Therapy &

More information

Digital Image Processing using MATLAB and STATISTICA

Digital Image Processing using MATLAB and STATISTICA The 2nd International Conference on Virtual Learning, ICVL 2007 1 Digital Image Processing using MATLAB and STATISTICA Emilia Dana Seleţchi 1, Octavian G. Duliu 1 1 University of Bucharest, Faculty of

More information

Lucy Phantom MR Grid Evaluation

Lucy Phantom MR Grid Evaluation Lucy Phantom MR Grid Evaluation Anil Sethi, PhD Loyola University Medical Center, Maywood, IL 60153 November 2015 I. Introduction: The MR distortion grid, used as an insert with Lucy 3D QA phantom, is

More information

Reconstruction from Projections

Reconstruction from Projections Reconstruction from Projections M.C. Villa Uriol Computational Imaging Lab email: cruz.villa@upf.edu web: http://www.cilab.upf.edu Based on SPECT reconstruction Martin Šámal Charles University Prague,

More information

I. The digital image MEDICAL IMAGING METHODS. Optical illusions - intensity (color density) Optical illusions space. Optical illusions size, direction

I. The digital image MEDICAL IMAGING METHODS. Optical illusions - intensity (color density) Optical illusions space. Optical illusions size, direction I. The digital image Seeing is believing!? Vision is not only the detection of image information, but complex processing occurs as well MEDICAL IMAGING METHODS Optical illusions size, direction Miklós

More information

MR Advance Techniques. Vascular Imaging. Class III

MR Advance Techniques. Vascular Imaging. Class III MR Advance Techniques Vascular Imaging Class III 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

Gamma spectroscopic measurements using the PID350 pixelated CdTe radiation detector

Gamma spectroscopic measurements using the PID350 pixelated CdTe radiation detector Gamma spectroscopic measurements using the PID350 pixelated CdTe radiation detector K. Karafasoulis, K. Zachariadou, S. Seferlis, I. Papadakis, D. Loukas, C. Lambropoulos, C. Potiriadis Abstract Spectroscopic

More information

Limitations of Projection Radiography. Stereoscopic Breast Imaging. Limitations of Projection Radiography. 3-D Breast Imaging Methods

Limitations of Projection Radiography. Stereoscopic Breast Imaging. Limitations of Projection Radiography. 3-D Breast Imaging Methods Stereoscopic Breast Imaging Andrew D. A. Maidment, Ph.D. Chief, Physics Section Department of Radiology University of Pennsylvania Limitations of Projection Radiography Mammography is a projection imaging

More information

Limited View Angle Iterative CT Reconstruction

Limited View Angle Iterative CT Reconstruction Limited View Angle Iterative CT Reconstruction Sherman J. Kisner 1, Eri Haneda 1, Charles A. Bouman 1, Sondre Skatter 2, Mikhail Kourinny 2, Simon Bedford 3 1 Purdue University, West Lafayette, IN, USA

More information

A fast method for estimation of light flux in fluorescence image guided surgery

A fast method for estimation of light flux in fluorescence image guided surgery A fast method for estimation of light flux in fluorescence image guided surgery 1. Introduction In this document, we present a theoretical method to estimate the light flux in near-infrared fluorescence

More information

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors Complex Sensors: Cameras, Visual Sensing The Robotics Primer (Ch. 9) Bring your laptop and robot everyday DO NOT unplug the network cables from the desktop computers or the walls Tuesday s Quiz is on Visual

More information

Dose Distributions. Purpose. Isodose distributions. To familiarize the resident with dose distributions and the factors that affect them

Dose Distributions. Purpose. Isodose distributions. To familiarize the resident with dose distributions and the factors that affect them Dose Distributions George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To familiarize the resident with dose distributions and the factors that affect them

More information

Image Guidance and Beam Level Imaging in Digital Linacs

Image Guidance and Beam Level Imaging in Digital Linacs Image Guidance and Beam Level Imaging in Digital Linacs Ruijiang Li, Ph.D. Department of Radiation Oncology Stanford University School of Medicine 2014 AAPM Therapy Educational Course Disclosure Research

More information

RadiAnt DICOM Viewer. User manual. Version July 1, Copyright Medixant. All rights reserved.

RadiAnt DICOM Viewer. User manual.  Version July 1, Copyright Medixant. All rights reserved. RadiAnt DICOM Viewer User manual Version 1.8.6 July 1, 2013 http://www.radiantviewer.com Copyright 2009-2013 Medixant. All rights reserved. Table of contents 3 Table of contents 1 Welcome to RadiAnt DICOM

More information

Cross Scatter in Dual Cone X ray Imaging: Magnitude, Avoidance, Correction, and. Artifact Reduction. William Michael Giles

Cross Scatter in Dual Cone X ray Imaging: Magnitude, Avoidance, Correction, and. Artifact Reduction. William Michael Giles Cross Scatter in Dual Cone X ray Imaging: Magnitude, Avoidance, Correction, and Artifact Reduction by William Michael Giles Department of Medical Physics Duke University Date: Approved: Fang Fang Yin,

More information